自考数据结构重点知识
20XX年自学考试《数据结构》各章复习要点总结(1)-自学考试.doc

2010年自学考试《数据结构》一至三章复习要点总结第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。
·线性结构:一对一关系。
·线性结构:多对多关系。
·存储结构:是逻辑结构用计算机语言的实现。
·顺序存储结构:如数组。
·链式存储结构:如链表。
·稠密索引:每个结点都有索引项。
·稀疏索引:每组结点都有索引项。
·散列存储结构:如散列表。
·对数据的操作:定义在逻辑结构上,每种逻辑结构都有一个运算集合。
·常用的有:检索、插入、删除、更新、排序。
·数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
·原子类型:由语言提供。
·结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:·是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
·优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);··取结点:GetNode(L,i) ·查找:LocateNode(L,x) ·插入:InsertList(L,x,i) ·删除:Delete(L,i)顺序表是按线性表的逻辑结构次序依次存放在一组地址连续的存储单元中。
在存储单元中的各元素的物理位置和逻辑结构中各结点相邻关系是一致的。
自考数据结构重点知识

第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:逻辑结构:从逻辑结构上描述数据,独立于计算机。
线性结构:一对一关系。
线性结构:多对多关系。
存储结构:是逻辑结构用计算机语言的实现。
顺序存储结构:如数组。
链式存储结构:如链表。
索引存储结构:稠密索引:每个结点都有索引项。
稀疏索引:每组结点都有索引项。
散列存储结构:如散列表。
数据运算。
对数据的操作。
定义在逻辑结构上,每种逻辑结构都有一个运算集合。
常用的有:检索、插入、删除、更新、排序。
数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
原子类型:由语言提供。
结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:算法是正确的;执行算法的时间;执行算法的存储空间(主要是辅助存储空间);算法易于理解、编码、调试。
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。
算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。
时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n〃2)、立方阶O(n”)、……k次方阶O(n”)、指数阶O(2M)。
空间复杂度:是某个算法的空间耗费,它是该算法所求解问题规模n的函数。
算法的时间复杂度和空间复杂度合称算法复杂度。
数据结构复习笔记

第一章概论1.数据:信息的载体,能被计算机识别、存储和加工处理;2.数据元素:数据的基本单位,可由若干个数据项组成,数据项是具有独立含义的最小标识单位;3.数据结构:数据之间的相互关系,即数据的组织形式;它包括:1数据的逻辑结构,从逻辑关系上描述数据,与数据存储无关,独立于计算机;2数据的存储结构,是逻辑结构用计算机语言的实现,依赖于计算机语言;3数据的运算,定义在逻辑结构上,每种逻辑结构都有一个运算集合;常用的运算:检索/插入/删除/更新/排序;4.数据的逻辑结构可以看作是从具体问题抽象出来的数学模型;数据的存储结构是逻辑结构用计算机语言的实现;5.数据类型:一个值的集合及在值上定义的一组操作的总称;分为:原子类型和结构类型;6.抽象数据类型:抽象数据的组织和与之相关的操作;优点:将数据和操作封装在一起实现了信息隐藏;7. 抽象数据类型ADT:是在概念层上描述问题;类:是在实现层上描述问题;在应用层上操作对象类的实例解决问题;8.数据的逻辑结构,简称为数据结构,有:1线性结构,若结构是非空集则仅有一个开始和终端结点,并且所有结点最多只有一个直接前趋和后继;2非线性结构,一个结点可能有多个直接前趋和后继;9.数据的存储结构有:1顺序存储,把逻辑相邻的结点存储在物理上相邻的存储单元内;2链接存储,结点间的逻辑关系由附加指针字段表示;3索引存储,存储结点信息的同时,建立附加索引表,有稠密索引和稀疏索引;4散列存储,按结点的关键字直接计算出存储地址;10.评价算法的好坏是:算法是正确的;执行算法所耗的时间;执行算法的存储空间辅助存储空间;易于理解、编码、调试;11.算法的时间复杂度Tn:是该算法的时间耗费,是求解问题规模n的函数;记为On;时间复杂度按数量级递增排列依次为:常数阶O1、对数阶Olog2n、线性阶On、线性对数阶Onlog2n、平方阶On^2、立方阶On^3、……k次方阶On^k、指数阶O2^n;13.算法的空间复杂度Sn:是该算法的空间耗费,是求解问题规模n的函数;12.算法衡量:是用时间复杂度和空间复杂度来衡量的,它们合称算法的复杂度;13. 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关;第二章线性表1.线性表:是由nn≥0个数据元素组成的有限序列;3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里;4.顺序表结点的存储地址计算公式:Locai=Loca1+i-1C;1≤i≤n5.顺序表上的基本运算public interface List {链表:只有一个链域的链表称单链表;在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域;1建立单链表;时间复杂度为On;加头结点的优点:1链表第一个位置的操作无需特殊处理;2将空表和非空表的处理统一; 2查找运算;时间复杂度为On;public class SLNode implements Node {private Object element;private SLNode next;public SLNodeObject ele, SLNode next{= ele;= next;}public SLNode getNext{return next;}public void setNextSLNode next{= next;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class ListSLinked implements List {private SLNode head; etData==ereturn p;else p = ;return null;}etData;.getNext;size--;return obj;}etNext;size--;return true;}return false;}环链表:是一种首尾相连的链表;特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便;8.