苏科版数学七年级下册-期中复习试题(无答案)

合集下载

苏科版数学七年级下册期中复习试卷.docx

苏科版数学七年级下册期中复习试卷.docx

CABGD ′E D FC ′1七年级数学(B )的,请将正确的答案填在题后的括号内。

) 1.在下列实例中,属于平移过程的个数有 ( )①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程. A .1个 B .2个 C .3个 D .4个2.PM 2.5是指大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为 ( )A .0.25×10-5米B .2.5×10-7米C .2.5×10-6米D .2.5×10-8米 3.若一个多边形每一个内角都是135º,则这个多边形的边数是 ( )A .6B .8C .10D .124.下列计算:(1)n n n a a a 2=⋅,(2)1266a a a =+,(3)55c c c =⋅,(4)877222=+,(5)93339)3(y x xy = 中正确的个数为 ( ) A .3个 B .2个 C .1个 D .0个 5.下列各式能用平方差公式计算的是 ( )A .)3)(3(b a b a +---B .))(3(b a b a -+C .)3)(3(b a b a --+D .)3)(3(b a b a -+- 6.二元一次方程2x +y =5的正整数解有 ( )A .1个B .2个C . 3个D .4个7.如图:将一张长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、 C ′的位置,ED ′的延长线与BC 交与点G. 若∠BFC ′=70°, 则∠1=( )A .100°B .110°C .120°D .125°8.若二项式m 2+1加上一个含m 的单项式后是一个关于m 的完全平方式,则符合要求的单项式的个数有:( )A .4个B .3个C .2个D .1个二、填空题(本大题共10小题,每空2分,共26分,不需写出解答过程,只需把答案直接填写在横线上) 9.计算:32(3)x -= ; 20142014(0.25)(4)-⨯- .10.已知方程组45ax by bx ay +=⎧⎨+=⎩的解是⎩⎨⎧==12y x ,则a +b 的值为 .11.若多项式225x kx ++是一个完全平方式,则m = ;若53=m ,63=n则3m n -的值是 .12.已知6,8==+xy y x ,则①22xy y x += ;②2)(y x -= .13.在(x +1)(2x 2+ax +1)的运算结果中x 2的系数是-1,那么a 的值是 . 14.如果一个多边形的内角和是ο1800,那么这个多边形的边数是__ _ _____. 15.三角形两边长分别为2和8,若该三角形第三边长为奇数,则该三角形的第三边为 .16.如图,将四边形纸片ABCD 的右下角向内折出△PC ′R ,其中∠B =120︒,∠D =40︒,恰使C ′P ∥AB ,RC ′∥AD ,则∠C = .17.如图,在锐角三角形ABC 中,CD 和BE 分别是AB 和AC 边上的高, 且CD 和BE 交于点P ,若∠A =40º,则∠BPC 的度数是 .班级 姓名 学号…………….……………..…………..密……...封……...线……...内……...请……...勿……...答……...题……………………..…….……….18.如图,RT △AOB 和RT △COD 中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D 在边OA 上,将图中的△COD 绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的 过程中,在第 秒时,边CD 恰好与边AB 平行.三、解答题(本大题共10题,共58分.解答时应写出文字说明、证明过程或演算步骤). 19.计算(每小题3分,共6分)①3011|1|(2)(7)()3π--+-+--;②()42326a a a •--20.因式分解(每题3分,共9分)①2x 2–8②3222x x y xy -+③22216)4(x x -+21.解下列方程组(每小题3分,共6分)(1)⎩⎨⎧=+-=52312y x x y(2)⎩⎨⎧-=-=+752336x y y x22.(本题4分)有一道题:“化简求值:2(21)(21)(2)a a a +-+-4(1)a -+(2)a -,其中2=a ”.小明在解题时错错误地把“2=a ”抄成了“2-=a ”,但显示计算的结果是正确的,你能解释一下,这是怎么回事吗?23.(本题7分)如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么? (2)如果∠1=∠2,且∠3=115°,求∠ACB 的度数.(第16题) R P C′D CB A (第18题) ACD PE D C B A(第17题)24.(本题7分)如图,在方格纸内将△ABC 水平向右平移5个单位得到△A′B′C′. (1)补全△A ′B ′C ′; 利用网格点和直尺画图: (2)画出AB 边上的高线CD ;(3)图中△ABC 的面积是 ; (4)△ABC 与△EBC 面积相等,在图中描出所有 满足条件且异于A 点的格点E ,并记为E 1E 2E 3...25.(8分)解不等式组错误!未找到引用源。

苏科版数学七年级下册江苏省第一中学第二学期期中复习卷3

苏科版数学七年级下册江苏省第一中学第二学期期中复习卷3

信达54D3E21CB A班级 姓名 学号一、选择题:1.如图所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )2.下列各式计算正确的是( )A .1055x x x =+ B .428x x x =÷ C .()623a a=- D .()83282a a=3.已知三角形的两边长分别为长为3cm 和8cm ,则第三边可能是( )A.4 cm B.5cm C.6cm D.13cm 4.如图,直线a 、b 被直线c 所截,若a ∥b ,∠1=1300,则∠2等于( )A.300B.400C.500D.6005.如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A.1 B.2 C.3 D.46.已知a m=2,a n=3,则a2m+3n等于( ) A .108 B .54 C .36 D .187.下列运算:①(a -2b) 2=a 2-2a b+4b 2;②()22242y x y x +=+;③-2x(2x 2-5x -1)=-4x 3-10x 2+2x ;④(-3a -1)(-3a +1)=-1+9a 2,其中正确的有( ) A .1个 B .2个 C 3个 D .4个8.23)2(a -的计算结果是( )A 、94a B 、62a C 、64a - D 、64a 9.如图是一个五边形木架,它的内角和是( )A 、720°B 、540°C 、360°D 、180°10.下列多项式乘法中,能用平方差公式计算的是( ) A 、)2)(2(b a b a +-+ B 、)2)(2(a a ++ C 、))((b a b a -+- D 、))((22b a b a -+11.下列各式中与222b a ab --相等的是( )A 、2)(b a --B 、2)(b a +-C 、2)(b a --D 、2)(b a +- 12.下列叙述中,正确的有 ( )①如果b a yx ==2,2,那么b a yx -=-2;②满足条件324334-⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛n n的n 不存在;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC 中,若∠A +∠B =2∠C , ∠A -∠C =40°,则这个△ABC 为钝角三角形.A 、0个 B 、1个 C 、2个 D 、3个 13.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则与和之间有一种cba21信达1 2 50°(19题图) 数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A . B .C .D .二、填空题:1. 计算 ①()=-32x ②()a a -÷-4= ③(-0.125)2009×20108=2.若2132793=⨯⨯m m m ,则m =3.某种植物的细胞直径约为0.00102mm ,用科学记数法表示这个数为 m .4.将()1201,32,21---⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛从小到到排列的顺序用“<”连结为:5. 已知一个三角形三个内角之比是6:5:1,三角形的最大内角是___度6.在(x +1)(2x 2+ax +1)的运算结果中不含2x 项,那么a 的值是 .7.若2294b kab a ++是一个完全平方式,则k = 。

