完全平方公式教案【优秀3篇】
数学《完全平方公式》教案

数学《完全平方公式》教案【教学目标】1. 理解并掌握完全平方公式。
2. 能够运用完全平方公式解决相关问题。
【教学内容】1. 什么是完全平方数?2. 完全平方公式的概念、公式及运用。
3. 题目练习。
【教学步骤】Step1. 导入以单项式 x^2+6x+9 为例,提出 x^2 及 9 这两项,请同学们思考这两项之间是否有什么关系。
Step2. 概念讲解1. 完全平方数的概念:一个数的平方根是整数,就称这个数为完全平方数。
例如,1, 4, 9, 16, 25, 36, \cdots 都是完全平方数。
2. 完全平方公式的概念:将某个一元二次多项式改写为平方形式,这个改写的方法叫做完全平方公式。
举例说明,对于公式 a^2 + 2ab + b^2,如果将 a 与 b 这两个未知数看作相同的数,那么就可以写成 (a+b)^2,这种分解方法就叫做完全平方公式。
Step3. 公式讲解(1)公式:(a+b)^2=a^2+2ab+b^2(2)例题讲解例1:使用完全平方公式化简 x^2+8x+16。
解:我们可以将x^2+8x+16化成 (x+4)^2 的形式,逐步证明如下:\begin{aligned}x^2+8x+16 &= x^2+2(4)(x) + 4^2 \\&= (x+4)^2\end{aligned}因此, x^2+8x+16 可以化简为 (x+4)^2。
Step4. 练习1. 化简 y^2 + 6y + 9。
答:(y+3)^22. 化简 2a^2 + 8ab + 8b^2。
答:2(a+2b)^23. 化简 9s^2 + 12st + 4t^2。
答:(3s+2t)^2【教学反思】通过以上教学,同学们应该能够了解到完全平方数及完全平方公式的概念、公式及运用方法。
针对单项式及多项式的例题,有的可以结合化简方法,有的可以结合分解方法,这些方法的练习及巩固,有其相应的难度,同学们可以根据实际情况来选择合适的练习题目。
完全平方公式优秀教案

完全平方公式优秀教案
一、教学目标
1、认识完全平方公式的概念;
2、掌握完全平方公式的使用;
3、正确应用完全平方公式解方程组。
二、教学准备
1、讲义;
2、黑板、白板;
3、实验用草稿纸和毛笔。
三、教学过程
(1)板书讲解:
(a)完全平方公式的定义:一元二次方程的完全平方公式有三种形式,分别为:
ax2 + bx + c = 0;
x2 + bx = c;
x2 + c = 0;
其中a、b、c为实数,且b2 - 4ac ≥ 0。
(b)完全平方公式的求解:
① 将二次方程化为完全平方公式;
②利用完全平方公式将问题分解为两个相等的完全平方;
③ 把每一个完全平方分解为两个和式;
④ 将每个和式求出根,最后得到结果。
(2)解题演示:
接下来,我就利用以上四步法来解一道完全平方公式的方程组。
让我们来看看方程:x2 + 2x = 8。
解:
① 将二次方程化为完全平方式:
x2 + 2x = 8
② 利用完全平方公式将问题分解为两个相等的完全平方:
x2 + 2x = 8
(x + 1)2 = 9
③ 把每一个完全平方分解为两个和式:
x + 1 = 3
x + 1 = -3
④ 将每个和式求出根,最后得到结果:
x = 2, -4 。
(3)习题训练:
最后,进行习题训练,教师根据学生的实际上课情况,提供适量的习题。
完全平方公式优秀教案