空循环链表仅由一个自成循环的头结点表示;9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针rear来表示单循环链表;用头指针表示的单循环链表查找开始结点的时间是O1,查找尾结点的时间是On;用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O1;10.在结点中增加一个指针域,prior|data|next;形成的链表中有两条不同方向的链称为双链表;public class DLNode implements Node {private Object element;private DLNode pre;private DLNode next;public DLNodeObject ele, DLNode pre, DLNode next{= ele;= pre;= next;}public DLNode getNext{return next;}public void setNextDLNode next{= next;}public DLNode getPre{return pre;}public void setPreDLNode pre{= pre;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class LinkedListDLNode implements LinkedList {private int size; etPrenode;node;size++;return node;}etNextnode;node;size++;return node;}etNext;.setPre;size--;return obj;}序表和链表的比较1基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的;顺序表的存储密度比链表大;因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构;2基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构;对频繁进行插入、删除操作的线性表宜采用链表;若操作主要发生在表的首尾时采用尾指针表示的单循环链表;12.存储密度=结点数据本身所占的存储量/整个结点结构所占的存储总量存储密度:顺序表=1,链表<1;第三章栈和队列1.栈是限制仅在表的一端进行插入和删除运算的线性表又称为后进先出表LIFO表;插入、删除端称为栈顶,另一端称栈底;表中无元素称空栈;2.栈的基本运算有:1initstacks,构造一个空栈;2stackemptys,判栈空;3stackfulls,判栈满;4pushs,x,进栈;5pops,退栈;6stacktops,取栈顶元素;3.顺序栈:栈的顺序存储结构称顺序栈;4.当栈满时,做进栈运算必定产生空间溢出,称“上溢”;当栈空时,做退栈运算必定产生空间溢出,称“下溢”;上溢是一种错误应设法避免,下溢常用作程序控制转移的条件;5.在顺序栈上的基本运算:public interface Stack {栈:栈的链式存储结构称链栈;栈顶指针是链表的头指针;7.链栈上的基本运算:public class StackSLinked implements Stack {private SLNode top; 列是一种运算受限的线性表,允许删除的一端称队首,允许插入的一端称队尾;队列又称为先进先出线性表,FIFO表;9.队列的基本运算:1initqueueq,置空队;2queueemptyq,判队空;3queuefullq,判队满;4enqueueq,x,入队;5dequeueq,出队;6queuefrontq,返回队头元素;10.顺序队列:队列的顺序存储结构称顺序队列;设置front和rear指针表示队头和队尾元素在向量空间的位置;11.顺序队列中存在“假上溢”现象,由于入队和出队操作使头尾指针只增不减导致被删元素的空间无法利用,队尾指针超过向量空间的上界而不能入队;12.为克服“假上溢”现象,将向量空间想象为首尾相连的循环向量,存储在其中的队列称循环队列;i=i+1%queuesize13.循环队列的边界条件处理:由于无法用front==rear来判断队列的“空”和“满”;解决的方法有:1另设一个布尔变量以区别队列的空和满;2少用一个元素,在入队前测试rear在循环意义下加1是否等于front;3使用一个记数器记录元素总数;14.循环队列的基本运算:public interface Queue {队列:队列的链式存储结构称链队列,链队列由一个头指针和一个尾指针唯一确定;16.链队列的基本运算:public class QueueSLinked implements Queue {private SLNode front;private SLNode rear;private int size;public QueueSLinked {front = new SLNode;rear = front;size = 0;}etData;}}第四章串1.串:是由零个或多个字符组成的有限序列;包含字符的个数称串的长度;2.空串:长度为零的串称空串;空白串:由一个或多个空格组成的串称空白串;子串:串中任意个连续字符组成的子序列称该串的子串;主串:包含子串的串称主串;子串的首字符在主串中首次出现的位置定义为子串在主串中的位置;3.空串是任意串的子串;任意串是自身的子串;串常量在程序中只能引用但不能改变其值;串变量取值可以改变;4.串的基本运算1intstrlenchars;求串长;2charstrcpycharto,charfrom;串复制;3charstrcatcharto,charfrom;串联接;4intstrcmpchars1,chars2;串比较;5charstrchrchars,charc;字符定位;5.