七年级数学下学期期中试题苏科版

七年级数学下学期期中试题苏科版

江苏省盐城市第一初级中学教育集团 七年级下学期期中考试数学试题苏科版考试时间:90分钟 本卷满分:120分 考试形式:闭卷亲爱的同学,时间过得真快啊!转眼半个学期过去了,相信你在原有的基础上又掌握了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了.现在让我们一起走进考场,仔细思考,认真作答,成功将属于你——数学学习的主人!一、选择题(本大题共8小题,每小题3分,共24分,每小题所给的选项中只有一项符合题目要求.) 1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是 ( )A B C D2.下列长度的3条线段,能构成三角形的是 ( )A.1cm,2cm,3cmB.2cm,3cm,4cmC.4cm,4cm,8cmD. 5cm,6cm,12cm3.下列计算中正确的是 ( ) A.5322a a a =+ B.532a a a =⋅ C.632a a a =⋅ D.532a a a =+4.下列各式中与222n m mn --相等的是 ( ) A.2)(n m + B.2)(n m +- C.2)(n m - D.2)(n m --5.如图,已知AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC= ( )A. 30°B. 60°C. 90°D. 120°6.计算3228)()(x x ÷的结果是 ( ) A. 10x B. 8x C. 6x D. 12x 7.如果,且有一条在△ABC 的外部,则这个三角形是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .任意三角形8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.2222)(bababa++=+ B.2222)(bababa+-=-C.))((22bababa-+=- D.22))(2(babababa++=-+二、填空题 (本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应的位置上.)9.计算:=-⋅23)3(2xx .10.在显微镜下,一种细胞的截面可以近似地看成圆,它的半径约为0.000 000 78m,用科学记数法,我们可以把0.000 000 78m写成 m.11.若=+==+22,8,6xyyxxyyx则.12.已知,32,8==nm aa则=+nma .13.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于 .14.已知正方形的边长为a,如果它的边长增加2,那么它的面积增加了... .15. 若一个多边形的内角和为1080°,则这个多边形的边数为 .16.如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为 .17.如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=°.18.如图,△ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到△A1B1C1.再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.…按此规律,倍长n次后得到的△A n B n C n的面积为.第13题图第16题图第17题图第8题图三、 解答题(本大题共有9大题,共66分.请在答题纸指定区域内作答,解题时写出必要的文字说明,证明步骤或演算步骤.)19.计算(每题3分,共9分)(1) ()230323-+--(2) 53223)()(a a a a ⋅-+(3) )2)(1()2(2---+x x x20.把下列多项式分解因式(每小题3分,共9分) (1)252-x(2)22363ay axy ax ++(3) 2)(9)(2416b a b a -+--21.(5分)先化简,再求值:22b +(a +b )(a -b )-(a -)2b ,其中a =-3,b =12. 第18题图22. (6分)如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A ′B ′C ′; (2)在图中画出△A ′B ′C ′的高C ′D ′.23. (6分)计算下列图形的体积.24.(6分)若.279,04321的值求y x y x ⋅=-+-25.(8分)如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F .(1)C D 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB 的度数.26.(8分)例题:若0962222=+-++n n mn m ,求.的值和n m22第(18)题321GF E D CBAD ACEB DA所以0962222=+-+++n n n mn m 所以0)3()(22=-++n n m 所以03,0=-=+n n m 所以3,3=-=n m问题(1)若的值求yx y y xy x ,0442222=+++- .问题(2)已知c b a ,,是△ABC 的三边长,满足4181022-+=+b a b a , c 是△ABC 中最长边的边长,且c 为整数,那么c 可能是哪几个数?27.(9分)如图1,已知AB ∥CD ,C 在D 的右侧,BE 平分∠ABC ,DE 平分∠ADC ,BE 、DE 所在直线交于点E .∠ADC=70°. (1)求∠EDC 的度数;(2)若∠ABC=n°,求∠BED 的度数(用含n 的代数式表示);(3)将线段BC 沿DC 方向平移, 使得点B 在点A 的右侧,其他条件不变,若∠ABC=n°,求∠BED 的度数(用含n 的代数式表示).盐城市第一初级中学教育集团2012~2013学年度第二学期期中考试七年级数学试卷选做题:(10分)利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的第9章《整式乘法与因式分解》就很好地图1备用图(1)如图,一个边长为1的正方形,依次取正方形面积的21、41、 81n 21,根据图示我们可以知道:=+++++n 21161814121 .利用上述公式计算:=+-------200920086543222222222 .(2)计算:=++++n 322729232 . (3)计算:=++++-n n 3227492311.七年级数学答案一、 选泽题二、填空题9.518x 10.7108.7-⨯ 11. 48 12. 256 13. 80° 14. 44+a 15 . 8 16.16 17.65° 18.n7 三、解答题 19计算 1. 8792. 6a 3. 27+x 20.因式分解1. )5)(5(-+x x2. 2)(3y x a + 3. 2)334(b a +-21.原式=2ab ……………………………………3分 =-3……………………………………5分 22. (1)……………………………………4分(2)……………………………………6分23:2x 2(3x+5)+3x 2(3x+5)……………………………………3分 =15x 3+25x 2.……………………………………6分24. 原式=2323-+y x ……………………………………4分=9………… …………………………6分25.1) ∵∠EFB=∠CDB=90°A 1B 1C 1D 12) ∵CD ∥EF ∴∠2=∠BCD ∵∠1=∠2∴∠1=∠BCD∴DG ∥BC ∴∠ACB=∠3=115°……………………………………8分 26.解:(1)x 2-2xy+2y 2+4y+4=x 2-2xy+y 2+y 2+4y+4=(x-y )2+(y+2)2=0, ∴x-y=0,y+2=0,解得x=-2,y=-2,∴x y=(-2)-2=41……………………………………4分 (2)∵a 2+b 2=10a+8b-41,∴a 2-10a+25+b 2-8b+16=0,即(a-5)2+(b-4)2=0, a-5=0,b-4=0,解得a=5,b=4,∵c 是△ABC 中最长的边,∴ 5≤c<9 ∴c 的取值可以是:5,6,7,8.……………………………………8分选做题:(1)++++…+= 1﹣.( 2分) 2﹣22﹣23﹣24﹣25﹣26﹣…﹣22008+22009= 6 .(4分)(2)计算:…+= 1﹣.(7分)(3)计算:…+= 1﹣.(10分)。

苏科版数学七年级下册江苏省无锡地区-期中练习卷(3)

苏科版数学七年级下册江苏省无锡地区-期中练习卷(3)

信达D4321CBA 第3题ICBAbb b ba aa a班级_________姓名___________得分___________一、细心填一填(本大题共14小题,1-3题,每空1分;4-14题,每空2分,共30分.) 1、2353()___(0); __(0);a a a a a -=≠÷=≠3x 2y ·(-2xy 2) =________;(3+a)(1-a)= .2、已知1纳米=910-米,则6500纳米用科学记数可表示为_______ __米.3、如图,∠3=∠4,则 ∥ .4、计算:20102009)8()125.0(⨯-= .5、因式分解:m m 93-= .6、若2ab =,则()232a a b ab b --= . 7、若n m n ma a a+==2,2,3则= .8、一多边形的每一个内角都为135°,则这个多边形是_ _ 边形,它的内角和等于__ _ _ °. 9、如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=___ __°. 10、如图,请写出三个代数式(a +b)2、(a -b)2、ab 之间的等量关系是 .11、如图边长为4cm 的正方形ABCD 先向上平移2cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时重叠部分的周长为_______cm.12、 如图,△ABC 中,点I 是∠ABC 、∠ACB 角平分线的交点,∠BIC= 130°,则∠A =_ °. 13、观察下列各等式:1+1×3=22, 1+2×4=32, 1+3×5=42,…….请将你发现的规律,用含n (n 为正整数)的等式表示出来: .14、如图,将一张长方形纸片沿EF 折叠后,点A 、B 分别落在点A ’、B ’的位置,A ’B ’交BC 于点G 。

