2012年高考数学全国卷1

合集下载

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题 (1)复数131i i-+=+(A )2i +(B )2i - (C )12i +(D )12i - (2)已知集合{1,A =,{1,}B m =,A B A = ,则m =(A )0 (B )0或3 (C )1 (D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612xy+= (B )221128xy+= (C)22184xy+= (D )221124xy+=(4)已知正四棱柱1111ABC D A B C D -中 ,2A B =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B ) (C (D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101(B )99101(C )99100(D )101100(6)A B C ∆中,A B 边的高为C D ,若CB a =,C A b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A )3- (B )9- (C 9(D 3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14(B )35(C )34(D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形A B C D 的边长为1,点E 在边A B 上,点F 在边B C 上,37A EB F ==。

2012全国高考山东卷数学及答案

2012全国高考山东卷数学及答案

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}(3)函数1()ln(1)f x x =++ (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2- (7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2 (B)3 (C)4 (D)5(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1-(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离(10)函数cos622x xx y -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y = (B) 2x y = (C)28x y = (D)216x y = (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+> (B)12120,0x x y y +>+<(C)12120,0x x y y +<+> (D)12120,0x x y y +<+<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.(22) (本小题满分13分) 已知函数ln ()(e xx k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b =.所以21()()()F x x x x =-,比较系数得1x -,故1x =120x x +=,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 二、填空题 (13)16 以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=. (14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意. (16)(2sin 2,1cos2)--三、解答题(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a cb B ac +-==,sin C =,∴△ABC的面积11sin 1222S ac B ==⨯⨯=(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=.(II)由277m n a n =≤,得217m n -≤,即217m m b -=. ∵211217497m k m k b b ++-==, ∴{}m b 是公比为49的等比数列, ∴7(149)7(491)14948m m m S -==--. (21)(I)22234c a b e a a -==⇒=……① 矩形ABCD 面积为8,即228a b ⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=. (II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩, 设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ =当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .②由对称性,可知若1m <53m =时,||||PQ ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST .综上可知,当53m =±和0时,||||PQ ST (22)(I)1ln ()e xx k x f x --'=, 由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x '=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<. 综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e x x x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12 (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的和(B )2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0<x ≤12时,4log x a x <,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年高考文科数学真题答案全国卷1

2012年高考文科数学真题答案全国卷1

2012 年高考文科数学真题及答案全国卷1注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 (非选择题 )两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动 .用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后 .将本试卷和答且卡一并交回。