完全平方公式【课时安排】2课时【第一课时】【教学目标】(一)知识与技能:理解完全平方公式的本质,并会运用公式进行简单的计算;了解完全平方公式的几何背景。
(二)过程与方法:经历探索完全平方公式的过程,并从推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,培养学生的数形结合意识。
(三)情感与态度:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习的自信心。
【教学重难点】完全平方公式及其应用。
【教学过程】(一)前置诊断,开辟道路师:上一节课,我们学习了平方差公式,知道了应用平方差公式可以进行某些多项式乘法的简便运算。
那位同学能说一下平方差公式是什么?它的结构特征是什么?生:(积极踊跃,争先恐后)生:平方差公式:(a+b)(a-b)=a2-b2;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。
右边是两数的平方差。
师:应用平方差公式要注意什么问题?生1:弄清在什么情况下才能使用平方差公式。
生2:(补充)把两个因式中相同的部分看作a,互为相反的部分看作b。
师:很好。
还记得我们是怎样用图形解释平方差公式的吗?生:利用图形变化前后的面积相等来解释的。
从一个边长为a大正方形中割掉一个边长为b的小正方形,剩下图形的面积可以用a2-b2表示,也可以用(a+b)(a-b)表示,就可以得到:(a+b)(a-b)=a2-b2师:(出示多媒体投影,使学生数形结合起来,帮助其理解。
)师:平方差公式实质上是特殊的多项式乘法的一种简便运算,是我们由一些特殊的多项式乘法的计算中分析得到的数学规律,应用它可以进行一些数或式乘法的简便计算。
数学中,还有很多规律等待我们去探索、去发现。
(二)设问质疑,探究尝试:请同学们观察屏幕上两个算式及其运算结果,你有什么发现?生:(观察、思考、交流、讨论、争相举手发表自己的发现)。
生1:我发现两个算式都是两个数和的平方,结果是三项,都有这两个数的平方。
《完全平方公式》教案

《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。
引导学生通过实际例子发现完全平方公式的规律。
1.2 教学内容完全平方公式的定义和表达式。
完全平方公式的推导和证明。
1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。
1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。
观察学生在练习中的表现,及时给予指导和帮助。
第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。
引导学生通过证明理解完全平方公式的正确性。
2.2 教学内容完全平方公式的推导方法。
完全平方公式的证明过程。
2.3 教学方法使用图表和动画演示完全平方公式的推导过程。
引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。
2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。
观察学生在证明过程中的思路和推理是否清晰。
第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。
引导学生通过完全平方公式简化计算过程。
3.2 教学内容完全平方公式在实际问题中的应用。
完全平方公式在简化计算过程中的作用。
3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。
使用图表和动画演示完全平方公式在计算过程中的应用。
3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。
观察学生在解题过程中的思路和计算是否准确。
第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。
引导学生通过完全平方公式的扩展形式解决更复杂的问题。
4.2 教学内容完全平方公式的扩展形式。
完全平方公式的扩展形式在解决问题中的应用。
4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。
使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。
4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。
《完全平方公式》教案

《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。
2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。
3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。
二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。
2. 教学难点:运用完全平方公式进行整式的乘法运算。
三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。
2. 知识讲解:讲解完全平方公式的推导过程和结构特点。
(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。
3. 练习环节:学生进行练习,教师进行个别指导。
4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。
5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。
五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。
在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。
不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。
初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。
初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导完全平方公式,了解公式的几何背景,会用公式计算。
3、数形结合的数学思想和方法。
学习重点:会推导完全平方公式,并能运用公式进行简单的计算。
学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。
学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。
尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。
4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。
3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
完全平方公式一等奖教学设计

