2012年全国高考理科数学试题及答案-新课标

合集下载

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题 (1)复数131i i-+=+(A )2i +(B )2i - (C )12i +(D )12i - (2)已知集合{1,A =,{1,}B m =,A B A = ,则m =(A )0 (B )0或3 (C )1 (D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612xy+= (B )221128xy+= (C)22184xy+= (D )221124xy+=(4)已知正四棱柱1111ABC D A B C D -中 ,2A B =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B ) (C (D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101(B )99101(C )99100(D )101100(6)A B C ∆中,A B 边的高为C D ,若CB a =,C A b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A )3- (B )9- (C 9(D 3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14(B )35(C )34(D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形A B C D 的边长为1,点E 在边A B 上,点F 在边B C 上,37A EB F ==。

2012年高考真题——数学理全国卷解析版

2012年高考真题——数学理全国卷解析版

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页.考试结束,务必将试卷和答题卡一并上交. 第I 卷注意事项:全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准该条形码上的准考证号、姓名和科目.2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.第I 卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 【解析】i ii i i i i i 21242)1)(1()1)(31(131+=+=-+-+-=++-,选C. 【答案】C2、已知集合A ={1.3.m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B.【答案】B3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 【解析】椭圆的焦距为4,所以2,42==c c 因为准线为4-=x ,所以椭圆的焦点在x 轴上,且42-=-c a ,所以842==c a ,448222=-=-=c a b ,所以椭圆的方程为14822=+y x ,选C.【答案】C4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B3 C 2 D 1【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选 D.【答案】D(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101(C) 99100 (D) 101100 【解析】由15,555==S a ,得1,11==d a ,所以n n a n =-+=)1(1,所以111)1(111+-=+=+n n n n a a n n ,又1011001011110111001312121111110110021=-=-++-+-=+ a a a a ,选A.【答案】A(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)【解析】在直角三角形中,521===AB CA CB ,,,则52=CD ,所以5454422=-=-=CD CA AD ,所以54=AB AD ,即b a b a AB AD 5454)(5454-=-==,选D. 【答案】D(7)已知α为第二象限角,33cos sin =+αα,则cos2α= (A) 5-3 (B )5-9 (C) 59 (D)53【解析】因为33cos sin =+αα所以两边平方得31cos sin 21=+αα,所以032cos sin 2<-=αα,因为已知α为第二象限角,所以0cos ,0sin <>αα,31535321cos sin 21cos sin ==+=-=-αααα,所以)sin )(cos sin (cos sin cos 2cos 22ααααααα+-=-==3533315-=⨯-,选A. 【答案】A(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45【解析】双曲线的方程为12222=-y x ,所以2,2===c b a ,因为|PF 1|=|2PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a=22,所以解得|PF 2|=22,|PF 1|=24,所以根据余弦定理得432422214)24()22(cos 2221=⨯⨯-+=PF F ,选C. 【答案】C(9)已知x=ln π,y=log 52,21-=ez ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x【解析】1ln >=πx ,215log 12log 25<==y ,ee z 121==-,1121<<e ,所以x z y <<,选D.【答案】D(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.【答案】A(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种【解析】第一步先排第一列有633=A ,在排第二列,当第一列确定时,第二列有两种方法,如图,所以共有1226=⨯种,选A.【答案】A(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73.动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 【答案】B2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 第Ⅱ卷 注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上得准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效......... 3.第Ⅱ卷共10小题,共90分.二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. (注意:在试题卷上作答无效.........) (13)若x ,y 满足约束条件则z=3x-y 的最小值为_________.【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z . 【答案】1-(14)当函数取得最大值时,x=___________.【解析】函数为)3sin(2cos 3sin π-=-=x x x y ,当π20<≤x 时,3533πππ<-≤-x ,由三角函数图象可知,当23ππ=-x ,即65π=x 时取得最大值,所以65π=x . 【答案】65π=x (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________.【解析】因为展开式中的第3项和第7项的二项式系数相同,即62n n C C =,所以8=n ,所以展开式的通项为k k k kk k x C xxC T 288881)1(--+==,令228-=-k ,解得5=k ,所以2586)1(x C T =,所以21x的系数为5658=C .【答案】56(16)三菱柱ABC-A 1B 1C 1中,底面边长和侧棱长都相等, BAA 1=CAA 1=60°则异面直线AB 1与BC 1所成角的余弦值为____________.【解析】如图设,,,1c AC b AB a AA ===设棱长为1,则,1b a AB +=b c a BC a BC -1+=+=,因为底面边长和侧棱长都相等,且01160=∠=∠CAA BAA 所以21=•=•=•c b c a b a ,所以3)(21=+=b a AB ,2)-(21=+=b c a BC ,2)-()(11=+•+=•b c a b a BC AB ,设异面直线的夹角为θ,所以36322cos 1111=⨯=•=BC AB BC AB θ. 【答案】36 三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试卷上作答无效...........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a=2c ,求c.(18)(本小题满分12分)(注意:在试题卷上作答无效.........)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19. (本小题满分12分)(注意:在试题卷上作答无效.........)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望.(20)(本小题满分12分)(注意:在试题卷上作答无效.........)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(本小题满分12分)(注意:在试卷上作答无效........)已知抛物线C:y=(x+1)2与圆M:(x-1)2+(12y )2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22(本小题满分12分)(注意:在试卷上作答无效........)函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过两点P(4,5)、Q n(x n,f(x n))的直线PQ n 与x轴交点的横坐标.(Ⅰ)证明:2 x n<x n+1<3;(Ⅱ)求数列{x n}的通项公式.。