第1 卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合 A={ x|x2- x- 2<0} , B={ x|- 1<x<1} ,则(A)A B(B)BA(C)A=B(D)A∩B=【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】 A= (- 1,2),故 B A ,故选 B.( 2)复数 z=3i的共轭复数是2 i( A )2 i( B )2 i(C)1 i( D)1 i【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题.【解析】∵ z =3 ii ,∴ z 的共轭复数为 1 i ,故选D.= 12i(3)在一组样本数据( x1, y1),( x2, y2),⋯,( x n, y n)(n≥ 2, x1,x2, ⋯ ,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2, ⋯, n) 都在直线y 1x 1 y=1x+1上,则这组样本22数据的样本相关系数为(A)- 1(B)0(C)1(D)1 2【命题意图】本题主要考查样本的相关系数,是简单题.【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选 D.12x2y2=1(a> b >0)的左、右焦点,P 为直线 x3a(4)设F,F是椭圆E:a2b2上一2点,△ F2PF1是底角为300的等腰三角形,则 E 的离心率为A .1B .2C .3D .4 2345【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】∵△F2 PF1是底角为300的等腰三角形,∴ PF 2A600, | PF 2 | | F 1F 2 | 2c ,∴ | AF 2 | = c ,∴2c3a ,∴e =3,故选 C.24( 5)已知正三角形 ABC 的顶点 A(1,1) ,B(1,3) ,顶点 C 在第一象限,若点(x ,y )在△ ABC内部,则 zxy 的取值范围是(A )(1- 3,2)( B ) (0, 2)( C )( 3- 1,2)( D ) (0, 1+ 3)【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知C(1+ 3 ,2),作出直线l 0:xy 0 ,平移直线l 0,有图像知,直线 l : zx y 过B点时, z max=2,过 C 时,z min =1 3 ,∴ z x y 取值范围为(1-3,2),故选 A.( 6)如果执行右边的程序框图,输入正整数N ( N ≥2)和实数a 1,a 2,⋯,a N ,输出A ,B ,则A . A + B 为a 1,a 2,⋯,a N 的和ABB .为a 1,a 2,⋯,a N 的算术平均数C .A 和B 分别为a 1,a 2,⋯,a N 中的最大数和最小数D . A 和 B 分别为a 1,a 2,⋯,a N 中的最小数和最大数【命题意图】本题主要考查框图表示算法的意义,是 简单题 .【解析】由框图知其表示的算法是找大值和最小值,A 和B分别为 a 1, a 2,⋯, a N 中 的最大数和最小数,故选C.(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A .6B .9C .12D .18【命题意图】本题主要考查简单几何体的三视图及体积计算,是简单题 .【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为 6,这边上高为 3,棱锥的高为 3,故其体积为116 33 =9,32故选 B.(8) 平面α截球 O 的球面所得圆的半径为1,球心 O 到平面α的距离为 2,则此球的体积为( A ) 6π( B ) 4 3π(C ) 4 6π( D ) 6 3π【命题意图】【解析】N 个数中的最( 9)已知>0,0,直线x =和x =5是函数f ( x) sin( x ) 图像的两条44相邻的对称轴,则=( A )ππ π 3π4(B )3 (C )2 (D )4【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,5,∴ =1,∴= k( k Z ),=4442∴= k ( kZ ),∵0,∴ =,故选 A.44( 10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 216x 的准线交于 A 、B 两点,| AB |=4 3,则C 的实轴长为A .2B .2 2C .4D .8.【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题【解析】由题设知抛物线的准线为: x 4 ,设等轴双曲线方程为:x 2 y 2 a 2,将x 4代入等轴双曲线方程解得y =16 a 2 ,∵| AB|=43,∴2 16a 2 = 4 3 ,解得 a =2,∴ C 的实轴长为4,故选 C.(11)当 0< x ≤1时,4xlog a x ,则a 的取值范围是222(A )(0,2 ) (B )( 2 , 1) (C ) (1, 2) (D ) ( 2,2)【命题意图】本题主要考查指数函数与对数函数的图像与性质及数形结合思想, 是中档题 .0 a12 【解析】由指数函数与对数函数的图像知11,解得a2 ,故选 A.loga242( 12)数列 { a n } 满足a n 1( 1)n a n2n 1 ,则{ a n }的前60项和为( A )3690 (B ) 3660( C ) 1845 ( D ) 1830 【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题 . 【解析】【法 1】有题设知a 2 a 1=1,① a 3a 2=3②a 4 a 3=5③a 5 a 4=7, a 6 a 5=9, a 7 a 6=11, a 8a 7=13, a 9 a 8=15, a 10 a 9=17, a 11a 10=19, a 12a1121 ,⋯⋯∴②-①得 a 1a 3=2,③+②得 a 4 a 2=8,同理可得 a 5 a 7=2, a 6 a 8=24, a 9a 11=2,a10a 12=40,⋯,∴ a 1 a 3,a 5 a 7,a 9 a 11,⋯,是各项均为 2 的常数列,a 2a 4,a 6a 8,a 10a 12,⋯是首项为8,公差为 16 的等差数列,∴ { a n } 的前 60 项和为 15 215 8116 15 14 =1830.2【法 2】可证明:bn 1a4 n 1a4n 2a4 n 3a4 n 4a4 n 3a4n 2a4 n 2a 4n 16b n16b 1a 1a 2 a 3 a 4 1 01 5 1 4 S 1510 1516 18302第Ⅱ卷二.填空题:本大题共 4 小题,每小题 5 分。

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3、第Ⅰ卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

