高铅渣氧气侧吹炉还原熔炼工艺的简单介绍

合集下载

富氧侧吹熔炼炉工艺流程

富氧侧吹熔炼炉工艺流程

富氧侧吹熔炼炉工艺流程富氧侧吹熔炼炉是一种高效、节能的冶炼设备,广泛应用于钢铁冶炼行业。

它采用富氧侧吹技术,通过向炉内注入高纯氧气,使炉内温度升高,加快冶炼反应速度,提高冶炼效率。

下面将详细介绍富氧侧吹熔炼炉的工艺流程。

1. 原料准备:首先,需要准备冶炼所需的原料,包括废钢、铁矿石、废铁屑等。

这些原料需要经过分类、清洗和破碎等处理,以便进一步投入炉内进行冶炼。

2. 熔炼炉装料:将经过处理的原料按照一定比例投入熔炼炉内。

为了保证炉内冶炼反应的充分进行,需要合理控制不同原料的投入量和位置。

3. 加热炉料:在炉料投入后,需要通过加热设备对炉料进行预热,以提高炉内温度。

这可以减少冶炼过程中的能源消耗,提高冶炼效率。

4. 富氧侧吹:当炉内温度达到一定程度后,开始进行富氧侧吹。

富氧侧吹是指向炉内喷入高纯氧气,以提高炉内氧浓度,加快冶炼反应速度。

通常,富氧侧吹会持续进行一段时间,直到冶炼反应达到所需程度。

5. 废气处理:在富氧侧吹的过程中,会产生大量废气。

为了减少对环境的污染,需要对废气进行处理。

常见的处理方式包括除尘、脱硫、脱氮等。

6. 冶炼结束:当冶炼反应达到所需程度后,停止富氧侧吹,并停止加热设备的工作。

此时,炉内的熔融金属可以流出炉体,进入下一道工序进行后续处理。

7. 渣液处理:冶炼结束后,炉内会残留一定量的渣液。

这些渣液需要进行处理,以分离出有用的金属成分。

常见的处理方式包括过滤、离心、浮选等。

8. 产出物处理:经过前面的工艺处理,可以得到所需的冶炼产品。

这些产品需要进行进一步的加工和处理,以满足市场需求。

常见的加工方式包括铸造、轧制、淬火等。

富氧侧吹熔炼炉工艺流程包括原料准备、熔炼炉装料、加热炉料、富氧侧吹、废气处理、冶炼结束、渣液处理和产出物处理等环节。

通过合理控制这些环节,可以高效地进行冶炼,提高冶炼效率,降低能源消耗,实现经济效益和环境效益的双赢。

富氧侧吹熔炼炉作为一种先进的冶炼设备,在钢铁冶炼行业具有重要的应用前景。

氧气底吹熔炼—鼓风炉还原炼铅新技术

氧气底吹熔炼—鼓风炉还原炼铅新技术

氧气底吹熔炼—鼓风炉还原炼铅新技术氧气底吹熔炼—鼓风炉还原炼铅法一、氧气底吹熔炼—鼓风炉法简介氧气底吹熔炼—鼓风炉还原炼铅法工艺流程为:熔剂、铅精矿或二次铅原料及铅烟尘经配料、制粒或混捏后进行氧气底吹熔炼,产出烟气、一次粗铅和铅氧化渣,烟气经余热锅炉回收余热和电收尘器收尘后采用二转二吸工艺制酸,尾气排放,铅烟尘返回配料。

铅氧化渣经铸块后与焦块、熔剂块混合后入鼓风炉进行还原熔炼,产出炉渣、烟气和粗铅,烟气经收尘后放空,铅烟尘返回配料。

工艺主要设备包括可旋转式氧气底吹熔炼炉,多元套管结构氧枪(多通道水冷高温喷镀耐磨底吹氧枪),特殊耐磨材质的氧枪口保护砖,浅层分格富铅渣速冷铸渣机(铅氧化渣铸渣机),带弧型密封罩和垂直模式壁中压防腐余热锅炉,全封闭铅烟尘输送配料等, 新型结构鼓风炉(双排风口大炉腹角高料柱)等。