2012年全国高考理科数学试题及答案-全国卷[1]

2012年全国高考理科数学试题及答案-全国卷[1]

绝密*启用前2012年普通高等学校招生全国统一考试(全国卷)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动。

用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3。

回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效· 4.考试结束后.将本试卷和答且卡一并交回.第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考全国卷数学试题及答案详解

2012年高考全国卷数学试题及答案详解

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A0 B 0或3 C 1 D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβ=3,则cos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。

2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版

2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版

2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 【答案】B(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3【解析】因为函数22)(3-+=x x f x的导数为032ln 2)('2≥+=x x f x,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B. 【答案】B(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40【解析】二项展开式的通项为k k k k k k kk x C xx C T )1(2)1()2(310555251-=-=---+,令1310=-k ,解得3,93==k k ,所以x x C T 40)1(232354-=-=,所以x 的系数为40-,选D.【答案】D(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【解析】因为B C 2=,所以B B B C cos sin 2)2sin(sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821sin 2sin cos =⨯==B C B 。

(推荐)2012高考全国2卷数学理科试题及答案详解

(推荐)2012高考全国2卷数学理科试题及答案详解

2012年普通高等学校招生全国统一考试数学理科数学(全国二卷)一、选择题1、 复数131i i-++= A 2+i B 2-i C 1+2i D 1- 2i2、已知集合A =},B ={1,m} ,A B =A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =14 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列1n a 1+n a 的前100项和为 (A)100101 (B) 99101 (C) 99100 (D) 101100(6)△ABC 中,AB 边的高为CD ,若a CB =→,b CA=→,a ·b=0,|a|=1,|b|=2,则=→AD (A)b a 31-31(B )b a 32-32 (C)b a 53-53 (D)b a 54-54(7)已知α为第二象限角,sin α+sin β=3,则cos2α=(A) (B ) (8)已知F 1、F 2为双曲线C :2-x 22=y 的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。

2012高考理科数学概率统计 (答案详解)

2012高考理科数学概率统计 (答案详解)

2012年高考试题汇编(理) ---概率统计(一)选择题1、(全国卷大纲版)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )(A )12种 (B )18种 (C )24种 (D )36种 2、(全国卷新课标版)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) (A )12种 (B )10种 (C )9种 (D )8种3、(北京卷)设不等式组⎩⎨⎧≤≤≤≤20,20y x 表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) (A )4π (B )22π- (C )6π(D )44π-4、(北京卷)从0,2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数。

其中奇数的个数为( )(A ) 24 (B ) 18 (C ) 12 (D ) 65、(福建卷)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )(A )41 (B )51 (C )61 (D )716、(湖北卷)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是(A )21π-(B )112π-(C )2π (D )1π7、(辽宁卷)一排9个座位坐了3个三口之家。