一、选择题(1)已知集合{|}{|}{|}{|}A x xB x xC x xD x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。

在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。

(2)函数1(1)y x x =+-≥的反函数为( ). 2()1(0)A yx x =-≥ 2()1(1)B yx x =-≥ 2()1(0)C yx x =+≥ 2()1(1)D yx x =+≥ 【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。

在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。

(3)若函数()s i n [0,2]3x fx ϕϕ+=∈(π)是偶函数,则ϕ=( ).()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。

2012年高考全国卷数学1试题及参考答案

2012年高考全国卷数学1试题及参考答案

2012年高考全国卷数学1试题及参考答案数学(理科)注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。

3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.复数1z i =+,z 为z 的共轭复数,则1zz z --=() (A) -2i (B) -i (C) i (D) 2i2. 函数)0y x =≥的反函数为()(A)()24x y x R =∈ (B) ()204x y x =≥ (C)()24y x x R =∈ (D)()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是()(A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k=() (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于() (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于()(A)2 (B) (C) (D) 1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有()(A) 4种 (B) 10种 (C) 18种 (D) 20种 8.曲线21xy e=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为()(A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭() (A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠=() (A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为()(A) 7π (B) 9π (C) 11π (D) 13π 12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于()(A) 2 (B)(C) (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.13. (201的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,sin 5α=,则tan 2α= .15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x |x 2−x −2〈0},B={x |−1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B)0 (C )错误! (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D 。

45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A)(1-错误!,2) (B )(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A)A +B 为1a ,2a ,…,N a 的和(B)2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D)A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )错误!π (B)4错误!π (C )4错误!π (D)6错误!π(9)已知ω〉0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C)错误! (D )错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0〈x ≤错误!时,4log x a x <,则a 的取值范围是(A )(0,错误!) (B )(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B)3660 (C)1845 (D)1830二.填空题:本大题共4小题,每小题5分。

2012年高考数学全国卷一文数(word版,免费)

2012年高考数学全国卷一文数(word版,免费)