工艺的核心设备是氧气底吹熔炼炉。

熔炼炉炉型结构为可回转的卧式圆筒形,在炉顶部设有2~3 个加料口,底侧部设有3~6 个氧气喷入口,炉子两端分别设一个虹吸放铅口和铅氧化渣放出口。

炉端上方设有烟气出口。

铅精矿的氧化熔炼是在一个水平回转式熔炼炉中进行的。

铅精矿、铅烟尘、熔剂及少量粉煤经计量、配料、圆盘制粒后, 由炉子上方的气封加料口加入炉内, 工业纯氧从炉底的氧枪喷入熔池。

氧气进入熔池后, 首先和铅液接触反应, 生成氧化铅(PbO ) , 其中一部分氧化铅在激烈的搅动状态下, 和位于熔池上部的硫化铅(PbS) 进行反应熔炼, 产出一次粗铅并放出SO 2。

反应生成的一次粗铅和铅氧化渣沉淀分离后, 粗铅虹吸或直接放出,铅氧化渣则由铸锭机铸块后, 送往鼓风炉工段还原熔炼, 产出二次粗铅。

出炉SO 2 烟气采用余热锅炉或汽化冷却器回收余热, 经电收尘器收尘, 送硫酸车间处理。

熔炼炉采用微负压操作, 整个烟气排放系统处于密封状态, 从而有效防止了烟气外逸。

同时, 由于混合物料是以润湿、粒状形式输送入炉的, 加上在出铅、出渣口采取有效的集烟通风措施, 从而避免了铅烟尘的飞扬。

高铅渣氧气侧吹炉还原熔炼工艺的简单介绍

高铅渣氧气侧吹炉还原熔炼工艺的简单介绍

高铅渣氧气侧吹炉还原熔炼工艺的简单介绍高铅渣氧气侧吹炉还原熔炼工艺的简单介绍底吹炉产生的高铅渣在氧气侧吹炉中进行还原,产出粗铅、含锌炉渣和含烟气。

含铅的返料、熔剂(石灰石)进入侧吹炉车问的配料储仓。

由于侧吹炉还原是间断、周期性作业(通常2小时一周期),故加料也是周期性的,配料工班将返料、石灰石、和煤,通过称量按给定的比例送到总皮带运输机。

如此配制的炉料送到炉上的加料口,在预定的时间段内将规定数量的上述物料通过加料口连续加到炉渣熔体的表面。

通常使用1个加料口加料。

在加入炉料和煤的同时通过下排鼓风风咀向炉渣熔体送入含氧的鼓风(工业氧或工业氧与空气的混合气)。

在炉渣熔体中发生煤的燃烧反应(见反应式1—3) 、燃气的燃烧反应(反应4-5),和氧化铅的还原反应(反应6-8),以及造渣组分间进行造渣反应(反应10--11)。

与此同时入炉物料中含有的其它高价态杂质金属(如铁、锌、锑、砷、等)的氧化物也进行不同程度的还原。

C+O2 = CO2 (1)2C+ O2 = 2CO (2)CO2+ C = 2CO (3)CH4+2O2=CO2+2H2O (4)CH4+1.5O2=CO+2H2O (5)PbO+C=Pb+CO (6)PbO+CO=Pb+CO2 (7)PbO·SiO2+CO= Pb+CO2+SiO 2 (8)2Fe3O4+C=6FeO+CO2 (9)同时还有造渣反应发生2FeO+SiO2 = 2 FeO·SiO2 (10)CaO+ SiO2 = CaO·SiO2 (11)煤和煤气或天然气燃烧为侧吹炉进行的还原过程补充了必要的热能。

这必要的热能用于将底吹炉的高铅渣从1000℃提高到1200℃,用于补偿侧吹炉发生的各项热损失;煤和煤气或天然气燃烧的另一作用是起还原剂的作用,将铅的氧化物(简单的和与SiO2化合态的PbO)还原成金属铅,这是本工序的目的。