完全平方公式一等奖教学设计完全平方公式一等奖教学设计第 1 篇目标:1、这一章的学习,使学生掌握二元一次方程组的解法。
2、学会解决实际问题,分析问题能力有所提高。
重点:这一章的知识点,数学方法思想。
难点:实际应用问题中的等量关系。
方法讲练结合、探索交流课型新授课教具投影仪全章小结四人一小组,互相交流学习这一章的感觉,主要学习了哪些知识。
还有不懂的方面?感到困难的部分是什么?方案<一> 基本练习题1、下列各组x,y的值是不是二元一次方程组的解?(1)(2)(3)2、根据下表中所给的x值以及x与y的关系式,求出相应的y值,然后填入表内:xy=4xy=10-x根据上表找出二元一次方程组的的解。
3、已知二元一次方程组的解求a,b的值。
4、解二元一次方程(1)(2)方案〈二〉1.根据已知条件,求出y的值,分别填入下列各图中,并找出方程组的解。
2.写出一个二元一次方程,使得都是它的解,并且求出x=3时的方程的解。
3.已知三角形的周长是18cm,其中两边的和等于第三边的2倍,而这两边的差等与第三边的,求这个三角形的各边长。
设三边的长分别是xcm,ycm,zcm那么你会解这个方程组吗?方案〈三〉1、有甲、乙两种铜银合金,甲种含银25%,乙种含银37.5%,现在要熔成含银30%的合金100千克,这两种合金各取多少千克?2、甲、乙两地之间路程为20km,a,b两人同时相对而行,2小时后相遇,相遇后a就返回甲地,b仍向甲地前进,a 回到甲地时,b离甲地还有2km,求a,b两人速度。
3、小亮在匀速行驶的汽车里,注意到公路里程碑上的数是两位数;1h后看到里程碑上的数与第一次看到的两位数恰好颠倒了数字顺序;再过1h后,第三次看到的里程碑上的数字又恰好是第一次见到的数字的两位数的数字之间添加一个0的三位数,这3块里程碑上的数各是多少?教学素材:a组题:1.已知x+y+(x-y+3)2=0,求x,y的值。
2.若3m-2n-7=0,则6n-9m-6是多少?3.解方程组(1)(2)4、用白铁皮做盒子,每张铁皮可生产12个盒身或18个盒盖,现有49张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才使生产的盒身与盒盖配套(一张铁皮只能生产一种产品,一个盒身配两个盒盖)?5、给定两数5与3,编一道通过列出二元一次方程组来求解的应用题,并使得这个方程的解就是这两个数。
完全平方公式(教案)