若每家人坐在一起,则不同的坐法种数为 (A )!33⨯(B )3)!3(3⨯ (C )4)!3((D )!98、(辽宁卷)在长为12cm 的线段AB 上任取一点C 。

现做一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为 (A )61 (B )31 (C )32 (D )54 9、(山东卷)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C )10 (D )15 10、(山东卷)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 (A )232 (B)252 (C)472 (D)48411、(陕西卷)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )(A ) x x <甲乙,m 甲>m 乙 (B ) x x <甲乙,m 甲<m 乙 (C ) x x >甲乙,m 甲>m 乙 (D ) x x >甲乙,m 甲<m 乙12、(陕西卷)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )(A ) 10种 (B )15种 (C ) 20种 (D ) 30种13、(上海卷)设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )(A )21ξξD D > (B )21ξξD D =(C )21ξξD D < (D )1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关14、(浙江卷)若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )(A )60种 (B )63种 (C )65种 (D )66种15、(安徽卷)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )(A )甲的成绩的平均数小于乙的成绩的平均数 (B )甲的成绩的中位数等于乙的成绩的中位数 (C )甲的成绩的方差小于乙的成绩的方差 (D )甲的成绩的极差小于乙的成绩的极差 16、(安徽卷))6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品。

2012年全国大纲高考数学理科试卷(带详解)

2012年全国大纲高考数学理科试卷(带详解)