串的存储结构:1串的顺序存储:串的顺序存储结构称顺序串;按存储分配不同分为:1静态存储分配的顺序串:直接用定长的字符数组定义,以“\0”表示串值终结;definemaxstrsize256typedefcharseqstringmaxstrsize;seqstrings;不设终结符,用串长表示;Typedefstruct{Charchmaxstrsize;Intlength;}seqstring;以上方式的缺点是:串值空间大小是静态的,难以适应插入、链接等操作;2动态存储分配的顺序串:简单定义:typedefcharstring;复杂定义:typedefstruct{charch;intlength;}hstring;2串的链式存储:串的链式存储结构称链串;链串由头指针唯一确定;类型定义:typedefstructnode{chardata;structnodenext;}linkstrnode;typedeflinkstrnodelinkstring;linkstrings;将结点数据域存放的字符个数定义为结点的大小;结点大小不为1的链串类型定义:definenodesize80typedefstructnode{chardatanodesize;structnodenext;}linkstrnode;6.串运算的实现1顺序串上的子串定位运算;1子串定位运算又称串的模式匹配或串匹配;主串称目标串;子串称模式串; 2朴素的串匹配算法;时间复杂度为On^2;比较的字符总次数为n-m+1m; Intnaivestrmatchseqstringt,seqstringp{inti,j,k;intm=;intn=;fori=0;i<=n-m;i++{j=0;k=i;whilej<m&&k==j{j++;k++;}ifj==mreturni;}return–1;}2链串上的子串定位运算;时间复杂度为On^2;比较的字符总次数为n-m+1m;LinkstrnodelilnkstrmatchlinkstringT,linkstringP {linkstrnodeshift,t,p;shift=T;t=shift;p=P;whilet&&p{ift->data==p->data{t=t->next;p=p->next;}else{shift=shift->next;t=shift;p=P;}}ifp==NULLreturnshift;elsereturnNULL;}第五章多维数组和广义表1.多维数组:一般用顺序存储的方式表示数组;2.常用方式有:1行优先顺序,将数组元素按行向量排列;2列优先顺序,将数组元素按列向量排列;3.计算地址的函数:LOCAij=LOCAc1c2+i-c1d2-c2+1+j-c2d4.矩阵的压缩存储:为多个非零元素分配一个存储空间;对零元素不分配存储空间;1对称矩阵:在一个n阶的方阵A中,元素满足Aij=Aji0<=i,j<=n-1;称为对称矩阵;元素的总数为:nn+1/2;设:I=i或j中大的一个数;J=i或j中小的一个数;则:k=II+1/2+J;地址计算:LOCAij=LOCsak=LOCsa0+kd=LOCsa0+II+1/2+Jd2三角矩阵:以主对角线划分,三角矩阵有上三角和下三角;上三角的主对角线下元素均为常数c;下三角的主对角线上元素均为常数c;元素总数为:nn+1/2+1;以行优先顺序存放的Aij与SAk的关系:上三角阵:k=i2n-i+1/2+j-i;下三角阵:k=ii+1/2+j;3对角矩阵:所有的非零元素集中在以主对角线为中心的带状区域,相邻两侧元素均为零;|i-j|>k-1/2以行优先顺序存放的Aij与SAk的关系:k=2i+j;5.稀疏矩阵:当矩阵A中有非零元素S个,且S远小于元素总数时,称为稀疏矩阵;对其压缩的方法有顺序存储和链式存储;1三元组表:将表示稀疏矩阵的非零元素的三元组行号、列号、值按行或列优先的顺序排列得到的一个结点均是三元组的线性表,将该表的线性存储结构称为三元组表;其类型定义:definemaxsize10000typedefintdatatype;typedefstruct{inti,j;datatypev;}trituplenode;typedefstruct{trituplenodedatamaxsize;intm,n,t;}tritupletable;2带行表的三元组表:在按行优先存储的三元组表中加入一个行表记录每行的非零元素在三元组表中的起始位置;类型定义:definemaxrow100typedefstruct{tritulpenodedatamaxsize;introwtabmaxrow;intm,n,t;}rtritulpetable;6.广义表:是线性表的推广,广义表是n个元素的有限序列,元素可以是原子或一个广义表,记为LS;7.若元素是广义表称它为LS的子表;若广义表非空,则第一个元素称表头,其余元素称表尾;8.表的深度是指表展开后所含括号的层数;9.把与树对应的广义表称为纯表,它限制了表中成分的共享和递归;10.允许结点共享的表称为再入表;11.允许递归的表称为递归表;12.相互关系:线性表∈纯表∈再入表∈递归表;13.广义表的特殊运算:1取表头headLS;2取表尾tailLS;第六章树1.树:是n个结点的有限集T,T为空时称空树,否则满足:1有且仅有一个特定的称为根的结点;2其余结点可分为m个互不相交的子集,每个子集本身是一棵树,并称为根的子树;2.树的表示方法:1树形表示法;2嵌套集合表示法;3凹入表表示法;4广义表表示法;3.一个结点拥有的子树数称为该结点的度;一棵树的度是指树中结点最大的度数;4.度为零的结点称叶子或终端结点;度不为零的结点称分支结点或非终端结点5.根结点称开始结点,根结点外的分支结点称内部结点;6.树中某结点的子树根称该结点的孩子;该结点称为孩子的双亲;7.树中存在一个结点序列K1,K2,…Kn,使Ki为Ki+1的双亲,则称该结点序列为K1到Kn的路径或道路;8.树中结点K到Ks间存在一条路径,则称K是Ks的祖先,Ks是K的子孙;9.结点的层数从根算起,若根的层数为1,则其余结点层数是其双亲结点层数加1;双亲在同一层的结点互为堂兄弟;树中结点最大层数称为树的高度或深度;10.树中每个结点的各个子树从左到右有次序的称有序树,否则称无序树;11.森林是m棵互不相交的树的集合;12.二叉树:是n个结点的有限集,它或为空集,或由一个根结点及两棵互不相交的、分别称为该根的左子树和右子树的二叉树组成;13.二叉树不是树的特殊情况,这是两种不同的数据结构;它与无序树和度为2的有序树不同;14.二叉树的性质:1二叉树第i层上的结点数最多为2^i-1;2深度为k的二叉树至多有2^k-1个结点;3在任意二叉树中,叶子数为n0,度为2的结点数为n2,则n0=n2+1;15.满二叉树是一棵深度为k的且有2^k-1个结点的二叉树;16.