七年级数学下学期期中检测卷 (新版)苏科版-(新版)苏科版初中七年级全册数学试题

七年级数学下学期期中检测卷 (新版)苏科版-(新版)苏科版初中七年级全册数学试题

期中检测卷一、选择题(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.(3分)计算(﹣a)2•a3的结果是()A.a5B.a6C.﹣a5D.﹣a62.(3分)下列各式能用平方差分解因式的是()A.x2+2x﹣1B.﹣1+x2C.x+xy+1D.x2﹣2x+13.(3分)如图直线AB,CD被EF所截,图中标注的角中是同位角的是()A.∠1与∠3B.∠2与∠6C.∠3与∠8D.∠4与∠74.(3分)如图△ABC中,∠1=∠2,∠ABC=70°,则∠BDC的度数是()A.110°B.115°C.120°D.130°5.(3分)若a m=3,a n=2,则a2m+n等于()A.11B.12C.16D.186.(3分)如图在Rt△ABC中,∠B=90°,∠ACB=60°,EF∥GH,若∠1=58°,则∠2的度数是()A.22°B.26°C.28°D.32°7.(3分)已知a=(﹣0.3)2,b=﹣3﹣2,,比较a,b,c的大小()A.a<b<cB.b<a<cC.a<c<bD.c<a<b8.(3分)450﹣299的计算结果是()A.833B.822C.811D.899.(3分)已知如图,长方形ABCD绕点D顺时针旋转90°形成了长方形EFGD,若AG=m,CE=n,则长方形ABCD的面积是()A.B.C.D.10.(3分)如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)若正多边形的一个外角等于36°,那么这个正多边形的边数是..13.(3分)已知94=3a×3b,则a+b=.14.(3分)若x2+mx﹣15=(x+3)(x+n),则m﹣n的值为.15.(3分)如图,由直线a∥b得到∠1=∠2的理由是.16.(3分)已知:s﹣t=3,则t2+6t﹣s2=.17.(3分)22﹣23﹣24﹣25……﹣22017+22018=.18.(3分)如图△ABC中,∠A=∠C,∠BDE=∠BED,BD平分∠ABC,若∠CDE=12°,则∠A=.三、解答题:(本大题共9小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(16分)计算:(1)(﹣2a2bc3)2(2)(﹣a2)3•(﹣a3)2(3)(2a﹣b)2﹣a(3a﹣2b)(4)(2a+b﹣3)(2a﹣b﹣3)20.(16分)将下列各式分解因式:(1)2ax2﹣8a(2)x2﹣6xy+5y2(3)(2m﹣n)2﹣6n(2m﹣n)+9n2(4)a2﹣b2+2b﹣121.(5分)先化简,再求值:(x﹣2)2+2(x﹣2)(x+4)﹣(x﹣3)(x+3),其中x=﹣2.22.(5分)已知4m+3×8m+1÷24m+7=16,求m的值.23.(6分)如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.24.(6分)已知a+2b=1,ab=﹣1,求下列代数式的值:(1)a2+4b2(2)(a﹣2b)2(6分)将一副直角三角尺BAC和ADE如图放置,其中∠BAC=∠ADE=90°,∠BCA=30°,∠AED=45°,25.若∠AFD=75°,试判断AE与BC的位置关系,并说明理由.26.(8分)阅读下列材料:“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+1;(2)已知x2+y2=4x﹣2y﹣5,求xy的值;(3)比较代数式2x2﹣1与4x﹣5的大小.27.(8分)在正方形ABCD中,∠C=∠D=90°,点E、F分别是边CD、BC上的中点,点P是一动点.记∠DEP=∠1,∠BFP=∠2,∠EPF=∠α.(1)如图1,若点P运动到线段AD中点时,∠α=,∠1+∠2=.(2)如图2,若点P在线段AD上运动时,∠1、∠2和∠α之间有何关系?(3)当点P在直线AD上(在线段AD之外且PE与PF不重合)运动时,∠1、∠2和∠α之间又有何关系?说明理由.参考答案一、选择题(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.(3分)计算(﹣a)2•a3的结果是()A.a5B.a6C.﹣a5D.﹣a6【分析】利用同底数幂的乘法运算,即可求得答案;注意同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:(﹣a)2•a3=a2•a3=a5.故选:A.2.(3分)下列各式能用平方差分解因式的是()A.x2+2x﹣1B.﹣1+x2C.x+xy+1D.x2﹣2x+1【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A、不能用平方差分解因式,故此选项不合题意;B、能用平方差分解因式,故此选项符合题意;C、不能用平方差分解因式,故此选项不合题意;D、不能用平方差分解因式,故此选项不合题意;故选:B.3.(3分)如图直线AB,CD被EF所截,图中标注的角中是同位角的是()A.∠1与∠3B.∠2与∠6C.∠3与∠8D.∠4与∠7【分析】根据同位角的概念解答即可.【解答】解:同位角是∠4与∠7,故选:D.4.(3分)如图△ABC中,∠1=∠2,∠ABC=70°,则∠BDC的度数是()A.110°B.115°C.120°D.130°【分析】根据三角形内角和定理即可求出答案.【解答】解:∵∠ABC=70°,∴∠DBC=∠ABC﹣∠1,∵∠1=∠2,∴∠BDC=180°﹣∠DBC﹣∠2=180°﹣(70°﹣∠1)﹣∠2=110°故选:A.5.(3分)若a m=3,a n=2,则a2m+n等于()A.11B.12C.16D.18【分析】根据a m•a n=a m+n(m,n是正整数),(a m)n=a mn(m,n是正整数)把a2m+n变为(a m)2•a n进行计算即可.【解答】解:a2m+n=a2m•a n=(a m)2•a n=9×2=18,故选:D.6.(3分)如图在Rt△ABC中,∠B=90°,∠ACB=60°,EF∥GH,若∠1=58°,则∠2的度数是()A.22°B.26°C.28°D.32°【分析】依据三角形内角和定理,可得∠A的度数,再根据三角形外角性质以及平行线的性质,即可得到∠2的度数.【解答】解:∵Rt△ABC中,∠B=90°,∠ACB=60°,∴∠A=30°,由三角形外角性质,可得∠ADF=∠1﹣∠A=28°,又∵EF∥GH,∴∠2=∠ADF=28°,故选:C.7.(3分)已知a=(﹣0.3)2,b=﹣3﹣2,,比较a,b,c的大小()A.a<b<cB.b<a<cC.a<c<bD.c<a<b【分析】直接利用负指数幂的性质分别化简得出答案.【解答】解:∵a=(﹣0.3)2=,b=﹣3﹣2=﹣,=9,∴c>a>b.故选:B.8.(3分)450﹣299的计算结果是()A.833B.822C.811D.89【分析】首先将算式中的两项化为同底数幂,然后再逆用同底数幂的乘法法则将2100化为2×299,然后计算即可.【解答】解:450﹣299=2100﹣299=2×299﹣299=299=833故选:A.9.(3分)已知如图,长方形ABCD绕点D顺时针旋转90°形成了长方形EFGD,若AG=m,CE=n,则长方形ABCD的面积是()A.B.C.D.【分析】利用旋转的性质得DE=DA,DC=DG,则CD﹣AD=n,CD+AD=m,通过解方程组得到CD=,AD=,然后计算矩形ABCD的面积即可.【解答】解:∵长方形ABCD绕点D顺时针旋转90°形成了长方形EFGD,∴DE=DA,DC=DG,而CE=n,AG=m,∴CD﹣AD=n,CD+AD=m,∴CD=,AD=,∴长方形ABCD的面积=CD•AD=•=.故选:B.10.(3分)如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【分析】依据角平分线的性质以及三角形外角性质,即可得到∠1=2∠2,∠BOC=90°+∠1,∠BOC=90°+∠2.【解答】解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=∠ACD,∠DBE=∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=(∠ACD﹣∠ABC)=∠1,故①正确;∵BO,CO分别平分∠ABC,∴∠OBC=ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠1)=90°+∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=∠ACB,∠ACE=ACD,∴∠OCE=(∠ACB+∠ACD)=×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)若正多边形的一个外角等于36°,那么这个正多边形的边数是10 .【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于36°,且外角和为360°,则这个正多边形的边数是:360°÷36°=10.故答案为:10.1×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001=1×10﹣6.故答案为:1×10﹣6.13.(3分)已知94=3a×3b,则a+b= 8 .【分析】首先把94化为38,再根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加进行计算即可.【解答】解:∵3a×3b=94,∴3a+b=38,∴a+b=8,故答案为:8.14.(3分)若x2+mx﹣15=(x+3)(x+n),则m﹣n的值为 3 .【分析】已知等式右边利用多项式乘多项式法则计算,再利用多项式相等的条件求出m与n的值,即可求出m﹣n的值.【解答】解:∵(x+3)(x+n)=x2+nx+3x+3n=x2+(n+3)x+3n,∴,解得:m=﹣2,n=﹣5,则m﹣n=﹣2+5=3,故答案为:3.15.(3分)如图,由直线a∥b得到∠1=∠2的理由是两直线平行,内错角相等.【分析】依据平行线的性质进行判断即可.【解答】解:由直线a∥b得到∠1=∠2的理由是:两直线平行,内错角相等.故答案为:两直线平行,内错角相等.16.(3分)已知:s﹣t=3,则t2+6t﹣s2= ﹣9 .【分析】根据平方差公式可得t2﹣s2+6t=(s+t)(t﹣s)+6t,把s﹣t=3代入可得原式=﹣3(s+t)+6t=3(t﹣s),再代入即可求解.【解答】解:∵s﹣t=3,∴t2﹣s2+6t=(s+t)(t﹣s)+6t=﹣3(s+t)+6t=3(t﹣s)=﹣9,故答案为:﹣917.(3分)22﹣23﹣24﹣25……﹣22017+22018= 12 .【分析】设S=22﹣23﹣24﹣25……﹣22017+22018,则2S=23﹣24﹣25﹣26……﹣22018+22019,利用2S﹣S可得结论.【解答】解:设S=22﹣23﹣24﹣25……﹣22017+22018,∴2S=23﹣24﹣25﹣26……﹣22018+22019,∴2S﹣S=S=24﹣4﹣22019+22019=16﹣4=12,即22﹣23﹣24﹣25……﹣22017+22018=12,故答案为:12.18.(3分)如图△ABC中,∠A=∠C,∠BDE=∠BED,BD平分∠ABC,若∠CDE=12°,则∠A= 66°.【分析】由等腰三角形的三线合一定理可知∠BDC=90°,从而可知∠BDE=∠BED=78°,由三角形的外角和性质可知∠C+∠CDE=∠BED,所以∠A=∠C=66°【解答】解:∵∠A=∠C,BD平分∠ABC,∴∠BDC=90°,∵∠CDE=12°,∴∠BDE=∠BED=78°,∵∠C+∠CDE=∠BED,∴∠C=66°,∴∠A=∠C=66°故答案为:66°三、解答题:(本大题共9小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(16分)计算:(1)(﹣2a2bc3)2(2)(﹣a2)3•(﹣a3)2(3)(2a﹣b)2﹣a(3a﹣2b)(4)(2a+b﹣3)(2a﹣b﹣3)【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则计算即可求出值;(3)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式,以及完全平方公式计算即可求出值.【解答】解:(1)原式=4a4b2c6;(2)原式=﹣a6•a6=﹣a12;(3)原式=4a2﹣4ab+b2﹣3a2+2ab=a2﹣2ab+b2;(4)原式=(2a﹣3)2﹣b2=4a2﹣12a+9﹣b2.20.(16分)将下列各式分解因式:(1)2ax2﹣8a(2)x2﹣6xy+5y2(3)(2m﹣n)2﹣6n(2m﹣n)+9n2(4)a2﹣b2+2b﹣1【分析】(1)利用提取公因式法和平方差公式进行因式分解;(2)利用十字相乘法进行因式分解;(3)利用完全平方公式进行因式分解;(4)利用完全平方公式和平方差公式进行因式分解.【解答】解:(1)2ax2﹣8a=2a(x2﹣4)=2a(x+2)(x﹣2);(2)x2﹣6xy+5y2=(x﹣y)(x﹣5y);(3)(2m﹣n)2﹣6n(2m﹣n)+9n2=(2m﹣n﹣3n)2=4(m﹣2n)2;(4)a2﹣b2+2b﹣1=a2﹣(b﹣1)2=(a+b﹣1)(a﹣b+1).21.(5分)先化简,再求值:(x﹣2)2+2(x﹣2)(x+4)﹣(x﹣3)(x+3),其中x=﹣2.【分析】原式利用完全平方公式,平方差公式,以及多项式乘多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣4x+4+2x2+4x﹣16﹣x2+9=2x2﹣3,当x=﹣2时,原式=8﹣3=5.22.(5分)已知4m+3×8m+1÷24m+7=16,求m的值.【分析】直接利用幂的乘方运算法则将原式变形进而结合同底数幂的乘除运算法则计算得出答案.【解答】解:∵4m+3×8m+1÷24m+7=16,∴22m+6×23m+3÷24m+7=24,则2m+6+3m+3﹣(4m+7)=4,解得:m=2.23.(6分)如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.【分析】(1)根据三角形的高和中线的定义结合网格作图可得;(2)根据平移变换的定义和性质作图可得;(3)由△ABC的面积为3知所作三角形的面积为6,据此结合网格作图可得.【解答】解:(1)如图所示,AH、AG即为所求;(2)如图所示,△DEF即为所求;(3)如图所示,△MNP即为所求.24.(6分)已知a+2b=1,ab=﹣1,求下列代数式的值:(1)a2+4b2(2)(a﹣2b)2【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【解答】解:(1)∵a+2b=1,ab=﹣1,∴(a+2b)2=a2+4ab+4b2=1,∴a2+4b2=1+4=5;(2)∵a2+4b2=5,∴(a﹣2b)2=a2﹣4ab+4b2=5+4=9.(6分)将一副直角三角尺BAC和ADE如图放置,其中∠BAC=∠ADE=90°,∠BCA=30°,∠AED=45°,25.若∠AFD=75°,试判断AE与BC的位置关系,并说明理由.【分析】根据三角形外角性质,可得∠EAF=30°,再根据∠C=30°,可得∠EAF=∠C,进而判定AE ∥BC.【解答】解:AE与BC平行.理由:∵∠AFD是△AEF的外角,∴∠EAF=∠AFD﹣∠E=75°﹣45°=30°,又∵∠C=30°,∴∠EAF=∠C,∴AE∥BC.26.(8分)阅读下列材料:“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x ﹣2 )2+1;(2)已知x2+y2=4x﹣2y﹣5,求xy的值;(3)比较代数式2x2﹣1与4x﹣5的大小.【分析】(1)根据配方法的方法配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x、y的值,再代入得到xy的值;(3)将两式相减,再配方即可作出判断【解答】解:(1)x2﹣4x+5=(x﹣2)2+1.故答案是:﹣2;(2)x2﹣4x+y2+2y+5=0,(x﹣2)2+(y+1)2=0,则x﹣2=0,y+1=0,解得x=2,y=﹣1,则xy=2×(﹣1)=﹣1;(3)2x2﹣1﹣(4x﹣5)=2x2﹣4x+4=2(x﹣1)2+2,∵(x﹣1)2≥0,∴2(x﹣1)2+2>0,∴2x2﹣1>4x﹣5.27.(8分)在正方形ABCD中,∠C=∠D=90°,点E、F分别是边CD、BC上的中点,点P是一动点.记∠DEP=∠1,∠BFP=∠2,∠EPF=∠α.(1)如图1,若点P运动到线段AD中点时,∠α=45°,∠1+∠2= 90°.(2)如图2,若点P在线段AD上运动时,∠1、∠2和∠α之间有何关系?(3)当点P在直线AD上(在线段AD之外且PE与PF不重合)运动时,∠1、∠2和∠α之间又有何关系?说明理由.【分析】(1)只要证明△PDE是等腰直角三角形,四边形CDPF是矩形即可解决问题;(2)连接PC.利用三角形的外角的性质即可解决问题;(3)分三种情形分别求解即可;【解答】解:(1)如图1中,∵四边形ABCD是正方形,∴∠D=90°,AD=BC=DC,AD∥BC,∵PA=PD,DE=EC,BF=FC,∴PD=DE,∴∠1=45°,∵PD=FC,PD∥FC,∴四边形CDPF是平行四边形,∵∠D=90°,∴四边形CDPF是矩形,∴PF∥CD,∠PFC=90°,∴∠α=∠1=45°,∠2=90°,故答案为45°,90°.(2)如图2中,连接PC.∵∠1=∠EPC+∠ECP,∠2=∠FPC+∠FCP,∴∠1+∠2=∠EPC+∠FPC+∠ECP+∠FCP=∠α+90°.(3)如图:①当点P在线段DA的延长线上时,由(2)可知:∠1+∠2=∠α+90°.②当点P在线段AD的延长线上且在直线EF的上方时,∵∠2=∠α+∠PKF,∠PKF=90°+∠KEC=90°+∠1,∴∠2=∠α+∠1+90°.③当点P在直线EF的下方时,设PF交CD于K.∵∠2=90°+∠FKC=90°+∠PKE=90°+(∠1﹣∠α),∴∠2=90°+∠1﹣∠α.。