另一重要还原反应是磁铁矿的还原(反应9),我们知道底吹炉产出的高铅渣中Fe3O4含量达整个渣量的10%,或更多。

氧气底吹炼铅新工艺概况

氧气底吹炼铅新工艺概况

氧气底吹炼铅新工艺概况氧气底吹炼铅新工艺技术优点技术的先进性氧气底吹熔炼鼓风炉还原炼铅法是一种熔池熔炼新工艺,优点如下:(1)富氧空气鼓入熔池中,熔体被搅动,使连续加入熔池的物料迅速完成冶炼过程,传热、传质效率高,在不加入任何燃料的前提下,能实行自热熔炼;(2)底吹炉密闭性能好,炉气SO2浓度高且稳定,无烟气外溢,解决了烧结锅法生产过程中产生的低浓度SO2烟气和烟尘对环境造成污染的不良现状,充分有效地回收利用了SO2生产硫酸;(3)由于底吹炉属熔池熔炼,炉内脱硫充分,高铅渣含硫低,解决了鼓风炉还原后排出的气体SO2污染问题;(4)该工艺机械化、自动化程度高,克服了其它炼铅法所带来的工人劳动强度大等问题,作业环境优雅,实行了清洁文明生产;(5)原料适应性广,能直接处理硫化矿,同时可以处理各种废铅物料及再生料;(6)原料制备简单,入炉粒料含水5—7%,无需深度干燥,由于采用湿料运输和制备,所以车间防尘设施简化;(7)底吹熔炼炉单位生产能力高,氧的利用率高,能耗低,单位成本大大降低。

2、技术的成熟、可靠性本企业新建的氧气底吹炼铅新工艺产业化示范项目一次性投料生产的成果和各项经济技术指标达到并超过了设计指标的事实,证明了该工艺技术是成熟的,产业化生产时可靠的。

(1)作业率经过8个月的试生产,经测算作业率达90%以上。

主要停炉时间是更换氧枪,氧气底吹炉中设有4支氧枪,均由氮气和水保护,喷雾冷却效果好,氧枪平均使用寿命已达50天以上,最长时间57天。

更换氧枪时间较短,一般在2—3小时,炉衬使用至今,仍完好无损。

(2)工艺过程控制通过试生产,操作工已熟练掌握操作技能和工艺条件的控制,主要运用DCS系统对各运转设备及数据监测、观察、分析与处理,同时对氧气底吹炉加料口、放铅口、放渣口及余热锅炉加强管理,熟练掌握了氧枪检查与更换。

目技术内容项“氧气底吹熔炼—鼓风炉还原”炼铅新工艺是由氧气底吹熔炼铅精矿和鼓风炉还原高铅渣,烟气经除尘回收SO2制酸以及制O2、N2系统四大部分组成,其核心技术是氧气底吹熔炼。

氧气侧吹还原炉及高铅渣熔融还原过程研究

氧气侧吹还原炉及高铅渣熔融还原过程研究

氧气侧吹还原炉及高铅渣熔融还原过程研究济源市万洋冶炼(集团)有限公司张立 蔺公敏 宾万达 李元香 李小兵摘要:本文详细介绍了氧气侧吹炉的炉型结构,高铅渣熔融还原过程及特性,通过生产实践数据表明,采用氧气侧吹炉处理高铅渣,节能效果明显,生产清洁环保,运行稳定,占地很小。

关键词:氧气侧吹炉;高铅渣;还原过程1 前言瓦纽科夫技术是前苏联研发并推广应用的熔池熔炼技术,最初被用在处理铜镍精矿。

2001年由河南新乡中联总公司率先引进建造了1.5m2试验炉处理铅精矿,通过多次优化摸索,试验改进,逐渐掌握了瓦纽科夫炉及其工艺过程,并形成了具有自主知识产权的氧气侧吹炉—“中联炉”,于2003年7月获得国家专利(ZL03246213.1)。

该炉既可作为氧化熔炼炉又可用作还原熔炼炉;既可以加熔融高铅渣又可以加固体高铅渣;既可以进行连续还原作业又可以进行间断、周期性还原作业;进行还原熔炼时既可以单用煤作还原剂和燃料,又可使用煤和燃气(煤气或天然气)混合作还原剂和燃料。