2012年普通高等学校招生全国统一考试理科数学(大纲卷)第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、 选择题.1.复数13i1i-+=+ ( ) A .2i + B .2i - C .12i + D .12i -【测量目标】复数代数形式的四则运算.【考查方式】给出两个复数的分式形式,利用复数的四则运算法则运算. 【难易程度】容易 【参考答案】C 【试题解析】()()()()13i 1i 13i 24i12i 1i 1i 1i 2-+--++===+++-.2.已知集合{{},1,A B m ==,,A B A = 则m = ( )A .0B .0或3C .1D .1或3 【测量目标】集合的含义和基本运算.【考查方式】给出两个集合,利用集合的并集运算、元素与集合的关系求元素. 【难易程度】容易 【参考答案】B【试题解析】,A B A = B A ∴⊂,{{},1,A B m ==m A ∴∈,故m =3m =,解得0m =或3m =或1m =,又根据集合元素的互异性1m ≠,所以0m =或3m =. 3.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 ( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y += 【测量目标】椭圆的标准方程和简单几何性质.【考查方式】给出焦距,准线方程,利用椭圆的简单几何性质求方程. 【难易程度】容易 【参考答案】C【试题解析】因为242,c c =⇔=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上且22448a a c c=⇔==,,所以222844b a c =-=-=.故选答案C. 4.已知正四棱柱1111ABCD A BC D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为 ( ) A .2 BCD .1 【测量目标】线面距离.【考查方式】将线面的距离,转化为点到面的距离求解. 【难易程度】中等 【参考答案】D【试题解析】因为底面的边长为2,高为且连接,AC BD ,得到交点为O ,连接EO ,1EO AC ,则点1C 到平面BED 的距离等于C 到平面BED 的距离,过点C 作CH OE ⊥,则CH 即为所求,在三角形OCE 中,利用等面积法,可得1CH =,故选答案D.5.已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为( )A .100101 B .99101C .99100D .101100 【测量目标】等差数列的通项公式和前n 项和.【考查方式】给出某一项和前5项的和,利用等差数列的通项公式和前n 项和的公式,裂项求和.【难易程度】中等 【参考答案】A【试题解析】由55,5,15n S a S ==可得:1114515415152n a d a a n d a d +=⎧=⎧⎪⇔⇒=⎨⎨⨯=+=⎩⎪⎩,()1111111n n a a n n n n +∴==-++,(步骤1) 10011111110011223100101101101S ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(步骤2) 6.ABC △中,AB 边上的高为CD ,若0,1,2,CB CA =====a,b,a b a b 则AD =( )A .1133-a b B .2233-a b C .3355-a b D .4455-a b 【测量目标】向量的线性运算.【考查方式】运用向量的加、减法和特殊直角三角形求解. 【难易程度】容易 【参考答案】D【试题解析】由0=a b 可得90ACB ︒∠=,故AB =5CD =,所以5AD =,故()44445555AD AB CB CA ==-=- a b ,故选答案D. 7.已知α为第二象限角,sin cos αα+=,则c o s 2α= ( )A. B.- CD【测量目标】同角三角函数的基本关系,二倍角公式.【考查方式】运用三角函数中两角和差的公式以及二倍角公式求值. 【难易程度】中等 【参考答案】A【试题解析】sin cos αα+=,两边平方可得121sin 2sin 233αα+=⇒=-,(步骤1)α 是第二象限角,因此sin 0,cos 0αα><,cos sin αα∴-===, ()()22cos 2cos sin cos sin cos sin ααααααα∴=-=+-=(步骤2) 8.已知12,F F 为双曲线22:2C x y -=的左右焦点,点P 在C 上,122PF PF =,则12cos F PF ∠= ( )A .14 B .35 C .34 D .45【测量目标】双曲线的定义和简单几何性质,余弦定理.【考查方式】给出双曲线的方程和线段关系,利用双曲线的性质,结合余弦定理求余弦值. 【难易程度】容易 【参考答案】中等【试题解析】由题意可知,,2a b c =∴=,(步骤1) 设122,PF x PF x ==,则122PF PF x a -===故12124PF PF F F ===,(步骤2)利用余弦定理可得12cos F PF ∠=2222221212124324PF PF F F PF PF +-+-==.(步骤3)9.已知125ln π,log 2,e x y z ===,则 ( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<【测量目标】对数函数的化简及运算.【考查方式】化简所给值,采用中间值大小比较方法. 【难易程度】容易 【参考答案】D【试题解析】ln π>ln e=1,551log 2log 2<=,121e 2z ==>=,故选答案D.10.已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c = ( ) A .2-或2 B .9-或3 C .1-或1 D .3-或1 【测量目标】函数图象的判断,利用导数求函数的极值. 【考查方式】已知函数图象,利用导数求值. 