2012年普通高等学校招生全国统一考试文科数学(必修加选修Ⅰ)第Ⅰ卷一. 选择题(1) 已知集合A={x ︱x 是平行四边形},B={x ︱x 是矩形},C={x ︱x 是正方形},D{x ︱x是菱形},则(A)B A ⊆ (B )B C ⊆ (C)C D ⊆ (D) D A ⊆(2) 函数y=1+x (x ≥-1)的反函数为(A)()012≥-=x x y (B )()112≥-=x x y (C) ()012≥+=x x y (D) ()112≥+=x x y(3) 若函数()[]()πϕϕ2,03sin∈+=x x f 是偶函数,则ϕ= (A)2π (B )32π (C) 23π (D) 35π (4)已知α为第二象限角, αsin =53,则α2sin = (A)2524- (B )2512- (C) 2512 (D) 2524 (5)椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为(A) 1121622=+y x (B )181222=+y x (C) 14822=+y x (D) 141222=+y x (6)已知数列{a n }的前n 项和为S n , a 1=1,S n =2a n+1,则S n =(A) 12-n (B )123-⎪⎭⎫ ⎝⎛n (C) 132-⎪⎭⎫ ⎝⎛n (D) 121-n(7)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有A 240种B 360种 C480种 D720种(8)已知正四棱柱ABCD-A 1B 1C 1D 1 中,AB=2,CC 1=22,E 为CC 1 的中点,则直线AC 1 与平面BED 的距离为(A) 2 (B )3 (C) 2 (D) 1(9)△ABC 中,AB 边的高为CD ,若,,b CA a CB ==a ·b =0,|a |=1,|b |=2,则=AD (A)b a 3131- (B )b a 3232- (C) b a 5353- (D) b a 5454-(10)已知F1、F2为双曲线 C :x 2-y 2=2的左、右焦点,点p 在c 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2 =(A) 41 (B )53 (C) 43 (D) 54 (11)已知x=ln π,y=log 52 ,z=21-e ,则(A) x<y<z (B )z<x<y (C) z<y<x (D) y<z<x(12) 正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE=BF=31,动点p 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点p 第一次碰到E 时,p 与正方形的边碰撞的次数为A 8B 6C 4D 3第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分.(13)821⎪⎭⎫ ⎝⎛+x x 的展开式中2x 的系数为____________. (14) 若x ,y 满足约束条件⎪⎩⎪⎨⎧≥-+≤-+≥+-,0330301y x y x y x 则z=3x-y 的最小值为_____________.(15)当函数()π20cos 3sin <≤-=x x x y 取得最大值时,x =_____________.(16)一直正方体1111D C B A ABCD -中,E 、F 分别为1BB 、1CC 的中点,那么异面直线AE 与F D 1所成角的余弦值为____________.三. 解答题:本大题共6小题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试
理科数学(必修+选修II )
一、选择题 1、
复数
131i i
-++=
A 2+I
B 2-I
C 1+2i
D 1- 2i 2、已知集合A =
{1.3.
,B ={1,m} ,A B =A, 则m=
A 0
或 B 0或3 C 1
D 1或3
3、 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 、
2
16
x
+
2
12
y
=1 B
2
12
x
+
2
8
y
=1 C
2
8
x
+
2
4
y
=1 D
2
12
x
+
2
4
y
=1
4、已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1
= E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2
B
C
D 1
(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎭
⎬⎫
⎩⎨⎧+11n n a a 的前100项和为
(A )100101
(B) 99101
(C) 99100
(D) 101100
(6)△ABC 中,AB 边的高为CD ,若,,b CA a CB ==a ·b =0,|a |=1,|b |=2
,则
(A)
b a 3
131-
(B )
b a 3
232-
(C)
b a 5
353-
(D )
b a 5454-
(7)已知α为第二象限角,sin α+cos α
3
,则cos2α=
(A
) -
3
(B
)-
9
(C)
9
3
(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)
14
(B )
35
(C )
34
(D)
45
(9)已知x=ln π,y=log 52,z=2
1-e ,则
(A)x <y <z (B )z <x <y (C)z <y <x (D )y <z <x
(10) 已知函数y =3x -3x+c 的图像与x 恰有两个公共点,则c =
(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 (11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有
(A )12种(B )18种(C )24种(D )36种
(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =
73。

动点P 从
E 出发沿直线向
F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12 (D)10
第Ⅱ卷 二、填空题:本大题共4小题,每小题5分,共20分
(13)若x ,y 满足约束条件⎪⎩

⎨⎧≥-+≤-+≥+-,0330301y x y x y x 则z=3x-y 的最小值为_________。

(14)当函数()π20cos 3sin <≤-
=x x x y 取得最大值时,x =_____________.
(15)若n
x x ⎪⎭⎫ ⎝

+1的展开式中第3项与第7项的二项式系数相等,则该展开式中21x 的系数
为_________。

(16)三菱柱ABC-A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°
则异面直线AB 1与BC 1所成角的余弦值为____________。

三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

(17)(10分)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a =2c ,求c .
(18)(12分)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,
PA=2,E是PC上的一点,PE=2EC.
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小。

19. (12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。

每次发球,胜方得1分,负方得0分。

设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。

甲、乙的一局比赛中,甲先发球。

(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;
(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望。

(20)(12分)设函数f(x)=ax+cos x,x∈[0,π]。

(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设f(x)≤1+sin x,求a的取值范围。

(21)(12分)已知抛物线C :()2
1+=x y 与圆M :()
()02112
2
2
>=⎪⎭⎫ ⎝
⎛-+-r r y x 有一
个公共点A ,且在A 处两曲线的切线为同一直线l .
(I ) 求r ;
(II ) 设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离.
22(12分)函数f (x)=x 2
-2x-3,定义数列{x n }如下:x 1=2,x n+1是过两点P (4,5)、Q n (x n ,f(x n ))的直线PQ n 与x 轴交点的横坐标。

(Ⅰ)证明:2≤ x n <x n+1<3; (Ⅱ)求数列{x n }的通项公式。

相关文档
最新文档