完全二叉树是至多在最下两层上结点的度数可以小于2,并且最下层的结点集中在该层最左的位置的二叉树;17.具有N个结点的完全二叉树的深度为log2N取整加1;18.二叉树的存储结构1顺序存储结构:把一棵有n个结点的完全二叉树,从树根起自上而下、从左到右对所有结点编号,然后依次存储在一个向量b0~n中,b1~n存放结点,b0存放结点总数;各个结点编号间的关系:1i=1是根结点;i>1则双亲结点是i/2取整;2左孩子是2i,右孩子是2i+1;要小于n3i>n/2取整的结点是叶子;4奇数没有右兄弟,左兄弟是i-1;5偶数没有左兄弟,右兄弟是i+1;2链式存储结构结点的结构为:lchild|data|rchild;相应的类型说明:typedefchardata;typedefstructnode{datatypedata;structnodelchild,rchild;}bintnode;typedefbintnodebintree;19.在二叉树中所有类型为bintnode的结点和一个指向开始结点的bintree类型的头指针构成二叉树的链式存储结构称二叉链表;20.二叉链表由根指针唯一确定;在n个结点的二叉链表中有2n个指针域,其中n+1个为空;21.二叉树的遍历方式有:前序遍历、中序遍历、后序遍历;时间复杂度为On;22.线索二叉树:利用二叉链表中的n+1个空指针域存放指向某种遍历次序下的前趋和后继结点的指针,这种指针称线索;加线索的二叉链表称线索链表;相应二叉树称线索二叉树;23.线索链表结点结构:lchild|ltag|data|rtag|rchild;ltag=0,lchild是指向左孩子的指针;ltag=1,lchild是指向前趋的线索;rtag=0,rchild是指向右孩子的指针;rtag=1,rchild是指向后继的线索;24.查找p在指定次序下的前趋和后继结点;算法的时间复杂度为Oh;线索对查找前序前趋和后序后继帮助不大;25.遍历线索二叉树;时间复杂度为On;26.树、森林与二叉树的转换1树、森林与二叉树的转换1树与二叉树的转换:1}所有兄弟间连线;2}保留与长子的连线,去除其它连线;该二叉树的根结点的右子树必为空;2森林与二叉树的转换:1}将所有树转换成二叉树;2}将所有树根连线;2二叉树与树、森林的转换;是以上的逆过程;27.树的存储结构1双亲链表表示法:为每个结点设置一个parent指针,就可唯一表示任何一棵树;Data|parent2孩子链表表示法:为每个结点设置一个firstchild指针,指向孩子链表头指针,链表中存放孩子结点序号;Data|firstchild;3双亲孩子链表表示法:将以上方法结合;Data|parent|firstchild4孩子兄弟链表表示法:附加两个指向左孩子和右兄弟的指针;Leftmostchild|data|rightsibling28.树和森林的遍历:前序遍历一棵树等价于前序遍历对应二叉树;后序遍历等价于中序遍历对应二叉树;29.最优二叉树哈夫曼树:树的路径长度是从树根到每一结点的路径长度之和;将树中的结点赋予实数称为结点的权;30.结点的带权路径是该结点的路径长度与权的乘积;树的带权路径长度又称树的代价,是所有叶子的带权路径长度之和;31.带权路径长度最小的二叉树称最优二叉树哈夫曼树;32.具有2n-1个结点其中有n个叶子,并且没有度为1的分支结点的树称为严格二叉树;33.哈夫曼编码34.对字符集编码时,要求字符集中任一字符的编码都不是其它字符的编码前缀,这种编码称前缀码;35.字符出现频度与码长乘积之和称文件总长;字符出现概率与码长乘积之和称平均码长;36.使文件总长或平均码长最小的前缀码称最优前缀码37.利用哈夫曼树求最优前缀码,左为0,右为1;编码平均码长最小;没有叶子是其它叶子的祖先,不可能出现重复前缀;第七章图1.图:图G是由顶点集V和边集E组成,顶点集是有穷非空集,边集是有穷集;中每条边都有方向称有向图;有向边称弧;边的始点称弧尾;边的终点称弧头;G中每条边都没有方向的称无向图;3.顶点n与边数e的关系:无向图的边数e介于0~nn-1/2之间,有nn-1/2条边的称无向完全图;有向图的边数e介于0~nn-1之间,有nn-1条边的称有向完全图;4.无向图中顶点的度是关联与顶点的边数;有向图中顶点的度是入度与出度的和;所有图均满足:所有顶点的度数和的一半为边数;5.图GV,E,如V’是V的子集,E’是E的子集,且E’中关联的顶点均在V’中,则G’V’,E’是G的子图;6.在有向图中,从顶点出发都有路径到达其它顶点的图称有根图;7.在无向图中,任意两个顶点都有路径连通称连通图;极大连通子图称连通分量;8.在有向图中,任意顺序两个顶点都有路径连通称强连通图;极大连通子图称强连通分量;9.将图中每条边赋上权,则称带权图为网络;10.图的存储结构:1邻接矩阵表示法:邻接矩阵是表示顶点间相邻关系的矩阵;n个顶点就是n阶方阵;无向图是对称矩阵;有向图行是出度,列是入度;2邻接表表示法:对图中所有顶点,把与该顶点相邻接的顶点组成一个单链表,称为邻接表,adjvex|next,如要保存顶点信息加入data;对所有顶点设立头结点,vertex|firstedge,并顺序存储在一个向量中;vertex保存顶点信息,firstedge保存邻接表头指针;11.邻接矩阵表示法与邻接表表示法的比较:1邻接矩阵是唯一的,邻接表不唯一;2存储稀疏图用邻接表,存储稠密图用邻接矩阵;3求无向图顶点的度都容易,求有向图顶点的度邻接矩阵较方便;4判断是否是图中的边,邻接矩阵容易,邻接表最坏时间为On;5求边数e,邻接矩阵耗时为On^2,与e无关,邻接表的耗时为Oe+n;12.图的遍历:1图的深度优先遍历:类似与树的前序遍历;按访问顶点次序得到的序列称DFS序列;对邻接表表示的图深度遍历称DFS,时间复杂度为On+e;对邻接矩阵表示的图深度遍历称DFSM,时间复杂度为On^2;2图的广度优先遍历:类似与树的层次遍历;按访问顶点次序得到的序列称BFS序列;对邻接表表示的图广度遍历称BFS,时间复杂度为On+e;对邻接矩阵表示的图广度遍历称BFSM,时间复杂度为On^2;13.将没有回路的连通图定义为树称自由树;14.生成树:连通图G的一个子图若是一棵包含G中所有顶点的树,该子图称生成树;有DFS生成树和BFS生成树,BFS生成树的高度最小;非连通图生成的是森林;15.