【难易程度】中等 【参考答案】A【试题解析】因为三次函数的图象与x 轴恰有两个公共点,结合该函数的图象,可得极大值或者极小值为零即可满足要求.而()()()233311f x x x x '=-=-+,当1x =±时取得极值由()10f =或()10f -=可得20c -=或20c +=,即2c =±.11.将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同则不同的排列方法共有 ( ) A .12种 B .18种 C .24种 D .36种【测量目标】排列、组合的应用.【考查方式】给出字母,利用分步计数原理计算. 【难易程度】容易 【参考答案】A【试题解析】利用分步计数原理,先填写最左上角的数,有3种,再填写右上角的数为2种,在填写第二行第一列的数有2种,一共有32212⨯⨯=.12.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为A .16B .14C .12D .10 【测量目标】反射原理与三角形相似.【考查方式】通过相似判断反射后的点落的位置,结合图象分析. 【难易程度】较难 【参考答案】B【试题解析】结合已知中的点E ,F 的位置,推理可知,在反射的过程中,直线是平行的,那么利用平行关系作图,可以得到回到EA 点时,需要碰撞14次即可.第II 卷二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........) 13.若,x y 满足约束条件1030330x y x y x y -+⎧⎪+-⎨⎪+-⎩………,则3z x y =-的最小值为 .【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件,作出可行域,平移目标函数求最值. 【难易程度】容易 【参考答案】1-【试题解析】利用不等式组,作出可行域,可知区域表示的为三角形,当目标函数过点()3,0时,目标函数最大,当目标函数过点()0,1时最小为1-.14.当函数()sin 02πy x x x =<…取得最大值时,x = . 【测量目标】三角函数的定义域、值域,两角差的正弦. 【考查方式】给出三角函数及定义域求值域. 【难易程度】中等 【参考答案】5π6【试题解析】由πsin 2sin 3y x x x ⎛⎫==-⎪⎝⎭,(步骤1)由ππ5π02π333x x <⇔--<剟可知π22sin 23x ⎛⎫-- ⎪⎝⎭剟,(步骤2)当且仅当π3π32x -=即11π6x =时取得最小值,ππ32x -=时即5π6x =取得最大值. (步骤3)15.若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则该展开式中21x 的系数为 .【测量目标】二项式定理.【考查方式】给出二项式,利用二项式的通项公式求系数. 【难易程度】容易 【参考答案】56【试题解析】根据已知条件可知26C C 268n n n =⇔=+=,(步骤1)所以81x x ⎛⎫+ ⎪⎝⎭的展开式的通项为8218C r r r T x -+=,令8225r r -=-⇔=所以所求系数为58C 56=.(步骤2)16.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为 .【测量目标】异面直线所成的角,向量的数量积运算. 【考查方式】借助向量的数量积运算求异面直线所成的角. 【难易程度】较难【参考答案】6【试题解析】设该三棱柱的边长为1,依题意有1111,AB AB AA BC AC AA AB =+=+-,则()22221111222cos603AB AB AA AB AB AA AA ︒=+=++=+=()22222111112222BC AC AA ABAC AA AB AC AA AC AB AA AB =+-=+++--=(步骤1)而()()1111AB BC AB AA AC AA AB =++-11111AB AC AB AA AB AB AA AC AA AA AA AB =+-++-11111112222=+-++-=111111cos,6AB BCAB BCAB BC∴===(步骤2)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(注意:在试卷上作答无效...........)ABC△的内角A B C、、的对边分别为a b c、、,已知()cos cos1,2A CB a c-+==,求C.【测量目标】正弦定理、两角和与差的余弦,诱导公式.【考查方式】给出关于边角的等式,利用正弦定理、两角和与差的余弦、诱导公式解三角形. 【难易程度】容易【试题解析】由()ππA B C B A C++=⇔=-+,(步骤1)由正弦定理及2a c=可得sin2sinA C=所以()()()()()() cos cos cos cosπcos cosA CB AC A C A C A C-+=-+-+=--+cos cos sin sin cos cos sin sin2sin sinA C A C A C A C A C=+-+=(步骤2)故由()cos cos1A C B-+=与sin2sinA C=可得22sin sin14sin1A C C=⇒=(步骤3)而C为三角形的内角且2a c c=>,故π2C<<,所以1sin2C=,故π6C=.(步骤4)18.(本小题满分12分)(注意:在试题卷上作答无效.........)[如图,四棱锥P ABCD-中,底面ABCD为菱形,PA⊥底面ABCD,AC=,2,PA E=是PC上的一点,2PE EC=.(1)证明:PC⊥平面BED;(2)设二面角A PB C--为90︒,求PD与平面PBC所成角的大小.第18题图【测量目标】线面垂直的判定,线面的夹角,空间直角坐标系,空间向量及其运算.【考查方式】运用空间直角坐标系,结合向量证明线面垂直,求夹角.【难易程度】中等【试题解析】设AC BD O = ,以O 为原点,OC 为x 轴,OD 为y 轴建立空间直角坐标系,则())(),,A CP ,设()()()0,,0,0,,0,,,B a D a E x y z -.