七年级数学下学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题

七年级数学下学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题

2015-2016学年某某省某某市洪泽县新区中学七年级(下)期中数学试卷一、选择题1.化简()0的结果为()A.2 B.0 C.1 D.2.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10 B.10、4、6 C.4、6、9 D.3、1、13.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.如图,下列判断正确的是(A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BC D.若∠A+∠ADC=180°,则AD∥BC5.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条D.内角和增加180°6.(﹣3)100×(﹣3)﹣101等于()A.﹣3 B.3 C.D.﹣7.下列各对数中,是二元一次方程3x﹣y=﹣7的解的是()A.B.C.D.8.算式(2+1)•(22+1)•(24+1)…(232+1)+1计算结果的个位数字是()A.4 B.6 C.2 D.8二、填空题9.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.10.若x2+mx+9是一个完全平方式,则m的值是.11.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.12.若一个多边形的内角和为1080°,则这个多边形边形.13.已知方程4x+3y=12,用x的代数式表示y为.14.计算:(﹣0.125)2016×82017=.15.若a m=2,则4(a3)m=.16.若x3=﹣8a9b6,则x.17.若a2+a+1=2,则(5﹣a)(6+a)=.18.如图,把一个长方形纸条ABCD沿EF折叠,若∠EFG=55°,则∠AEG=.三、解答题(本题共7小题,共66分)19.计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.分解因式(1)x2﹣36(2)2x3y﹣4x2y2+2xy3.21..22.如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)画出AB边上的中线CD;(3)△A′B′C′的面积为.23.已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2;(2)x2+y2;(3)(x﹣y)2.24.如图,BD平分∠ABC,ED∥BC,∠1=28°.求∠2、∠3的度数.25.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?2015-2016学年某某省某某市洪泽县新区中学七年级(下)期中数学试卷参考答案与试题解析一、选择题1.化简()0的结果为()A.2 B.0 C.1 D.【考点】零指数幂.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10 B.10、4、6 C.4、6、9 D.3、1、1【考点】三角形三边关系.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣1【考点】整式的混合运算.【专题】计算题;整式.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.如图,下列判断正确的是(A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BC D.若∠A+∠ADC=180°,则AD∥BC【考点】平行线的判定.【分析】分别利用平行线的判定定理判断得出即可.【解答】解:A、∵∠1=∠2,∴AB∥DC,故此选项错误;B、∵∠1=∠2,∴AB∥CD,故此选项正确;C、若∠A=∠3,无法判断AD∥BC,故此选项错误;D、若∠A+∠ADC=180°,则AB∥DC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.5.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条D.内角和增加180°【考点】多边形内角与外角.【分析】利用多边形的内角和定理和外角和特征即可解决问题.【解答】解:因为n边形的内角和是(n﹣2)•180°,当边数增加一条就变成n+1,则内角和是(n﹣1)•180°,内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°;根据多边形的外角和特征,边数变化外角和不变.故选:D.【点评】本题主要考查了多边形的内角和定理与外角和特征.先设这是一个n边形是解题的关键.6.(﹣3)100×(﹣3)﹣101等于()A.﹣3 B.3 C.D.﹣【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】运用同底数幂的乘法及负整数幂的法则计算.【解答】解:(﹣3)100×(﹣3)﹣101=(﹣3)100﹣101=﹣.故选:D.【点评】本题主要考查了同底数幂的乘法及负整数幂的知识,解题的关键是熟记法测.7.下列各对数中,是二元一次方程3x﹣y=﹣7的解的是()A.B.C.D.【考点】二元一次方程的解.【分析】将每一对x与y的值分别代入方程3x﹣y=﹣7,使方程左右两边相等的未知数的值即为二元一次方程3x﹣y=﹣7的解.【解答】解:A、把代入方程3x﹣y=﹣7,左边=3﹣4=﹣1≠右边,则不是方程3x﹣y=﹣7的解;B、把代入方程3x﹣y=﹣7,左边=6﹣3=3≠右边,则不是方程3x﹣y=﹣7的解;C、把代入方程3x﹣y=﹣7,左边=﹣3﹣4=﹣7=右边,则是方程3x﹣y=﹣7的解;D、把代入方程3x﹣y=﹣7,左边=﹣6+3=﹣3≠右边,则不是方程3x﹣y=﹣7的解.故选C.【点评】本题考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.8.算式(2+1)•(22+1)•(24+1)…(232+1)+1计算结果的个位数字是()A.4 B.6 C.2 D.8【考点】平方差公式;尾数特征.【专题】计算题.【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.【解答】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(232+1)+1=(22﹣1)•(22+1)•(24+1)…(232+1)+1=(24﹣1)•(24+1)…(232+1)+1=264﹣1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵64÷4=16,∴原式计算结果的个位数字为6.故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二、填空题9.一种细菌半径是0.0000036厘米,用科学记数法表示为 3.6×10﹣6厘米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.×10﹣6.×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若x2+mx+9是一个完全平方式,则m的值是±6 .【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.11.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是8ab .【考点】公因式.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是 8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.12.若一个多边形的内角和为1080°,则这个多边形8 边形.【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8,故答案为:8.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.13.已知方程4x+3y=12,用x的代数式表示y为y=.【考点】解二元一次方程.【分析】把x看做已知数求出y即可.【解答】解:4x+3y=12,解得:y=.故答案为:y=.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.计算:(﹣0.125)2016×82017= 8 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方,即可解答.【解答】解:(﹣0.125)2016×82017×8)2016×8=(﹣1)2016×8=1×8=8.故答案为:8.【点评】本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方.15.若a m=2,则4(a3)m= 32 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,即可解答.【解答】解:4(a3)m=4a3m=4(a m)3=4×23=4×8=32,故答案为:32.【点评】本题考查了幂的乘方,解决本题的关键是熟记幂的乘方.16.若x3=﹣8a9b6,则x =﹣2a3b2.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法则进行解答即可.【解答】解:∵x3=﹣8a9b6,∴x3=(﹣2a3b2)3,∴x=﹣2a3b2.故答案为:=﹣2a3b2.【点评】本题考查的是幂的乘方与积的乘方法则,先根据题意得出x3=(﹣2a3b2)3是解答此题的关键.17.若a2+a+1=2,则(5﹣a)(6+a)= 29 .【考点】多项式乘多项式.【分析】根据题意先求出a2+a的值,再根据多项式乘以多项式的法则求出要求的式子,然后代入计算即可.【解答】解:∵a2+a+1=2,∴a2+a=1,∴(5﹣a)(6+a)=30﹣a﹣a2=30﹣(a2+a)=30﹣1=29;故答案为:29.【点评】此题考查了多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.18.如图,把一个长方形纸条ABCD沿EF折叠,若∠EFG=55°,则∠AEG= 70°.【考点】平行线的性质.【分析】此题要求∠AEG的度数,只需求得其邻补角的度数,根据平行线的性质以及折叠的性质就可求解.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=55°,由折叠的性质得:∠GEF=∠DEF=55°,∴∠AEG=180°﹣55°×2=70°.故答案为:70°.【点评】本题考查的是平行线的性质、翻折变换(折叠问题),正确观察图形,熟练掌握平行线的性质是解题的关键.三、解答题(本题共7小题,共66分)19.计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则,以及同底数幂的乘除法则计算即可得到结果;(3)原式利用完全平方公式,以及单项式乘以多项式法则计算即可得到结果;(4)原式利用平方差公式及完全平方公式化简即可得到结果.【解答】解:(1)原式=x4y2•x6y3=x10y5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.分解因式(1)x2﹣36(2)2x3y﹣4x2y2+2xy3.【考点】提公因式法与公式法的综合运用.【分析】(1)根据平方差公式分解即可;(2)先提公因式,再根据完全平方公式分解即可.【解答】解:(1)x2﹣36=(x+6)(x﹣6);(2)2x3y﹣4x2y2+2xy3=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.【点评】本题考查了分解因式的应用,能熟记分解因式的方法是解此题的关键.21..【考点】解二元一次方程组.【分析】由(2)﹣(1)即可求出x的值,然后把x的值代入方程即可求出y的值.【解答】解:由(2)﹣(1)得:x=3,把它代入(1)得:y=2,∴方程组的解为.【点评】本题主要考查用加减消元法解二元一次方程组.22.如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)画出AB边上的中线CD;(3)△A′B′C′的面积为8 .【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)找出AB的中点D,连接CD即可;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;(2)如图CD即为所求;(3)S△A′B′C′=×4×4=8.故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2;(2)x2+y2;(3)(x﹣y)2.【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:(1)x2y+xy2=xy(x+y)=4×6=24.(2)x2+y2=(x+y)2﹣2xy=62﹣2×4=26.(3)(x﹣y)2=(x+y)2﹣4xy=62﹣4×4=20.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.24.如图,BD平分∠ABC,ED∥BC,∠1=28°.求∠2、∠3的度数.【考点】平行线的性质.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:如图所示:∵BD平分∠ABC,∴∠4=∠1=28°,∵ED∥BC,∴∠2=∠4=28°,∴∠3=∠1+∠2=28°+28°=56°.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.25.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?【考点】因式分解的应用.【专题】阅读型.【分析】(1)首先把x2+2y2﹣2xy+4y+4=0,配方得到(x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把a2+b2﹣6a﹣6b+18+|3﹣c|=0,配方得到(a﹣3)2+(b﹣3)2+|3﹣c|=0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵x2+2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴(x﹣y)2+(y+2)2=0∴x=y=﹣2∴;(2)∵a2+b2﹣6a﹣6b+18+|3﹣c|=0,∴a2﹣6a+9+b2﹣6b+9+|3﹣c|=0,∴(a﹣3)2+(b﹣3)2+|3﹣c|=0∴a=b=c=3∴三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.。