最小生成树:将权最小的生成树称最小生成树;是无向图的算法1普里姆算法:1确定顶点S、初始化候选边集T0~n-2;formvex|tovex|lenght2选权值最小的Ti与第1条记录交换;3从T1中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;4选权值最小的Ti与第2条记录交换;5从T2中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;6重复n-1次;初始化时间是On,选轻边的循环执行n-1-k次,调整轻边的循环执行n-2-k;算法的时间复杂度为On^2,适合于稠密图;2克鲁斯卡尔算法:1初始化确定顶点集和空边集;对原边集按权值递增顺序排序;2取第1条边,判断边的2个顶点是不同的树,加入空边集,否则删除;3重复e次;对边的排序时间是Oelog2e;初始化时间为On;执行时间是Olog2e;算法的时间复杂度为Oelog2e,适合于稀疏图;16.路径的开始顶点称源点,路径的最后一个顶点称终点;17.单源最短路径问题:已知有向带权图,求从某个源点出发到其余各个顶点的最短路径;18.单目标最短路径问题:将图中每条边反向,转换为单源最短路径问题;19.单顶点对间最短路径问题:以分别对不同顶点转换为单源最短路径问题;20.所有顶点对间最短路径问题:分别对图中不同顶点对转换为单源最短路径问题;21.迪杰斯特拉算法:1初始化顶点集Si,路径权集Di,前趋集Pi;2设置Ss为真,Ds为0;3选取Di最小的顶点加入顶点集;4计算非顶点集中顶点的路径权集;5重复3n-1次;算法的时间复杂度为On^2;22.拓扑排序:对一个有向无环图进行拓扑排序,是将图中所有顶点排成一个线性序列,满足弧尾在弧头之前;这样的线性序列称拓扑序列;1无前趋的顶点优先:总是选择入度为0的结点输出并删除该顶点的所有边;设置各个顶点入度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;2无后继的顶点优先:总是选择出度为0的结点输出并删除该顶点的所有边;设置各个顶点出度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;求得的是逆拓扑序列;第八章排序1.文件:由一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字;2.排序是将文件按关键字的递增减顺序排列;3.排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序;4.在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内排序,反之称外排序;5.排序算法的基本操作:1比较关键字的大小;2改变指向记录的指针或移动记录本身;6.评价排序方法的标准:1执行时间;2所需辅助空间,辅助空间为O1称就地排序;另要注意算法的复杂程度;7.若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算;8.插入排序1直接插入排序算法中引入监视哨R0的作用是:1保存Ri的副本;2简化边界条件,防止循环下标越界;关键字比较次数最大为n+2n-1/2;记录移动次数最大为n+4n-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2希尔排序实现过程:是将直接插入排序的间隔变为d;d的取值要注意:1最后一次必为1;2避免d 值互为倍数;关键字比较次数最大为n^;记录移动次数最大为^;算法的平均时间是On^;是一种就地的不稳定的排序;9.交换排序1冒泡排序实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次;关键字比较次数最小为n-1、最大为nn-1/2;记录移动次数最小为0,最大为3nn-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2快速排序实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i;i=j时确定基准,并以其为界限将序列分为两段;重复以上步骤;关键字比较次数最好为nlog2n+nC1、最坏为nn-1/2;算法的最好时间是Onlog2n;最坏时间是On^2;平均时间是Onlog2n;辅助空间为Olog2n;是一种不稳定排序;10.选择排序1直接选择排序实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次;关键字比较次数为nn-1/2;记录移动次数最小为0,最大为3n-1;算法的最好时间是On^2;最坏时间是On^2;平均时间是On^2;是一种就地的不稳定的排序;2堆排序。
数据结构大纲知识点

数据结构大纲知识点一、绪论。
1. 数据结构的基本概念。
- 数据、数据元素、数据项。
- 数据结构的定义(逻辑结构、存储结构、数据的运算)- 数据结构的三要素之间的关系。
2. 算法的基本概念。
- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)- 算法的评价指标(时间复杂度、空间复杂度的计算方法)二、线性表。
1. 线性表的定义和基本操作。
- 线性表的逻辑结构特点(线性关系)- 线性表的基本操作(如初始化、插入、删除、查找等操作的定义)2. 顺序存储结构。
- 顺序表的定义(用数组实现线性表)- 顺序表的基本操作实现(插入、删除操作的时间复杂度分析)- 顺序表的优缺点。
3. 链式存储结构。
- 单链表的定义(结点结构,头指针、头结点的概念)- 单链表的基本操作实现(建立单链表、插入、删除、查找等操作的代码实现及时间复杂度分析)- 循环链表(与单链表的区别,操作特点)- 双向链表(结点结构,基本操作的实现及特点)三、栈和队列。
1. 栈。
- 栈的定义(后进先出的线性表)- 栈的基本操作(入栈、出栈、取栈顶元素等操作的定义)- 顺序栈的实现(存储结构,基本操作的代码实现)- 链栈的实现(与单链表的联系,基本操作的实现)- 栈的应用(表达式求值、函数调用栈等)2. 队列。
- 队列的定义(先进先出的线性表)- 队列的基本操作(入队、出队、取队头元素等操作的定义)- 顺序队列(存在的问题,如假溢出)- 循环队列的实现(存储结构,基本操作的代码实现,队空和队满的判断条件)- 链队列的实现(结点结构,基本操作的实现)- 队列的应用(如操作系统中的进程调度等)四、串。
1. 串的定义和基本操作。
- 串的概念(字符序列)- 串的基本操作(如连接、求子串、比较等操作的定义)2. 串的存储结构。
- 顺序存储结构(定长顺序存储和堆分配存储)- 链式存储结构(块链存储结构)3. 串的模式匹配算法。
- 简单的模式匹配算法(Brute - Force算法)的实现及时间复杂度分析。
数据结构 复习重点

数据结构复习重点谁让我找到你们了.第一章1.数据是信息的载体,它能够被计算机识别、存储和加工处理。
2.数据元素是数据的基本单位。