(Ⅰ)证明:由2PE EC =得23E ⎫⎪⎪⎝⎭,(步骤1)所以()2PC =-,2,3BE a ⎫=⎪⎪⎝⎭,()0,2,0BD a =,所以()22,033PC BE a ⎛⎫=-= ⎪ ⎪⎝⎭,()()20,2,00PC BD a =-=. 所以,PC BE PC BD ⊥⊥,所以PC ⊥平面BED ;(步骤2)(Ⅱ) 设平面PAB 的法向量为(),,x y z =n ,又())0,0,2,,0AP AB a ==-,由0,=0AP AB = n n得⎛⎫= ⎪ ⎪⎝⎭n ,(步骤3)设平面PBC 的法向量为(),,x y z =m,又)(),0,BC a CP ==-,由0,0BC CP == m m,得1,⎛= ⎝m ,由于二面角A PB C --为90︒,所以0= m n,解得a =所以)2PD =-,平面PBC的法向量为(1,=-m ,(步骤4)所以PD 与平面PBC 所成角的正弦值为12PD PD =m m , 所以PD 与平面PBC 所成角为π6.(步骤5)第19题图19.(本小题满分12分)(注意:在试题卷上作答无效.........) 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)ξ表示开始第4次发球时乙的得分,求ξ的期望.【测量目标】独立事件的概率,分布列和期望【考查方式】列出几种可能事件,结合独立事件概率公式求解,进而求期望值. 【难易程度】中等【试题解析】记i A 为事件“第i 次发球,甲胜”, i =1,2,3, 则()()()1230.6,0.6,0.4P A P A P A ===.(Ⅰ)事件“开始第4次发球时,甲、乙的比分为1比2”为123123123A A A A A A A A A ++,由互斥事件有一个发生的概率加法公式得:()123123123P A A A A A A A A A ++0.60.40.60.40.60.60.40.40.4=⨯⨯+⨯⨯+⨯⨯ 0.352=即开始第4次发球时,甲、乙的比分为1比2的概率为0.352. (步骤1)(Ⅱ)由题意0,1,2,3,4ξ=.()()12300.60.60.40.144P P A A A ξ===⨯⨯=;()()12312312310.40.60.40.60.40.40.60.60.60.408P P A A A A A A A A A ξ==++=⨯⨯+⨯⨯+⨯⨯=;()20.352P ξ==;()()12330.40.40.60.096P P A A A ξ===⨯⨯=;(步骤2)所以0.40820.352+30.096=1.4E ξ=+⨯⨯ (步骤3) 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()[]cos ,0,πf x ax x x =+∈. (1)讨论()f x 的单调性;(2)设()()1sin f x x +…,求a 的取值范围.【测量目标】利用导数判断或求函数的单调区间,利用导数解决不等式问题. 【考查方式】给出函数,利用导数求函数的单调区间,结合三角函数的性质证明不等式成立.【难易程度】较难 【试题解析】()sin f x a x'=-.(Ⅰ)因为[]0,πx ∈,所以0sin 1x剟.(步骤1)当1a …时,()0f x '…,()f x 在[]0,πx ∈上为单调递增函数; 当0a …时,()0f x '…,()f x 在[]0,πx ∈上为单调递减函数; 当01a <<时,由()0f x '=得arcsin x a =或πarcsin x a =-, 由()0f x '>得0arcsin x a <剎或πarcsin πa x -<…; 由()0f x '<得arcsin πarcsin a x a <<-.所以当01a <<时()f x 在[]0,arcsin a 和[]πarcsin ,πa -上为为单调递增函数; 在[]arcsin ,πarcsin a a -上为单调递减函数. (步骤2) (Ⅱ)因为()1sin cos 1sin 1sin cos f x x ax xx ax x x +⇔++⇔+-剟?当0x =时,01sin 0cos00+-=…恒成立; 当0πx <…时,min1sin cos 1sin cos 1sin cos x xx x ax x x axx +-+-⎡⎤+-⇔⇔⎢⎥⎣⎦剟, (步骤2)令()()1sin cos 0πx xg x x x+-=<…,则()()()()22cos sin 1sin cos 1cos 1sin 1x x x x x x x x x g x x x +--+++--'==.(步骤3)又令()()()1cos 1sin 1c x x x x x =++--,则()()()()cos 1sin sin 1cos sin cos c x x x x x x x x x x '=-+++-=-+.(步骤4) 则当3π0,4x ⎛⎫∈ ⎪⎝⎭时,sin cos 0x x +>,故()0c x '<,()c x 单调递减; 当3π,π4x ⎛⎫∈⎪⎝⎭时,sin cos 0x x +<,故()0c x '…,()c x 单调递增, 所以()c x 在()0,πx ∈时有最小值3π14c ⎛⎫=⎪⎝⎭,(步骤5)而()()()0lim 10cos 001sin 010,x c x +→=++--=()()()πlim π1π10,x c x c -→==-+-< 综上可知[]0,πx ∈时,()()00c x g x '<⇒<,故()g x 在区间[]0,π单调递减,(步骤6)所以()()min2ππg x g ==⎡⎤⎣⎦故所求a 的取值范围为2πa ….(步骤7)另解:由()1sin f x x +…恒成立可得()2π1π11πf a a ⇔-⇔剟?(步骤1) 令()2sin 0π2g x x x x π⎛⎫=-⎪⎝⎭剟,则()2cos πg x x '=-当20,arcsinπx ⎛⎫∈ ⎪⎝⎭时,()0g x '>,当2πarcsin ,π2x ⎛⎫∈⎪⎝⎭时,()0g x '< 又()π002g g ⎛⎫== ⎪⎝⎭,所以()0g x …,即2πsin 0π2x x x ⎛⎫⎪⎝⎭剟?