江苏省无锡市新区七年级数学下学期期中试题 苏科版-苏科版初中七年级全册数学试题

2014-2015学年第二学期七年级数学期中测试卷一、选择题(每小题3分,共24分)1.32x x ⋅的计算结果是………………………………………………………………( )A.5xB.6xC.8xD.9x 2.下列长度的3条线段,能构成三角形的是………………………………………( )A .1,2,3B .2,3,4C .6,6,12D .5,6,123.下列等式从左往右的变形,属于因式分解的是…………………………………( )A .a(x -y)=ax -ayB .x 2+2x +1=x (x +2)+1C .(x +1)(x +3)=x 2+4x +3D .x 3-x=x(x+1)(x -1)4.下列各式中,不能用平方差公式计算的是………………………………………( )A .(-x -y) (x -y)B .(x + y) (x -y)C .(x + y) (-x -y)D .(-x -y) (-x + y)5. 若2294b kab a ++是完全平方式,则常数k 的值为……………………………( )A. 6B. 12C. 6±D. 12±6.如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=25°,那么∠2的度数是…………………………………………………………………()A .100°B.105°C.115°D.120°7.现有若干X 卡片,分别是正方形卡片A 、B 和长方形卡片C ,卡片大小如图所示.如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片X 数为……( )A .1B .2C .3D .4 8.在下列条件中①∠A +∠B =∠C ②∠A ﹕∠B ﹕∠C =1﹕2﹕3 ③∠A =21∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C 中,能确定△ABC 为直角三角形的条件有…( )二、填空题(每空2分,共24分)9.等腰三角形的两边长分别为3cm 、4cm ,则该三角形的周长是cm 或cm.10.我国雾霾天气多发,PM 2.5颗粒物被称为大气的元凶.PM 毫米为米.11.若a m =3,a n =2.则a m -n =________.12.若()()x p x q ++的乘积中不含有x 的一次项,则,p q 之间的关系为 .13.若一个多边形的内角和为1080°,则这个多边形的边数为 .14. 已知a+b=2,ab=-10则a 2+b 2=15.如图,以长3cm 为直径的圆(O 1为圆心),沿直线l 向右平移4cm 到如图所示的位置(O 2为圆心),则图中阴影部分的面积为cm 2.16.如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为°.17.如图,小亮从A 点出发前进5m ,向右转15°,再前进5m ,又向右转15°……,这样一直走下去,他第一次回到出发点A 时,一共走了______________m .18.若1632793=⨯⨯m m ,则m =__________.19.若()=++=+68)48)(m m 654483582,则(m .三、解答题(本大题共8小题,共52分)20.计算(每小题3分,共9分)(1)23)3()()3(a a a -⋅---(2)(x+2)2-(x -1)(x -2)(3)用简便方法计算:20142﹣4030×2014+20152A B C D E F G H O 12 4 c m O 2 O 1 l21.因式分解(每小题3分,共6分)(1)4a 2-16(2)1)4)(2(+++x x22.(本题4分)先化简,再求值:(3+4x )(3-4x )+(3-4x )2,其中x = 112.23.(本题6分)如右图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ´B ´C ´,(2)再在图中画出△ABC 的高CD ,(3)在右图中能使ABC PBC S ∆∆=S的格点P 的个数有个(点P 异于A).24.(本题6分)如图所示,一个四边形纸片ABCD ,∠B=∠D=90°,把纸片按如图所示折叠,使点B 落在AD 边上的B'点,AE 是折痕。

2022—2023学年苏科版数学七年级下册+期中检测试题

2023年苏科版数学七年级下册 期中检测试题一、单选题1.乘积等于m 2-n 2的式子是( )A .(m -n)2B .(m -n)(-m -n)C .(n - m)(-m -n)D .(m+n)(-m+n)2.下列算式能用平方差公式计算的是、( )A .(3a+b)(3b-a)B .111166x x ⎛⎫⎛⎫+--⎪⎪⎝⎭⎝⎭C .(2x-y )(-2x+y )D .(-m+n )(-m-n )3.甲看乙的方向是南偏西26 ︒ ,则乙看甲的方向是( )A .南偏东64 ︒B .北偏西64 ︒C .北偏东26 ︒D .北偏西26 ︒4.下列各多项式相乘:①(-2ab+5x )(5x+2ab);②(ax -y)(-ax-y);③(-ab-c)(ab-c);④(m+n)(-m-n).其中可以用平方差公式的有 ( ) A .4个B .3个C .2个D .1个5.若x+y=7,xy=-11,则x 2+y 2的值是( )A .49B .27C .38D .716.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1D .±527.已知 m 、 n 均为正整数,且 235m n += ,则 48m n ⋅= ( )A .16B .25C .32D .648.下列因式分解正确的是( )A .()1ax ay a x y +=++B .()333a b a b +=+C .()22444a a a ++=+D .()2a b a a b +=+9.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°, 则∠3的度数等于( )A .50°B .30°C .20°D .15°10.已知22()6()4a b a b -=+=,,则22a b +的值( )A .10B .6C .5D .311.如图,AB ∠CD ,CF 平分∠ECD ,HC ∠CF 交直线AB 于H ,AG 平分∠HAE 交HC于G ,EJ ∠AG 交CF 于J ,∠AEC =80°,则下列结论正确的有( )个. ①∠BAE +∠ECD =80°;②CG 平分∠ICE ;③∠AGC =140°;④∠EJC ﹣∠AGH =90°.A .1B .2C .3D .412.当x=-6,y=16时,x 2018y 2019的值为( ) A .16 B .-16C .6D .-6二、填空题13.计算:-(-2a²)2= 。