完全平方公式(一)教案武冈三中 姚立云教学目标:1、知识目标:理解公式的推导过程,了解公式的几何背景,能正确应用公 式进行简单的计算。
2、能力目标:渗透化归及数形结合的思想方法,培养学生的发现能力,灵 活运用公式的能力和解决实际问题的能力。
3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察、大胆创新 的思维品质。
教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行 简单的计算。
教学难点:理解公式中字母的含义,公式的正确运用。
教 具:拼图版、电脑教学设计:一、创设情境,导入新课小组活动:做拼图游戏材料:边长为a 的正方形1个,边长为b 的正方形1个,长为a 、宽为b 的长方形4个。
要求:使用上述材料部分或全部拼出一个大正方形。
二、探索与发现1、学生展示所拼图形,利用面积相等得到公式:2222)(b ab a b a ++=+2、引导学生利用多项式乘以多项式推导2222)(b ab a b a ++=+3、引入课题:完全平方公式4、师生互动师:公式的左边结构特征是什么?生:两个数的和的平方。
师:公式的右边结构特征是什么?生:是一个三项式,其中两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的两倍。
师生共同归纳:两数和的平方,等于它们的平方和加上它们乘积的2倍(简记:首平方尾平方积的2倍中间放)师:你能运用公式2222)(b ab a b a ++=+计算2)(b a -吗?生:可以,把2)(b a -看成2)]([b a -+即可。
师:非常棒,你能把过程写出来吗?生:能。
2222222)()(2)]([)(b ab a b b a a b a b a +-=-+-⋅+=-+=-5、例题分析利用电子白板放映例:运用完全平方公式计算(1)2)2(y x + (2)2)2(y x -解:(1)2222244)2()2(2)2(y xy x y y x x y x ++=+⋅⋅+=+2222)(b ab a b a ++=+(2)22222244)2()2(2)]2([)2(y xy x y y x x y x y x +-=-+-⋅⋅+=-+=- 2222)(b ab a b a ++=+6、基础练习利用电子白板放映(1)判断正误,并改正①222)(y x y x +=+②222)(y x y x -=-③222)(y xy x y x ++=+④ 2222)(y xy x y x ++=-(2)你会填空吗?①__________________2)3(222++=+⋅⋅+=+a a a②____________5________2____)53(22++=+⋅⋅+=+a③______________________2____][)3(2222+-=+⋅⋅+=+=-x x x y x④____________________2______)11000(100122=+⋅⋅+=+=⑤____________________2________]1000[99822=+⋅⋅+=+=(3)利用完全平方公式计算,你一定行!①2)32(y x + ②2)2(y x +-③2)(y x -- ④2)3243(y x - 教师巡视,批阅完成快的学生作业,最后集体点评。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全平方公式教案【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!完全平方公式教案【优秀3篇】作为一名教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
教案应该怎么写才好呢?读书破万卷下笔如有神,下面本店铺为您精心整理了3篇《完全平方公式教案》,希望朋友们参阅后能够文思泉涌。
数学《完全平方公式》教案篇一1.能根据多项式的乘法推导出完全平方公式;(重点)2.理解并掌握完全平方公式,并能进行计算.(重点、难点)一、情境导入计算:(1)(X+(1)2; (2)(X-(1)2;(3)(a+b)2; (4)(a-b)2.由上述计算,你发现了什么结论?二、合作探究探究点:完全平方公式【类型一】直接运用完全平方公式进行计算利用完全平方公式计算:(1)(5-a)2;(2)(-3-4n)2;(3)(-3a+b)2.解析:直接运用完全平方公式进行计算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3-4n)2=92+24n+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.变式训练:见《学练优》本课时练习“课堂达标训练”第12题【类型二】构造完全平方式如果36X2+(+(1)X+252是一个完全平方式,求的值.解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.解:∵36X2+(+(1)X+252=(6X)2+(+(1)X+(5)2.∴(+(1)X=±26X5.∴+1=±60,∴=59或-61.方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】运用完全平方公式进行简便计算利用完全平方公式计算:(1)992; (2)1022.解析:(1)把99写成(100-(1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2.然后根据完全平方公式计算.解:(1)992=(100-(1)2=1002-2X100+12=10000-200+1=9801;(2)1022=(100+(2)2=1002+2X100X2+4=10404.方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.变式训练:见《学练优》本课时练习“课堂达标训练”第13题【类型四】灵活运用完全平方公式求代数式的值若(X+)2=9,且(X-)2=1.(1)求1X2+12的值;(2)求(X2+(1)(2+(1)的值.解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.解:(1)∵(X+)2=9,(X-)2=1.∴X2+2X+2=9,X2-2X +2=1.4X=9-1=8,∴X=2.∴1X2+12=X2+2X22=(X+)2-2XX22=9-2X222=54;(2)∵(X+)2=9,X=2.∴(X2+(1)(2+(1)=X22+2+X2+1=X22+(X+)2-2X+1=22+9-2X2+1=10.方法总结:所求的展开式中都含有X或X+时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.变式训练:见《学练优》本课时练习“课后巩固提升”第9题【类型五】完全平方公式的几何背景我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b)B.(a-b)(a+2b)=a2+ab-2b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b2解析:空白部分的面积为(a-b)2.还可以表示为a2-2ab+b2.所以,此等式是(a-b)2=a2-2ab+b2.故选C.方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型六】与完全平方公式有关的探究问题下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a +b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.(a+b)1=a+b,(a+b)2=a2+2ab+b2.(a+b)3=a3+3a2b+3ab2+b3.则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2.(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1.故填20.方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计1.完全平方公式两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.2.完全平方公式的运用本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2.(a -b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。
《完全平方公式》教案篇二新疆乌鲁木齐市第54中学于莲凤一、教学内容:本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。
二、教材分析:完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。
完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。
本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。
完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。
使学生了解到完全平方公式是有力的数学工具。
重点:掌握完全平方公式,会运用公式进行简单的计算。
难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。
三、教学目标(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。
(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。
(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。
(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。
四、学情分析与教法学法学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。
另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。
但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。
学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流总结反思中获得数学知识与技能。
教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。
五、教学过程(略)六、教学评价在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。