有些情况下,数据元素也称为元素、结点、顶点、记录。
3.数据结构指的是数据之间的相互关系,即数据的组织形式。
一般包括三个方面的内容:①数据元素之间的逻辑关系,也称为数据的逻辑结构;②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构;③数据的运算,即对数据施加的操作。
4.数据类型是一个值的集合以及在这些值上定义的一组操作的总称。
按"值"是否可分解,可将数据类型划分为两类:①原子类型,其值不可分解;②结构类型,其值可分解为若干个成分。
5.抽象数据类型是指抽象数据的组织和与之相关的操作。
可以看作是数据的逻辑结构及其在逻辑结构上定义的操作。
6.数据的逻辑结构简称为数据结构。
数据的逻辑结构可分为两大类:①线性结构(~的逻辑特征是若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继);②非线性结构(~的逻辑特征是一个结点可能有多个直接前趋和直接后继)。
7.数据存储结构可用四种基本的存储方法表示:①顺序存储方法(该方法是把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
由此得到的存储表示称为顺序存储结构);②链接存储方法(该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。
由此得到的存储表示称为链式存储结构);③索引存储方法(该方法通常是在存储结点信息的同时,还建立附加的索引表);④散列存储方法(该方法的基本思想是根据结点的关键字直接计算出该结点的存储地址)。
8.非形式地说,算法是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或多个值为输出。
因此,一个算法是一系列将输入转换为输出的计算步骤。
9.求解同一计算问题可能有许多不同的算法,究竟如何来评价这些算法的好坏以便从中选出较好的算法呢?选用的算法首先应该是"正确"的。
自学考试《数据结构》各章复习要点总结

测头的测力和测针的长度
测力影响测量精度 选择适合测针长度的测头,注意测力和测针长度(重量)的协调。 自动更换测针组的校正必须成组校正
测针长度与触发角度
测量元素的分析
单击此处添加文本具体内容
PART.02
元素的测针半径补偿
点的半径补偿方向,以坐标系的轴向和测头回退方向为准。
测量元素的分析
测针校正的方法
量块、环规、球 测头校正有多种方法:可以利用量块、环规进行测量,改变测针直径直到测量出准确结果。 最好的校正是使用标准球,既可以测准直径,又可以得出测针的位置关系。
为什么测针的等效直径小于名义值
只有接触后才能触发。 触发后的计数锁存的时间。 测量机停止时惯性。 测针变形。 测针越长,等效直径越小。 校正测针的速度要与测量速度一致。
面、线的测头补偿。 圆、圆柱、圆锥的半径补偿。 曲线、曲面的半径补偿。 测量误差和测点的数量
测量元素的分析
测量距离 小平面的距离。 测孔还是测圆柱。
坐标系
单击此处添加文本具体内容
PART.03
测量公差(如:位置度)的需要。 程序测量的需要。 准确测量的需要。 辅助测量。
零件坐标系
为什么建零件坐标系
几个难题
小圆弧
小于1/4圆,会出现很大的测量误差,分辨力、重复性原因。增加测量点。 改变方法,测量轮廓。 拟合的方法。(根据具体情况,探讨)
拟合法测量小圆弧
几个难题
同轴度
基准与被测的关系。 测量方法的限制。 按照实际使用的情况处理。
同轴度测量
窄平面的平行和垂直度 窄平面对矢量方向影响大的因素。 输入参考长度的选择。 转换测面为测线。
回转体零件坐标系
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。
数据结构考试重点必背
:数据结构课程的任务是:讨论数据的各种逻辑结构、在计算机中的存储结构以及各种操作的算法设计。
:数据:是客观描述事物的数字、字符以及所有的能输入到计算机中并能被计算机接收的各种集合的统称。
数据元素:表示一个事物的一组数据称作是一个数据元素,是数据的基本单位。
数据项:是数据元素中有独立含义的、不可分割的最小标识单位。
数据结构概念包含三个方面:数据的逻辑结构、数据的存储结构的数据的操作。
数据的逻辑结构指数据元素之间的逻辑关系,用一个数据元素的集合定义在此集合上的若干关系来表示,数据结构可以分为三种:线性结构、树结构和图。
:数据元素及其关系在计算机中的存储表示称为数据的存储结构,也称为物理结构。
数据的存储结构基本形式有两种:顺序存储结构和链式存储结构。
:算法:一个算法是一个有穷规则的集合,其规则确定一个解决某一特定类型问题的操作序列。
算法规则需满足以下五个特性:输入——算法有零个或多个输入数据。
输出——算法有一个或多个输出数据,与输入数据有某种特定关系。
有穷性——算法必须在执行又穷步之后结束。
确定性——算法的每个步骤必须含义明确,无二义性。
可行性——算法的每步操作必须是基本的,它们的原则上都能够精确地进行,用笔和纸做有穷次就可以完成。
有穷性和可行性是算法最重要的两个特征。
:算法与数据结构:算法建立数据结构之上,对数据结构的操作需用算法来描述。
算法设计依赖数据的逻辑结构,算法实现依赖数据结构的存储结构。
:算法的设计应满足五个目标:正确性:算法应确切的满足应用问题的需求,这是算法设计的基本目标。
健壮性:即使输入数据不合适,算法也能做出适当的处理,不会导致不可控结高时间效率:算法的执行时间越短,时间效率越高。
果。
高空间效率:算法执行时占用的存储空间越少,空间效率越高。
可读性:算法的可读性有利于人们对算法的理解。
:度量算法的时间效率,时间复杂度,(课本39页)。
:递归定义:即用一个概念本身直接或间接地定义它自己。
数据结构知识点总结归纳整理
第1章绪论1.1 数据结构的基本概念数据元是数据的基本单位,一个数据元素可由若干个数据项完成,数据项是构成数据元素的不可分割的最小单位。
例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。
数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
数据类型是一个值的集合和定义在此集合上一组操作的总称。
•原子类型:其值不可再分的数据类型•结构类型:其值可以再分解为若干成分(分量)的数据类型•抽象数据类型:抽象数据组织和与之相关的操作抽象数据类型(ADT)是指一个数学模型以及定义在该模型上的一组操作。
抽象数据类型的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。
通常用(数据对象、数据关系、基本操作集)这样的三元组来表示。