七年级数学下学期期中试卷(含解析) 苏科版2

2015-2016学年江苏省无锡市惠山区七年级(下)期中数学试卷一、精心选一选(本大题共有8小题,每小题3分,共24分.请将正确选项前的字母代号填在答题纸相应位置上)1.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形2.下列四个算式:(﹣a)3(﹣a2)2=﹣a7;(﹣a3)2=﹣a6;(﹣a3)3÷a4=﹣a2;(﹣a)6÷(﹣a)3=﹣a3中,正确的有()A.0个B.1个C.2个D.3个3.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③4.下列方程是二元一次方程的是()A.2x+y=z﹣3 B.xy=5 C. +5=3y D.x=y5.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=125°,则∠3等于()A.15°B.25°C.35°D.45°6.有4根小木棒,长度分别为3cm、4cm、5cm、9cm任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.0个B.1个C.2个D.3个7.一个正方形和两个等边三角形的位置如图所示,若∠1=50°,则∠2+∠3=()A.190°B.130°C.100°D.80°8.如图,三角形ABC内的线段BD、CE相交于点O,已知OB=OD,OC=2OE.若△BOC的面积=2,则四边形AEOD的面积等于()A.4 B.5 C.6 D.7二、细心填一填(本大题共12空,每空2分,共24分,请将正确答案填在答卷上)9.等腰三角形的两边长分别为3cm和4cm,则它的周长是cm.10.我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于0.0025毫米的颗粒物,用科学记数法表示0.0025为.11.计算:(1)x5x= ;(2)= .12.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是.13.已知x+y=4,x﹣y=﹣2,则x2﹣y2= .14.已知是二元一次方程mx+y=3的解,则m的值是.15.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠B=48°,则∠BDF= .16.把一副常用的三角板如图所示拼在一起,点B在AE上,那么图中∠ABC= .17.已知多项式x2+mx+16是关于x的完全平方式,则m= .18.若a2+b2﹣2a+4b+5=0,则2a+b= .19.三角形ABC中,∠ABC和∠ACB的角平分线相交于点P,连接AP,若∠BPC=130°,则∠BAP= .三、解答题(本大题共8小题,共52分.解答需写出必要的演算过程、解题步骤或文字说明).20.计算(1);(2)(﹣a2)3﹣6a2a4;(3)(x+1)2﹣(﹣x﹣2)(﹣x+2)(4)(2a﹣b﹣3)(2a+b﹣3)21.因式分解:(1)4a2﹣16(2)(x+2)(x+4)+1.22.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.23.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积= .(2)若连接AD、CF,则这两条线段之间的关系是;(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.24.如图,已知在四边形ABCD中,AE、CF分别是∠DAB及∠DCB的平分线,∠B=∠D=90°,求证:AE∥CF.25.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=36°,求∠BED的度数;(2)作出△BED中DE边上的高,垂足为H;(3)若△ABC面积为20,过点C作CF∥AD交BA的延长线于点F,求△BCF的面积.(友情提示:两条平行线间的距离处处相等.)26.课堂上老师出了这么一道题:(2x﹣3)x+3﹣1=0,求x的值.小明同学解答如下:∵(2x﹣3)x+3﹣1=0,∴(2x﹣3)x+3=1∵(2x﹣3)0=1∴x+3=0∴x=﹣3.请问小明的解答过程正确吗?如果不正确,请求出正确的值.27.如图1,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.当∠A 为80°时,求∠A1的度数(2)在上一题中,若∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,则∠A6= .(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= .(4)如图3,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1若E为BA 延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论(填编号),并写出其值.2015-2016学年江苏省无锡市惠山区七年级(下)期中数学试卷参考答案与试题解析一、精心选一选(本大题共有8小题,每小题3分,共24分.请将正确选项前的字母代号填在答题纸相应位置上)1.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)180°=720°,解得:n=6.则这个正多边形的边数是6.故选:C.【点评】考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.2.下列四个算式:(﹣a)3(﹣a2)2=﹣a7;(﹣a3)2=﹣a6;(﹣a3)3÷a4=﹣a2;(﹣a)6÷(﹣a)3=﹣a3中,正确的有()A.0个B.1个C.2个D.3个【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变指数相乘;同底数幂乘法,底数不变指数相加;同底数幂除法,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:(﹣a)3(﹣a2)2=﹣a3a4=﹣a7,正确;(﹣a3)2=a6,错误;(﹣a3)3÷a4=﹣a9÷a4=﹣a5,错误;(﹣a)6÷(﹣a)3=a6÷(﹣a3)=﹣a3,正确;所以正确的共有2个.故选C.【点评】本题考查了幂的乘方,同底数幂的乘法和除法,熟练掌握运算性质是解题的关键.3.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③【考点】平行线的判定.【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点评】此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.4.下列方程是二元一次方程的是()A.2x+y=z﹣3 B.xy=5 C. +5=3y D.x=y【考点】二元一次方程的定义.【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程进行分析即可.【解答】解:A.2x+y=z﹣3有3个未知数,故此选项错误;B.xy=5是二元二次方程,故此选项错误;C. +5=3y是分式方程,不是整式方程.故此项错误;D.x=y是二元一次方程,故此选项正确.故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.5.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=125°,则∠3等于()A.15°B.25°C.35°D.45°【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,再由三角形内角和定理即可得出结论.【解答】解:如图所示,∵直尺的两边互相平行,∠2=125°,∴∠4=∠2=125°.∵∠1=30°,∴∠3=180°﹣∠4﹣∠1=180°﹣125°﹣30°﹣30°=25°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.有4根小木棒,长度分别为3cm、4cm、5cm、9cm任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.0个B.1个C.2个D.3个【考点】三角形三边关系.【分析】先写出不同的分组,再根据三角形的任意两边之和大于第三边对各组数据进行判断即可得解.【解答】解:任取3根可以有一下几组:①3cm,4cm,5cm能够组成三角形,②3cm,4cm,9cm,不能组成三角形;③3cm,5cm,9cm,不能组成三角形,③4cm,5cm,9cm,不能组成三角形,∴可以搭出不同的三角形1个.故选B.【点评】本题考查了三角形的三边关系,按照一定的顺序进行分组才能做到不重不漏.7.一个正方形和两个等边三角形的位置如图所示,若∠1=50°,则∠2+∠3=()A.190°B.130°C.100°D.80°【考点】等边三角形的性质.【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠1=50°,∴∠2+∠3=150°﹣50°=100°.故选C.【点评】本题考查了等边三角形的性质以及三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.8.如图,三角形ABC内的线段BD、CE相交于点O,已知OB=OD,OC=2OE.若△BOC的面积=2,则四边形AEOD的面积等于()A.4 B.5 C.6 D.7【考点】三角形的面积.【分析】连接AO,利用等高不等底的三角形面积比等于底长的比,可求出△COD与△BOE的面积.列出关于△AOE与△AOD的面积的方程即可求出四边形AEOD的面积.【解答】解:连接OA,∵OB=OD,∴S△BOC=S△COD=2,∵OC=2OE,∴S△BOE=S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选(D)【点评】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.二、细心填一填(本大题共12空,每空2分,共24分,请将正确答案填在答卷上)9.等腰三角形的两边长分别为3cm和4cm,则它的周长是10或11 cm.【考点】等腰三角形的性质;三角形三边关系.【分析】因为腰长没有明确,所以分①3cm是腰长,②4cm是腰长两种情况求解.【解答】解:①3cm是腰长时,能组成三角形,周长=3+3+4=10cm,②4cm是腰长时,能组成三角形,周长=4+4+3=11cm,所以,它的周长是10或11cm.故答案为:10或11.【点评】本题考查了等腰三角形的性质,易错点为要分情况讨论求解.10.我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于0.0025毫米的颗粒物,用科学记数法表示0.0025为 2.5×10﹣3.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0025=2.5×10﹣3;故答案为:2.5×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.计算:(1)x5x= x6;(2)= 2 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方以及同底数幂的乘法法则求解.【解答】解:(1)x5x=x6;(2)原式=(﹣×2)2014×2=2.故答案为:x6;2.【点评】本题考查了幂的乘方和积的乘方以及同底数幂的乘法,解答本题的关键是掌握运算法则.12.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是2x﹣5y .【考点】因式分解-提公因式法.【分析】根据提公因式法分解因式解答即可.