故当2πa …时,有()2cos πf x x x +…(步骤2) ①当π02x⎛⎫⎪⎝⎭剟时,2sin ,cos 1πx x x 剟,所以()1sin f x x +…②当ππ2x ⎛⎫⎪⎝⎭剟时,()22ππcos 1sin 1sin ππ22f x x x x x x ⎛⎫⎛⎫+=+---+ ⎪ ⎪⎝⎭⎝⎭剟综上可知故所求a 的取值范围为2πa ….(步骤3) 21.(本小题满分12分)(注意:在试卷上作答无效........) 已知抛物线()2:1C y x =+与圆()()2221:102M x y r r ⎛⎫-+-=> ⎪⎝⎭ 有一个公共点A ,且在A 处两曲线的切线为同一直线l .(1)求r ;(2)设,m n 是异于l 且与C 及M 都相切的两条直线,,m n 的交点为D ,求D 到l 的距离. 【测量目标】圆锥曲线的综合应用,导数的几何意义,点到直线的距离公式.【考查方式】给出抛物线和圆的方程及两个曲线的关系,运用导数,直线的方程及点到直线的距离公式求解. 【难易程度】较难【试题解析】(1)设()()200,1A x x +,对()21y x =+求导得22y x '=+,故直线l 的斜率:()021k x =+,当01x =时,不合题意,所心01x ≠,(步骤1)圆心为11,2M ⎛⎫⎪⎝⎭,MA 的斜率()2001121x k x +-'=-,由l MA ⊥知1kk '=-,即()()20001122111x x x +-+⨯=--,解得00x =,故()0,1A ,所以r MA ===.(步骤2)(2)设2(,(1))a a +为C 上一点,则在该点处的切线方程为:()()()2121y a a x a -+=+-, 即()2211y a x a =+-+.(步骤2)若该直线与圆M相切,则圆心M=22(46)0a aa --=, 求解可得0120,22a a a ===(步骤3) 抛物线C 在点()()()2,10,1,2i i a a i +=处的切线分别为,,l m n ,其方程分别为:21y x =+① ()211211y a x a =+-+② ()222211y a x a =+-+③②-③得1222a a x +==,将2x =代入②得1y =-,故()2,1D -(步骤4)所以D 到直线l 的距离为5d ==(步骤5) 22.(本小题满分12分)(注意:在试卷上作答无效........) 函数()223f x x x =--.定义数列{}n x 如下:112,n x x +=是过两点()()()4,5,,n n n P Q x f x 的直线n PQ 与x 轴交点的横坐标. (1)证明:123n n x x +<<…;(2)求数列{}n x 的通项公式.【测量目标】不等式的证明,数列的通项公式, 函数解析式,数学归纳法的应用.【考查方式】给出函数及点,综合直线方程,函数与数列等知识求通项公式,利用数学归纳法证明不等式. 【难易程度】较难 【试题解析】(1)为()244835f =--=,故点()4,5P 在函数()f x 的图象上,故由所给出的两点()()()4,5,,n n n P Q x f x ,可知,直线n PQ 斜率一定存在. (步骤1) 故有直线n PQ 的直线方程为()()5544n n f x y x x --=--,令0y =,可求得()228435544422n n n n n n x x x x x x x x x --+--=-⇔=-⇔=-++,所以1432n n n x x x ++=+; (步骤2)下面用数学归纳法证明23n x <…,当1n =时,12x =,满足123x <…, (步骤3) 假设n k =时,23k x <…成立,则当1n k =+时,1435422k k k k x x x x ++==-++, 由23425k k x x <⇔+<剟551151243,2442k k x x ⇔<⇔<-<++剟 即23k x <…也成立;(步骤4)综上可知23k x <…对任意正整数恒成立. (步骤5) 下面证明1n n x x +<,由()2211443432222n n n n n n n n n n n x x x x x x x x x x x +--+++---=-==+++由()2231120143n n n x x x <⇒-<⇒<--+剟?,故有10n n x x +->即1n n x x +<综上可知123n n x x +<<…恒成立. (步骤6)(2)由1432n n n x x x ++=+得到该数列的一个特征方程432x x x +=+即2230x x --=,解得3x =或1x =-,∴14333322n nn n n x x x x x ++--=-=++ ①(步骤7) ()143551122n nn n n x x x x x +++--=+=++ ② 两式相除可得11331151n n n n x x x x ++--=⨯++,而1132311213x x --==-++故数列31n n x x ⎧⎫-⎨⎬+⎩⎭是以13-为首项以15为公比的等比数列.所以1311135n n n x x --⎛⎫=- ⎪+⎝⎭,故()()()11195143351351n n n n x ---⨯-==-⨯+⨯+.(步骤8)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密*启用前2012年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素 的个数为( ) 【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-【解析】选C1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( ) 【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) 【解析】选B该几何体是三棱锥,底面是俯视图,高为3此几何体的体积为11633932V =⨯⨯⨯⨯= (8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( ) 【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