#关键词:数据,数据元素,数据对象,数据类型,数据结构数据结构的三要素:1.逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据,独立于计算机。
分为线性结构和非线性结构,线性表、栈、队列属于线性结构,树、图、集合属于非线性结构。
2.存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构,包括数据元素的表示和关系的表示,依赖于计算机语言,分为顺序存储(随机存取)、链式存储(无碎片)、索引存储(检索速度快)、散列存储(检索、增加、删除快)。
3.数据的运算:包括运算的定义和实现。
运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
1.2 算法和算法评价算法是对特定问题求解步骤的一种描述,有五个特性:有穷性、确定性、可行性、输入、输出。
一个算法有零个或多个的输入,有一个或多个的输出。
时间复杂度是指该语句在算法中被重复执行的次数,不仅依赖于问题的规模n,也取决于待输入数据的性质。
一般指最坏情况下的时间复杂度。
空间复杂度定义为该算法所耗费的存储空间。
算法原地工作是指算法所需辅助空间是常量,即O(1)。
第2章线性表2.1 线性表的定义和基本操作线性表是具有相同数据类型的n个数据元素的有限序列。
数据结构复习要点(整理版)
第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2。
数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系.2.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3。
树形结构:结构中的数据元素之间存在“一对多“的关系.若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4.图状结构:结构中的数据元素存在“多对多"的关系.若结构为非空集,折每个数据可有多个(或零个)直接后继.(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系.2.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
苏仕华版自考数据结构笔记总结
第一章概论1、若结点的存储地址与其关键字之间存在某种映射关系则称为:散列存储结构。
2、数据类型通常称为原子型和结构型。
索引存储:附加索引表。
关键字是能唯一标识一个元素的一个数据项或多个数据项的组合。
3、抽象数据类型是指数据逻辑结构及与之相关的操作第二章线性表4、顺序表便于按号查找结点5、顺序表中插入一个元素平均需要移动n/2删除一个元素平均需要移动(n-1)/26、最节省时间的存储结构式:仅有尾指针的单循环链表,带头结点的双循环链表。
7、将线性表的数据元素按其逻辑次序依次存入一组地址连续的存储单元里,用这种方法存储的线性表称为顺序表。
8、在第i个元素之前插入一个新元素需要进n-i+1次移动,在第i个元素之后插入一个新元素需要后移n-i个元素。
9、单链表中每个结点的存储地址是存放在其直接前驱结点的指针域中10、在双链表中要删除已知结点*p,其时间复杂度为O(1)第三章栈和队列11、循环队列出队列:(front+1)%m 入队列:(rear+1)%m 循环队列元素个数:(rear-front+m)%m12、栈的链式存储结构:不需要判断栈满单需要判断栈空。
顺序存储结构:既需要判断栈空也需要判断栈满且需要置空栈。
13、递归实现和函数调用时,处理参数及返回地址,应采用的数据结构是堆栈。
14、初始top为n+1,则X入栈操作:top=top-1; V[top]=X;第四章多维数组和广义表15、二维数组Am*n按行优先顺序存储公式:LOC(aij) = LOC(a00) + (i*n+j)*d16、三位数组A m*n*p按行优先顺序存储公式:LOC(a ijk) = LOC(a000)+(i*n*p+j*p+k)*d17、应许结点共享的表称为再入表。
广义表的深度:展开后所含括号的层数。
18、稀疏矩阵的三元组表是顺序存储结构19、广义表表头和表尾深度相同,则广义表深度+1,不同则为深度最深。
20、假设以行优先顺序将一个n阶的5对角矩阵压缩存储到一维数组Q中,则数组Q的大小至少为5n-6(n>5)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。
·线性结构:一对一关系。
·线性结构:多对多关系。
·存储结构:是逻辑结构用计算机语言的实现。
·顺序存储结构:如数组。
·链式存储结构:如链表。
·索引存储结构:·稠密索引:每个结点都有索引项。
·稀疏索引:每组结点都有索引项。
·散列存储结构:如散列表。
·数据运算。
·对数据的操作。
定义在逻辑结构上,每种逻辑结构都有一个运算集合。
·常用的有:检索、插入、删除、更新、排序。
数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
·原子类型:由语言提供。
·结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:·是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
·优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。
算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。
时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。
空间复杂度:是某个算法的空间耗费,它是该算法所求解问题规模n的函数。
算法的时间复杂度和空间复杂度合称算法复杂度。
第二章线性表线性表是由n≥0个数据元素组成的有限序列。
n=0是空表;非空表,只能有一个开始结点,有且只能有一个终端结点。
线性表上定义的基本运算:·构造空表:Initlist(L)·求表长:Listlength(L)·取结点:GetNode(L,i)·查找:LocateNode(L,x)·插入:InsertList(L,x,i)·删除:Delete(L,i)顺序表是按线性表的逻辑结构次序依次存放在一组地址连续的存储单元中。
在存储单元中的各元素的物理位置和逻辑结构中各结点相邻关系是一致的。
地址计算:LOCa(i)=LOCa(1)+(i-1)*d;(首地址为1)在顺序表中实现的基本运算:·插入:平均移动结点次数为n/2;平均时间复杂度均为O(n)。