目前铅冶炼领域应用较广的氧气底吹(SKS)熔炼—鼓风炉还原法和浸没式顶吹(ISA 或Ausmelt)熔炼—鼓风炉还原法都存在着工艺缺陷,熔融高铅渣铸块冷却经鼓风炉还原,潜热未得到利用,鼓风炉与烟化炉之间需设电热前床,能耗较大。

2009年万洋公司、中联公司及豫北金铅公司合作开发8.4m2工业生产炉,用于液态高铅渣的直接还原,很好的解决了以上工艺的弊端,该炉一次性试车成功,2011年3月10日开炉以来,生产稳定,技术经济指标均取得了理想的效果。

2 氧气侧吹还原炉氧气侧吹还原炉主要结构部件如图1所示:1)安置在炉基1上的炉缸2(在炉缸底部的侧面,开有虹吸放铅口21,在炉缸的一侧端墙上按位置高底的不同开有正常放渣口17-1,底渣、冰铜放出口17-2,底铅安全放出口17-3);2)由铜质水套4、5、6围成横截面为矩形的炉身下中部(在一层铜水套4上安装有一次风口3,在三层铜水套上安装有二次风口13,三层铜水套分别固定在各自的钢框上,用高强罗栓连接,并用支撑杆18固定在炉支撑架12上);3)由炉支撑架12支撑的炉上部内衬有耐火材料15的钢质箱式四层钢制水套10,其上右侧为内衬有耐火材料的钢质炉顶水套8,其上左侧为烟道接口水套9,用于连接余热锅炉;4)在炉顶水套和三层铜水套加料平台上装有加料口7-1和备用加料口7-2,它是煤和固体炉料的主加料口;5)在炉前端三层水套上设有熔体高铅渣流入口16,用溜槽与底吹炉排渣口连接;6)固定在炉支撑架上的向炉内供一次富氧空气和向炉内供二次风的供风系统19、20;图1 8.4m2氧气侧吹炉氧气侧吹炉从下到上可分为四个区域:炉缸区、熔池区、鼓泡区和再燃烧区。

侧吹炉炼铅

侧吹炉炼铅

侧吹炉炼铅
侧吹炉炼铅是一种常用的冶炼方法,用于从含铅矿石中提
取纯铅。

下面是详细的步骤:
1. 准备工作:首先,需要将含铅矿石破碎成适当的颗粒大小,通常为1-2厘米。

然后,将矿石放入炉中。

2. 加热:将侧吹炉加热至高温,通常在1200-1300摄氏度。

这样可以使矿石中的铅矿石熔化。

3. 添加助熔剂:为了降低熔点和粘度,可以向炉中添加助
熔剂,如焦炭或石灰石。

这些助熔剂有助于加快矿石的熔
化和分离。

4. 侧吹氧气:在炉的一侧,通过喷嘴向炉内喷入高压氧气。

氧气与熔化的铅矿石反应生成氧化铅(PbO),同时也有部
分氧化铅被还原为金属铅。

5. 分离:炉内的氧化铅会上浮到熔融物表面形成铅渣,而
金属铅则会沉淀在熔融物底部。

通过调整喷嘴的位置和喷
氧气的速度,可以控制铅渣和金属铅的分离效果。

6. 收集:将炉中的金属铅从底部收集出来,通常通过倾倒
或使用特殊的收集设备。

7. 冷却和净化:收集到的金属铅会被冷却并净化,以去除
杂质和其他有害物质。

这可以通过不同的方法,如浸泡在
酸溶液中、电解或蒸馏等来实现。

总的来说,侧吹炉炼铅是一种通过高温加热和氧化还原反应将含铅矿石中的铅提取出来的冶炼方法。

这种方法具有高效、灵活和可控性强的特点,被广泛应用于铅冶炼工业中。

侧吹还原炉液态高铅渣直接还原炼铅工艺试生产总结

侧吹还原炉液态高铅渣直接还原炼铅工艺试生产总结

侧吹还原炉液态高铅渣直接还原炼铅工艺试生产总结1500字侧吹还原炉液态高铅渣直接还原炼铅工艺试生产总结一、试验目的本次试验旨在探究侧吹还原炉液态高铅渣直接还原炼铅工艺的可行性和有效性,评估其对于炼铅工艺的改进和优化效果。