【解答】解:﹣16x3+40x2y=﹣8x22x+(﹣8x2)(﹣5y)=﹣8x2(2x﹣5y),所以另一个因式为2x﹣5y.故答案为:2x﹣5y.【点评】本题考查了提公因式法分解因式,把多项式的各项写成公因式与另一个因式相乘的形式是解题的关键.13.已知x+y=4,x﹣y=﹣2,则x2﹣y2= ﹣8 .【考点】完全平方公式.【分析】根据平方差公式得x2﹣y2=(x+y)(x﹣y),然后把x+y=4,x﹣y=﹣2整体代入计算即可.【解答】解:x2﹣y2=(x+y)(x﹣y),当x+y=4,x﹣y=﹣2时,x2﹣y2=4×(﹣2)=﹣8.故答案为﹣8.【点评】本题考查了平方差公式:a2﹣b2=(a+b)(a﹣b).14.已知是二元一次方程mx+y=3的解,则m的值是﹣1 .【考点】二元一次方程的解.【分析】把方程的已知解代入mx+y=3中,得到一个含有未知数m的一元一次方程,然后就可以求出m的值.【解答】解:把代入二元一次方程mx+y=3中,可得:﹣2m+1=3,解得:m=﹣1故答案为:﹣1.【点评】此题考查把二元一次方程的解,解题关键是把二元一次方程的已知解代入二元一次方程,使原方程转化为以系数m为未知数的方程,然后解此方程即可.15.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠B=48°,则∠BDF= 84°.【考点】翻折变换(折叠问题).【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=48°,∴∠ADE=48°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠ED F=48°,∴∠BDF=180°﹣48°﹣48°=84°,故答案为:84.【点评】此题主要考查了折叠问题与平行线的性质,利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF是解决问题的关键.16.把一副常用的三角板如图所示拼在一起,点B在AE上,那么图中∠ABC= 75°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理,可求出∠ABC=180°﹣(∠BAC+∠BCA)=75°.【解答】解:根据题意得:∠ABC=180°﹣(∠BAC+∠BCA)=75°.故答案为:75°【点评】本题主要考查三角形的内角和定理和三角板的度数.知道三角板各角的度数是解题的关键.17.已知多项式x2+mx+16是关于x的完全平方式,则m= ±8 .【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵x2+mx+16=x2+mx+42,∴mx=±2x4,∴m=±8.故答案为:±8.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.若a2+b2﹣2a+4b+5=0,则2a+b= 0 .【考点】配方法的应用;非负数的性质:偶次方.【分析】先将a2+b2﹣2a+4b+5=0,整理成平方和的形式,再根据非负数的性质可求出x、y 的值,进而可求出y x的值.【解答】解:由题意得:a2+b2﹣2a+4b+5=0=(a﹣1)2+(b+2)2=0,由非负数的性质得a=1,b=﹣2.则2a+b=0.故答案为:0;【点评】本题考查了配方法的应用,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.19.三角形ABC中,∠ABC和∠ACB的角平分线相交于点P,连接AP,若∠BPC=130°,则∠BAP= 40°.【考点】三角形内角和定理.【分析】由∠ABC和∠ACB的角平分线相交于点P,可得出点P为△ABC的内心,进而得出PA平分∠BAC,再通过角的计算以及三角形内角和定理即可得出∠BAC的度数,将其除以2即可得出结论.【解答】解:∵∠ABC和∠ACB的角平分线相交于点P,连接AP,∴点P为△ABC的内心,∴PA平分∠BAC.∵∠BPC=130°,∴∠BCP+∠CBP=180°﹣∠BPC=50°.∵∠ABC=2∠CBP,∠ACB=2∠BCP,∴∠ABC+∠ACB=2(∠CBP+∠BCP)=100°,∴∠BAC=180°﹣(∠ABC+∠ACB)=80°,∴∠BAP=∠BAC=40°.故答案为:40°.【点评】本题考查了三角形内角和定理、三角形的内心以及角平分线的性质,根据三角形的内心找出PA平分∠BAC是解题的关键.三、解答题(本大题共8小题,共52分.解答需写出必要的演算过程、解题步骤或文字说明).20.计算(1);(2)(﹣a2)3﹣6a2a4;(3)(x+1)2﹣(﹣x﹣2)(﹣x+2)(4)(2a﹣b﹣3)(2a+b﹣3)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算乘方、0指数幂、负指数幂以及绝对值,再算加减;(2)先算积得乘方和同底数幂的乘法,再算减法;(3)先利用完全平方公式和平方差公式计算,再进一步合并即可;(4)利用平方差公式和完全平方公式计算即可.【解答】解:(1)原式=1﹣8+1﹣3=﹣9;(2)原式=﹣a6﹣6a6=﹣7a6;(3)原式=x2+2x+1﹣x2+4=2x+5;(4)原式=(2a﹣3)2﹣b2=4a2﹣12a+9﹣b2.【点评】此题考查整式的混合运算,掌握运算方法与计算的顺序符号是解决问题的关键.21.因式分解:(1)4a2﹣16(2)(x+2)(x+4)+1.【考点】提公因式法与公式法的综合运用.【分析】(1)先提取公因式4,再对余下的多项式利用平方差公式继续分解;(2)先利用多项式的乘法展开并整理,然后利用完全平方公式分解因式即可.【解答】解:(1)4a2﹣16,=4(a2﹣4),=4(a+2)(a﹣2);(2)(x+2)(x+4)+1,=x2+6x+8+1,=x2+6x+9,=(x+3)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.【考点】整式的混合运算—化简求值.【分析】原式前两项利用完全平方公式展开,最后一项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣9a2+6ab﹣b2+5a2﹣5ab=5ab,当a=,b=时,原式=5××=.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.23.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积= 7 .(2)若连接AD、CF,则这两条线段之间的关系是平行且相等;(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出平移后的△DEF,再求出其面积即可;(2)根据图形平移的性质可直接得出结论;(3)找出线段AB的中点P,连接PC即可.【解答】解:(1)如图所示,S△DEF=4×4﹣×4×1﹣×2×4﹣×2×3=16﹣2﹣4﹣3=7.故答案为:7;(2)∵A、C的对应点分别是D、F,∴连接AD、CF,则这两条线段之间的关系是平行且相等.故答案为:平行且相等;(3)如图,线段PC即为所求.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.如图,已知在四边形ABCD中,AE、CF分别是∠DAB及∠DCB的平分线,∠B=∠D=90°,求证:AE∥CF.【考点】平行线的判定;多边形内角与外角.【分析】先由四边形的内角和为360°,可得∠BAD+∠BCD=180°,然后由角平分线的定义可得:∠BAE+∠BCF=90°,然后由三角形内角和定理可得:∠BAE+∠BEA=90°,然后根据等量代换可得:∠BCF=∠BEA,从而根据同位角相等两直线平行,进而可证AE∥CF.【解答】解:∵∠B=∠D=90°,且∠B+∠D+∠BAD+∠BCD=360°,∴∠BAD+∠BCD=180°,∵AE、CF分别是∠DAB及∠DCB的平分线,∴∠BAE+∠BCF=∠BAD+∠BCD=90°,∵∠B+∠BAE+∠BEA=180°,∴∠BAE+∠BEA=90°,∴∠BCF=∠BEA,∴AE∥CF.【点评】此题考查了平行线的判定,熟记同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.25.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=36°,求∠BED的度数;(2)作出△BED中DE边上的高,垂足为H;(3)若△ABC面积为20,过点C作CF∥AD交BA的延长线于点F,求△BCF的面积.(友情提示:两条平行线间的距离处处相等.)【考点】作图—复杂作图;平行线之间的距离.【分析】(1)利用三角形的外角定理直接求出即可;(2)延长ED,进而过点B作BH⊥AD即可;(3)利用两条平行线间的距离处处相等得出S△AFC=S△DFC.而S△DFC=S△BCF,故S△AFC=S△BCF,求出即可.【解答】解:(1)∵∠ABE=15°,∠BAD=36°,∴∠BED=∠ABE+∠BAD=51°;(2)如图所示:BH即为所求;(3)过点C作CF∥AD交BA的延长线于点F,∵AD∥CF,∴S△AFC=S△DFC.而S△DFC=S△BCF,∴S△AFC=S△BCF.∴S△AFC=S△ABC=20,∴S△BCF=40.【点评】此题主要考查了三角形外角的性质以及三角形高的做法和平行线的性质等知识,得出S△AFC=S△BCF是解题关键.26.课堂上老师出了这么一道题:(2x﹣3)x+3﹣1=0,求x的值.小明同学解答如下:∵(2x﹣3)x+3﹣1=0,∴(2x﹣3)x+3=1∵(2x﹣3)0=1∴x+3=0∴x=﹣3.请问小明的解答过程正确吗?如果不正确,请求出正确的值.【考点】零指数幂;有理数的乘方.【分析】直接利用零指数幂的性质以及有理数的乘方运算运算法则分别化简求出答案.【解答】解:不正确,理由:∵(2x﹣3)x+3﹣1=0,∴(2x﹣3)x+3=1∴x+3=0或2x﹣3=1,或2x﹣3=﹣1,解得:x=﹣3,x=2,x﹣3.【点评】此题主要考查了零指数幂的性质以及有理数的乘方运算运算等知识,正确把握运算法则是解题关键.27.(1)如图1,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.当∠A为80°时,求∠A1的度数(2)在上一题中,若∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,则∠A6= ()°.(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F= 25°.(4)如图3,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1若E为BA 延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论①(填编号),并写出其值180°.【考点】三角形综合题.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【解答】解:(1)∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,∵∠A=80°,∴∠A1=40°,(2)解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,即∠A n=∠A,∴∠A6=×80°=()°,故答案为:()°.(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∴∠ABC+(180°﹣∠DCE)=360°﹣(∠A+∠D)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.故答案为:①,180°.【点评】本题考查了多边形内角与外角和角平分线的定义,三角形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键,要注意整体思想的利用.。