·删除:平均移动结点次数为(n-1)/2;平均时间复杂度均为O(n)。
线性表的链式存储结构中结点的逻辑次序和物理次序不一定相同,为了能正确表示结点间的逻辑关系,在存储每个结点值的同时,还存储了其后继结点的地址信息(即指针或链)。
这两部分信息组成链表中的结点结构。
一个单链表由头指针的名字来命名。
单链表运算:·建立单链表·头插法:s->next=head;head=s;生成的顺序与输入顺序相反。
平均时间复杂度均为O(n)。
·尾插法:head=rear=null;if(head=null) head=s;else r->next=s;r=s;平均时间复杂度均为O(n)·加头结点的算法:对开始结点的操作无需特殊处理,统一了空表和非空表。
·查找·按序号:与查找位置有关,平均时间复杂度均为O(n)。
·按值:与输入实例有关,平均时间复杂度均为O(n)。
·插入运算:p=GetNode(L,i-1);s->next=p->next;p->next=s;平均时间复杂度均为O(n)·删除运算:p=GetNode(L,i-1);r=p->next;p->next=r->next;free(r);平均时间复杂度均为O(n)单循环链表是一种首尾相接的单链表,终端结点的指针域指向开始结点或头结点。
链表终止条件是以指针等于头指针或尾指针。
采用单循环链表在实用中多采用尾指针表示单循环链表。
优点是查找头指针和尾指针的时间都是O(1),不用遍历整个链表。
双链表就是双向链表,就是在单链表的每个结点里再增加一个指向其直接前趋的指针域prior,形成两条不同方向的链。
由头指针head惟一确定。
双链表也可以头尾相链接构成双(向)循环链表。
双链表上的插入和删除时间复杂度均为O (1)。
顺序表和链表的比较:·基于空间:·顺序表的存储空间是静态分配,存储密度为1;适于线性表事先确定其大小时采用。
·链表的存储空间是动态分配,存储密度<1;适于线性表长度变化大时采用。
·基于时间:·顺序表是随机存储结构,当线性表的操作主要是查找时,宜采用。
·以插入和删除操作为主的线性表宜采用链表做存储结构。
·若插入和删除主要发生在表的首尾两端,则宜采用尾指针表示的单循环链表。
第三章栈和队列栈(Stack)是仅限制在表的一端进行插入和删除运算的线性表,称插入、删除这一端为栈顶,另一端称为栈底。
表中无元素时为空栈。
栈的修改是按后进先出的原则进行的,我们又称栈为LIFO表(Last In First Out)。
通常栈有顺序栈和链栈两种存储结构。
栈的基本运算有六种:·构造空栈:InitStack(S)·判栈空: StackEmpty(S)·判栈满: StackFull(S)·进栈: Push(S,x)·退栈: Pop(S)·取栈顶元素:StackTop(S)在顺序栈中有“上溢”和“下溢”的现象。
·“上溢”是栈顶指针指出栈的外面是出错状态。
·“下溢”可以表示栈为空栈,因此用来作为控制转移的条件。
顺序栈中的基本操作有六种:·构造空栈·判栈空·判栈满·进栈·退栈·取栈顶元素链栈则没有上溢的限制,因此进栈不要判栈满。
链栈不需要在头部附加头结点,只要有链表的头指针就可以了。
链栈中的基本操作有五种:·构造空栈·判栈空·进栈·退栈·取栈顶元素队列(Queue)是一种运算受限的线性表,插入在表的一端进行,而删除在表的另一端进行,允许删除的一端称为队头(front),允许插入的一端称为队尾(rear),队列的操作原则是先进先出的,又称作FIFO表(First In First Out) .队列也有顺序存储和链式存储两种存储结构。
队列的基本运算有六种:·置空队:InitQueue(Q)·判队空:QueueEmpty(Q)·判队满:QueueFull(Q)·入队:EnQueue(Q,x)·出队:DeQueue(Q)·取队头元素:QueueFront(Q)顺序队列的“假上溢”现象:由于头尾指针不断前移,超出向量空间。
这时整个向量空间及队列是空的却产生了“上溢”现象。
为了克服“假上溢”现象引入循环向量的概念,是把向量空间形成一个头尾相接的环形,这时队列称循环队列。
判定循环队列是空还是满,方法有三种:·一种是另设一个布尔变量来判断;·第二种是少用一个元素空间,入队时先测试((rear+1)%m = front)?满:空;·第三种就是用一个计数器记录队列中的元素的总数。
队列的链式存储结构称为链队列,一个链队列就是一个操作受限的单链表。
为了便于在表尾进行插入(入队)的操作,在表尾增加一个尾指针,一个链队列就由一个头指针和一个尾指针唯一地确定。
链队列不存在队满和上溢的问题。
在链队列的出队算法中,要注意当原队中只有一个结点时,出队后要同进修改头尾指针并使队列变空。
第四章串串是零个或多个字符组成的有限序列。
·空串:是指长度为零的串,也就是串中不包含任何字符(结点)。
·空白串:指串中包含一个或多个空格字符的串。
·在一个串中任意个连续字符组成的子序列称为该串的子串,包含子串的串就称为主串。
·子串在主串中的序号就是指子串在主串中首次出现的位置。
·空串是任意串的子串,任意串是自身的子串。
串分为两种: ·串常量在程序中只能引用不能改变;·串变量的值可以改变。
串的基本运算有:·求串长strlen(char*s)·串复制strcpy(char*to,char*from)·串联接strcat(char*to,char*from)·串比较charcmp(char*s1,char*s2)·字符定位strchr(char*s,charc)。
串是特殊的线性表(结点是字符),所以串的存储结构与线性表的存储结构类似。
串的顺序存储结构简称为顺序串。
顺序串又可按存储分配的不同分为: ·静态存储分配:直接用定长的字符数组来定义。
优点是涉及串长的操作速度快,但不适合插入、链接操作。
·动态存储分配:是在定义串时不分配存储空间,需要使用时按所需串的长度分配存储单元。
串的链式存储就是用单链表的方式存储串值,串的这种链式存储结构简称为链串。
链串与单链表的差异只是它的结点数据域为单个字符。
为了解决“存储密度”低的状况,可以让一个结点存储多个字符,即结点的大小。
顺序串上子串定位的运算:又称串的“模式匹配”或“串匹配”,是在主串中查找出子串出现的位置。
在串匹配中,将主串称为目标(串),子串称为模式(串)。
这是比较容易理解的,串匹配问题就是找出给定模式串P在给定目标串T中首次出现的有效位移或者是全部有效位移。
最坏的情况下时间复杂度是O((n-m+1)m),假如m与n同阶的话则它是O(n^2)。
链串上的子串定位运算位移是结点地址而不是整数第五章多维数组和广义表数组一般用顺序存储的方式表示。
存储的方式有:·行优先顺序,也就是把数组逐行依次排列。