二、试验原理侧吹还原炉液态高铅渣直接还原炼铅工艺利用侧吹还原炉将液态高铅渣中的铅直接还原出来,达到炼铅的目的。

这种工艺相对于传统的炼铅工艺具有节能、环保和效率高的优势。

三、试验步骤1. 准备工作:清理炉子、检查设备;2. 将液态高铅渣倒入炉子中;3. 打开侧吹还原炉的气体通道,开始侧吹工艺;4. 根据实际情况调整炉子温度和侧吹气体流量;5. 等待一定时间,让反应进行;6. 关闭侧吹还原炉的气体通道,停止侧吹工艺;7. 将炉子中的产物倒出,并进行后续处理。

四、试验结果分析通过试验,我们获得了液态高铅渣直接还原炼铅的产物,经过分析和测试,得出以下结论:1. 试验中,侧吹还原炉工艺运行正常,没有发生故障和异常情况;2. 通过侧吹还原炉工艺,液态高铅渣中的铅得到了有效还原,大部分被成功提取出来;3. 产物中的铅含量符合炼铅的要求,达到了预期目标;4. 工艺的节能效果明显,相对于传统的炼铅工艺,能耗大大降低,节省了能源资源;5. 工艺的环保效果良好,排放的废气和废渣量减少,对环境影响小;五、结论与建议通过试验,我们验证了侧吹还原炉液态高铅渣直接还原炼铅工艺的可行性和有效性。

该工艺具有节能、环保和效率高的优势,可以作为炼铅工艺的一种替代方案。

然而,目前的试验只是初步验证了该工艺的可行性,还需要进一步的优化和改进。

建议将工艺中的温度、气体流量等参数进一步优化,以提高工艺的稳定性和效率。

另外,还需要对工艺中产生的废气和废渣进行处理和利用,以实现更好的环保效果。

总的来说,侧吹还原炉液态高铅渣直接还原炼铅工艺具有较好的应用前景,有助于提高炼铅工艺的能效和环保性能。

但在实际应用中仍需持续优化和改进。

简析富氧侧吹炼铅工艺的应用特点与应用分析

简析富氧侧吹炼铅工艺的应用特点与应用分析

冶金冶炼M etallurgical smelting简析富氧侧吹炼铅工艺的应用特点与应用分析郑剑平(江西金德铅业股份有限公司,江西 德兴 334202)摘 要:环保形势的愈发严峻,对于环境污染严重污染的企业提出了更高的要求,作为炼铅企业,及时的对其冶炼工艺进行升级改造有助于其快速适应国家政策,实现快速发展。

本文介绍江西金德铅业股份有限公司的富氧侧吹炼铅工艺为例,对富氧侧吹炼铅工艺的原理和特点进行介绍,并分析了实际应用中的技术指标。

关键词:富氧侧吹炉;炼铅中图分类号:P624 文献标识码:A 文章编号:1002-5065(2018)05-0008-2The application characteristics and application analysis of oxygen side blown lead smelting processZHENG Jian-ping(Jiangxi Jinde lead industry Limited by Share Ltd,Dexing 334202,China)Abstract: The environmental situation is becoming more and more serious, the environmental pollution is serious pollution enterprises put forward higher requirements, as the lead smelting enterprises, timely upgrades help to quickly adapt to the national policy of the smelting process, to achieve rapid development. This paper introduces the oxygen enriched side blown lead smelting process in Jiangxi Jinde lead industry Limited by Share Ltd as an example, the principle and characteristics of oxygen side blown lead smelting process are introduced, and the analysis of the technical indicators in practical application.Keywords: Oxygen side blown converter;Lead smelting随着国内环境问题的不断严重,国家对节能减排于清洁生产提出了更高的要求,传统的底吹炉-鼓风炉冶炼工艺对环境的危害、能耗高逐渐凸显,例如冶炼过程中的高铅渣具有较大热能,但却不能得有效利用,同时冶炼所使用的焦炭价格逐年升高,使得炼铅成本处于高位[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高铅渣氧气侧吹炉还原熔炼工艺的简单介绍
高铅渣氧气侧吹炉还原熔炼工艺的简单介绍
底吹炉产生的高铅渣在氧气侧吹炉中进行还原,产出粗铅、含锌炉渣和含烟气。