苏科版数学七年级下册第二学期数学期中试卷

初中数学试卷( )m+n)A .B .C .D .10.如图,∠ABC >∠ADC ,且∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,则∠AEC 与∠ADC 、∠ABC 之间存在的等量关系是……………………………… ( )A .∠AEC =∠ABC -2∠ADCB .∠AEC =∠ABC-∠ADC2C .∠AEC =12∠ABC -∠ADCD .∠AEC =∠ABC -∠ADC3二、填空题(本大题共10小题,每空2分,共22分)11.计算(-23a 4 )(6a 3 -12a 2+9a )= ,十边形的内角和是 .12.一张薄的金箔的厚度为0.000 000 091m ,用科学记数法可表示_______________m .13.如果二次三项式x 2-2(m+1)x +16是一个完全平方式,那么m 的值是. 14.如图,把ΔABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =48°, 则∠BDF =______.15.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为250 m ,且桥宽忽略不计,则小桥总长为________ m . 16.把一副常用的三角板如图所示拼在一起,点B 在AE 上,那么图中∠ABC = .17.一个正方形和两个等边三角形的位置如图所示,∠3=55°, 则∠1+∠2=__________. 18.已知(x +y +1)2 +|x -y -3|=0,则y x =______________. 19.若关于x 、y 方程组⎩⎨⎧2x +y =b x -by =a 的解是⎩⎨⎧x =1y =2,那么a b -= .20.如图,△ABC 中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE ,交BD 于点G ,交BC 于点H ;下列结论:①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =∠BAC -∠C ;④∠BGH =∠ABE +∠C ,其中正确的结论有___________. 三、解答题:(本大题共7小题,共58分) 21.(本大题共16分)计算或化简 (1)(-2a 3)3+(-4a )2·a 7-2a 12÷a 3 (2) (3.14-π)0-2 -3+(-4)2÷( 12)-2 AB C FD E第14题图 第15题图 A BC DE F第16题图 第17题图 FAD E GH 第20题图▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲(3) (x +2)(x -1)-3x (x +3) (4) (12x -y )2-14(x +2y )(x -2y )22.(本大题共8分)解下列二元一次方程组(1) ⎩⎨⎧2x +y =7,x -2y =1.(2) ⎩⎪⎨⎪⎧3x +2y =1,5x -y 2=-6.23.(本大题共5分)先化简,再求值:已知:(x + a )( x -34)的结果中不含关于字母x 的一次项,求(a + 2)2—( 3-a )(-a -3)的值.24.(本大题共5分)已知2x =8y +2,9y =3x -9,求13x +2y 的值.25.(本大题共6分)如图,AB ∥CD ,AE 交CD 于点F ,DE ⊥AE ,垂足为E ,∠A +∠1=74º,求∠D 的26.(本大题共8分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①②.图①中,∠B =90°,∠A=30°;图②中,∠D = 90°,∠F =45°.图③是该同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在△DEF 沿AC 方向移动的过程中,该同学发现:F 、C 两点间的距离逐渐 ,连接FC ,∠FCE 的度数逐渐 .(填“不变”、“变大”或“变小”)(2)△DEF 在移动的过程中,∠FCE 与∠CFE 度数之和是否为定值,请加以说明; (3)能否将△DEF 移动至某位置,使F 、C 的连线与AB 平行?请求出∠CFE 的度数.AB DCEF图①图②图③▲ ▲27.(本大题共10分)提出问题:如图1,在四边形ABCD 中,P 是AD 边上任意一点,△PBC 与△ABC 和△DBC 的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形人手:(1)当AP =12AD 时(如图2):∵AP =12AD ,△ABP 和△ABD 的高相等,∴S △ABP =12S △ABD∵PD =AD -AP =12AD ,△CDP 和△CDA 的高相等∴S △CDP =12S △CDA∴S △PBC =S 四边形ABCD -S △ABP -S △CDP = S 四边形ABCD -12S △ABD - 12S △CDA= S 四边形ABCD -12 (S 四边形ABCD -S △DBC )-12 (S 四边形ABCD -S △ABC ) =12S △DBC + 12S △ABC(2)当AP =13AD 时,探求S △PBC 与S △ABC 和S △DBC 之间的关系式并证明;(3)当AP =16AD 时,S △PBC 与S △ABC 和S △DBC 之间的关系式为:________________; (4)一般地,当AP =1nAD (n 表示正整数)时,探求S △PBC 与S △ABC 和S △DBC 之间的关系为:____________________;(5)当AP = b aAD (0≤b a≤1)时,S △PBC 与S △ABC 和S △DBC 之间的关系式为:_____________.▲ ▲ ▲2014~2015学年第二学期期中考试七年级数学试卷答案一、选择题:(本大题共10小题,每小题3分,共30分)1.C2.B3. C4.B5.D6.B7.D8.A9.D 10.B 二、填空题(本大题共10小题,每空2分,共22分)11. -4a 7+8a 6–6a 51440° 12. 9.1×10-813. -5 或3 14. 84° 15. 125 16. 75° 17. 95° 18. -2 19. 11 20. ①②④ 三、解答题:(本大题共7小题,共58分) 21.(本大题共16分)计算或化简(1)原式=-8a 9+16a 2a 7-2a 9……2’ (2)原式=1-18+4……2’=6a 9……4’ = 478……4’(3)原式=x 2+x-2-3x 2-9x ……2’ (4)原式=14x 2-xy+y 2-14(x 2-4y 2)……2’=-2x 2-8x-2……4’ =2y 2-xy ……4’22.(本大题共8分)解下列二元一次方程组 (1)⎩⎨⎧x =3,y =1.……4’ (2)⎩⎨⎧x =-1,y =2.……4’23.(本大题共5分)解:a=34 ……1’原式=4a+13 ……4’ 当a=34时,原式=16 ……5’24.(本大题共5分)解:根据2x=23(y+2),32y =3x-9,列方程⎩⎨⎧x =3y+6,2y =x-9.……2’解方程得⎩⎨⎧x =15,y =3.……4’13x +2y=11 ……5’25.(本大题共6分) 证明:∵ AB ∥CD∴∠A =∠1 ……1’∵∠A+∠1=74∴∠A =∠1 =37° ……2’ ∴ ∠EFD=37° ……3’DE ⊥AE∴∠E =90° ……4’∴ ∠D=53° ……6’26.(本大题共8分)解:(1)变小,变大 ……2’ (2)定值,连接FC,∠FCE +∠CFE =∠FED=45°……5’(3)能,此时∠CFE =45°-∠FCE =45°-∠A=45°-30°=15°……8’ 27.(本大题共10分)解:(2)S △PBC =13S △DBC + 23S △ABC ……2’证明过程 ……4’ (3) S △PBC =16S △DBC + 56S △ABC ……6’(4) S △PBC =1n S △DBC + n-1n S △ABC ……8’(5) S △PBC =b a S △DBC + a-baS △ABC ……10’。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学期中复习练习卷
一、选择题:
1.下列长度的3条线段,能构成三角形的是 ( )
A . 1cm,2cm,3cm
B .2cm,9cm,9cm
C . 4cm,3cm,8cm
D .5cm,5cm,10cm
2.多边形的边数增加1,则它的外角和 ( )
A .不变
B .增加180°
C .增加360°
D .无法确定
3.如图,∠1=∠2,∠DAB =∠BCD ,下列结论:(1)AB ∥DC ;(2)AD ∥BC ;(3)∠B =∠
D ;(4)∠D =∠ACB .其中正确的有( )|
A .1个
B .2个
C .3个
D .4个
4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )
A .60°
B .68°
C .70°
D .72°
5.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为2:3,则这个多边
形为( )
A .三角形
B .四边形
C .五边形
D .六边形
6.等腰三角形的一边等于3,一边等于6,则它的周长为( )
A .12
B .12或15
C .15或18
D .15
7.下列图形中,不能..
通过其中一个四边形平移得到的是( )
8.某种细菌的存活时间只有0. 000 012秒,若用科学记数法表示此数据应为( )
A .1.2×10-4
B .1.2×10-5
C .1.2×104
D .1.2×105
9.如果a =(-0.1)0,b =(-0.1)-1,c =253-⎛⎫- ⎪⎝⎭
,那么a ,b ,c 的大小关系为( ) A .a>b>c B .c>a>b C .c>b>a
D . a>c>b 10.计算:22012-(-2)2013的结果是( )
A .3×22012
B .24025
C .-22012
D .(12
)2012 二、填空题:
11.若26=a 2=4b ,则a +b = ▲ ;若3m =6,9n =2,则32m -2n =_______.
12.计算:(-x)3.(-x)5÷(-x)2=_______,-22010×(-0.5)2011=_______.
第4题图
13.如果(x -1)x +
4=1成立,那么满足它的所有整数x 的值是_______.
14.如图,在△ABC 中,∠BAC =50°,BD 、CE 分别是边AC ,AB 上的高,BD 、CE 相交于点O ,则∠BOC 的度数是_______.
15.如图,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折后形成的.若∠1:∠2:∠3=28:5:3,则∠α的度数为_______.
16.如图,△ABC 中,点D ,E ,F 分别是BC ,AD ,CE 的中点,S △ABC =12,则S △DEF =_______.
17.在一个凸多边形中,除其中一个内角外,其余内角的和为11050,则这个多边形的边数为 .
18.若21m x =-,将114
m y +=+用含x 的代数式表示.
三、解答题:
19.计算:(本题满分8分)
(1)()()203413222--⎛⎫-++-⨯ ⎪⎝⎭; (2)2(a 2)3-a 2·a 4+(2a 4)2÷a 2.
20、根据现有知识,若已知10m =40, 10n
=0.2,不能求出a 和b 的值,但是小军却利用它们做出了,m-2n 的值,你知道他是怎么计算的吗?利用这个原理,求下列各式的值:
(1) 2m ÷22n ; (2)3m ÷9n
21、(本题共2小题,每小题4分,共8分)
(1)已知2344a b c --=,求148416c a b
⎛⎫÷⨯- ⎪⎝⎭的值
(2)已知12m x +=,34m
y =+,用含x 的代数式表示y .
(3)已知4m+3·8 m+1÷24m+7
=16,求m 的值。

22、某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌.现
要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?若10滴这种杀虫剂为10-3 升,
问:要用多少升杀虫剂?
23.(本题5分)如图,已知在三角形ABC 中,∠C =∠ABC =2∠A ,BD 是AC 边上的高,求∠DBC 的度数.
24.(本题6分)如图,已知∠1=∠C ,∠2=∠3.BE 是否平分∠ABC?请说明理由.
25.如图,四边形ABCD 中,∠ABC、∠ADC 的平分线分别与CD 、AB 相交于点E 、F .
(1)若∠A 与∠C 互补,且∠CDF =36°,则∠ABE = ; (2)探索当∠A 与∠C 满足什么关系时,BE 与DF 平行,并说明理由.
D E C A F B
26.如图①,已知AB∥CD,BP、DP分别平分∠ABD、∠BDC.
(1) ∠BPD=°;
(2)如图②,将BD改为折线BED,BP、DP分别平分∠ABE、∠EDC,其余条件不变,若∠BED =150°,求∠BPD的度数:并进一步猜想∠BPD与∠BED之间的数量关系.
27.(本题8分)如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:
(1)在图1中,写出∠A、∠B、∠C、∠D之间关系为+=+;
(2)如图2,在(1)的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.
①若∠D=40°,∠B=36°,则∠P=_______;
②探究∠P与∠D、∠B之间有何数量关系,并说明理由.
初中数学试卷。

相关文档
最新文档