则ω的取值范围是( ) 【解析】选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂ 得:315,2424224πππππωπωω+≥+≤⇔≤≤(10) 已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )【解析】选B得:0x >或10x -<<均有()0f x < 排除,,A C D(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( ) 【解析】选AABC ∆的外接圆的半径3r =,点O 到面ABC的距离3d == SC 为球O 的直径⇒点S 到面ABC的距离为23d =此棱锥的体积为112336ABC V S d ∆=⨯==另:123ABC V S R ∆<⨯=排除,,B C D (12)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( ) 【解析】选A 函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒= 由图象关于y x =对称得:PQ最小值为min 2ln 2)d =-第Ⅱ卷本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答。

二.填空题:本大题共4小题,每小题5分。

(13)已知向量,a b 夹角为45︒,且1,210a a b =-=;则_____b =【解析】_____b =(14) 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为【解析】2z x y =-的取值范围为 [3,3]-约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C则2[3,3]z x y =-∈-(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常相互独立,那么该部件的使用寿命 超过1000小时的概率为【解析】使用寿命超过1000小时的概率为38三个电子元件的使用寿命均服从正态分布2(1000,50)N 得:三个电子元件的使用寿命超过1000小时的概率为12p =超过1000小时时元件1或元件2正常工作的概率2131(1)4P p =--= 那么该部件的使用寿命超过1000小时的概率为2138p p p =⨯=(16)数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为【解析】{}n a 的前60项和为 1830可证明:14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 三、解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)已知,,a b c分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A (2)若2a =,ABC ∆的面积为3;求,b c 。

【解析】(1)由正弦定理得:(2)1sin 342S bc A bc ==⇔= 解得:2b c ==(l fx lby )18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售, 如果当天卖不完,剩下的玫瑰花作垃圾处理。

(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式。

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为各需求量发生的概率。

(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。

【解析】(1)当16n ≥时,16(105)80y =⨯-= 当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80X 的分布列为(ii )购进17枝时,当天的利润为 76.476> 得:应购进17枝 (19)(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。

【解析】(1)在Rt DAC ∆中,AD AC = 得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H 1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合 且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则1C O =111230C D C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒(20)(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值。

【解析】(1)由对称性知:BFD ∆是等腰直角∆,斜边2BD p =点A 到准线l的距离d FA FB === 圆F 的方程为22(1)8x y +-=(2)由对称性设2000(,)(0)2x A x x p >,则(0,)2pF点,A B 关于点F 对称得:22220000(,)3222x x p B x p p x p p p --⇒-=-⇔=得:3,)2p A,直线3:022p p p m y x x -=+⇔-+=2222x x x py y y x p p p '=⇔=⇒==⇒=⇒切点,)36p P直线:)06336p n y x x p -=-⇔--=坐标原点到,m n 距离的比值为:326=。

相关文档
最新文档