含铅的返料、熔剂(石灰石)进入侧吹炉车问的配料储仓。

由于侧吹炉还原是间断、周期性作业(通常2小时一周期),故加料也是周期性的,
配料工班将返料、石灰石、和煤,通过称量按给定的比例送到总皮带运输机。

如此配制的炉料送到炉上的加料口,在预定的时间段内将规定数量的上述物料通过加料口连续加到炉渣熔体的表面。

通常使用1个加料口加料。

在加入炉料和煤的同时通过下排鼓风风咀向炉渣熔体送入含氧的鼓风(工业氧或工业氧与空气的混合气)。

在炉渣熔体中发生煤的燃烧反应(见反应式1—3) 、燃气的燃烧反应(反应4-5),和氧化铅的还原反应(反应6-8),以及造渣组分间进行造渣反应(反应10--11)。

与此同时入炉物料中含有的其它高价态杂质金属(如铁、锌、锑、砷、等)的氧化物也进行不同程度的还原。

C+O2 = CO2 (1)
2C+ O2 = 2CO (2)
CO2+ C = 2CO (3)
CH4+2O2=CO2+2H2O (4)
CH4+1.5O2=CO+2H2O (5)
PbO+C=Pb+CO (6)
PbO+CO=Pb+CO2 (7)
PbO·SiO2+CO= Pb+CO2+SiO 2 (8)
2Fe3O4
+C=6FeO+CO2 (9)
同时还有造渣反应发生
2FeO+SiO2 = 2 FeO·SiO2 (10)
CaO+ SiO2 = CaO·SiO2 (11)
煤和煤气或天然气燃烧为侧吹炉进行的还原过程补充了必要的热能。

这必要的热能用于将底吹炉的高铅渣从1000℃提高到1200℃,用于补偿侧吹炉发生的各项热损失;煤和煤气或天然气燃烧的另一作用是起还原剂的作用,将铅的氧化物(简单的和与SiO2化合态的PbO)还原成金属铅,这是本工序的目的。

另一重要还原反应是磁铁矿的还原(反应9),我们知道底吹炉产出的高铅渣中Fe3O4含量达整个渣量的10%,或更多。

Fe3O4熔点高粘度大,是产生“泡渣”喷炉事故的元凶!它可能造成高铅渣还原熔炼开始时出现炉口喷渣现象。

在被鼓风激烈搅拌的炉渣熔体中(风口以上的区域,又称鼓泡区)新生成铅的液滴,相互碰撞而迅速长大,并沉降于炉缸中,形成铅层。

贵金属、铜锍也被捕集于此铅中。

粗铅通过虹吸从炉中流出。

关于熔池中氧化铅还原的机理,研究证明:还原发生在那些粘有碳粒的CO气泡上。

即按反应7,CO还原出铅同时产生CO2,CO2随即按反应3与C反应再生出CO。

采用混合还原剂是熔池还原熔炼的发展方向。


化合态的PbO·SiO2比PbO还原难些,加入石灰石的目的,是用强碱性CaO从硅酸铅中置换出相对弱碱性的PbO,以利于铅还原。

严格地说天然气不是还原剂,天然气燃烧的产物才是还原剂。

在炉子低于风咀水平面的区域熔体处于相对平静状态,金属铅滴迅速与炉渣按密度分离。

要求还原终了的炉渣含Pb≤3%;渣型:CaO/SiO=0.6-0.8。

离熔体的炉气中含CO浓度高近50%,经再燃烧风咀鼓风燃烧后CO浓度降至10—15%,燃烧产生的热通过加热鼓泡飞溅起的液滴、将热返回熔池。

第四层水套上的风咀属三次燃烧,在此将烟气中的CO燃尽,以保后接设备的安全。

设计的离炉烟气中SO2浓度超过排放标准。

经余热锅炉冷却、收尘后经脱硫处理排放。

节能、环保是本工艺较之传统工艺最突出的优点。

相关文档
最新文档