【名师推荐资料】2020年中考数学专题复习卷 无理数与实数(含解析)(精品)

合集下载

2020届中考数学一轮复习专项练习:实数(含答案)

2020届中考数学一轮复习专项练习:实数(含答案)

2020届中考数学一轮复习专项练习:实数一、单选题1.下列各数中,是无理数的一项是( )A .-1B .√2C .20174 D .3.142.下列各数是无理数的是( )A .0B .12C .πD .3.14 3.下列说法中正确的是A .(-6)2的平方根是-6B .带根号的数都是无理数C .对顶角相等的逆命题是真命题D .全等三角形的面积相等 4.下列运算正确的是( )A .a 2•a 3=a 6B .(12)﹣1=﹣2C .16 =±4D .|﹣6|=6 5.16的平方根是( )A .±4B .4C .8D .26.下列说法中正确的是( )A .81的平方根是3±B .1的立方根是1±C .11=±D .5-是5的平方根的相反数 7.已知5a =,27b =,且a b a b +=+,则-a b 的值为( ) A .2或12 B .2或12- C .2-或12 D .2-或12- 8.9的平方根为( )A .3B .3-C .3±D .3±9.下列实数210.3,,,,4237π中,无理数有( ) A .1个B .2个C .3个D .4个 10.估计1(2553)5+⨯的值应在( ) A .3和4之间B .4和5之间C .5和6之间D .6和7之间二、填空题 11.计算:2012()2017-⨯=__________. 12.现定义运算“☆”,对于任意实数a 、b ,都有a ☆25b a a b =-+,如3☆6=23536-⨯+,若x ☆12=6,则实数x 的值是____________13.设a 、b 、c 都是实数,且满足()22280a a b c c -+++++=,20ax bx c ++=;则代数式221x x ++的值为 .14.用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__.三、解答题15.求下列各式中的x .(1)4 (x -2)2=25; (2)-1+x 3=7. 16.计算:(1)|-2|+(-1)2+(-5)0-4(2)23(3)8127-+17.计算:(1) 80.25-⨯-(); (2)4225400+- ;(3)32333111-+-+-()(); (4)33331513432782125--+--- ;参考答案1.B2.C3.D4.D5.A6.A7.D8.C9.B10.C11.1 412.2或3 13.5 14.815.(1)92x=或12-;(2)2x=.16.(1)2(2)-317.(1)2;(2)-3;(3)-1;(4)-3。

2020年中考数学无理数与实数专题卷(有答案)

2020年中考数学无理数与实数专题卷(有答案)

2020年中考数学无理数与实数专题卷(有答案)一、单选题(共2题;共4分)1.在实数﹣、0、﹣、2015、π、﹣、0.1 中,无理数的个数是()A. 2个B. 3个C. 4个D. 5个2.下列运算正确的是()。

A. B. C. D.二、填空题(共3题;共3分)3.16的算术平方根为________。

4.若x,y为实数,且|x+2|+=0,则的值为________.5.在实数:1,﹣,,,π,3.1313313331…(两个1之间一次多一个3)中,无理数有________ 个.三、计算题(共14题;共93分)6. (1)计算|﹣|+ ×()﹣1﹣2cos45°﹣(π﹣1)0(2)解分式方程:﹣3=7.计算:﹣32+ ﹣(cos30°﹣1)0﹣(﹣)﹣3+82×0.1252.8.解方程:3x(2x+1)=4x+2.9.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.10.计算:(π﹣3.14)0+ ﹣()﹣2+2sin30°.11.综合题。

(1)计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2017)0.(2)解方程组:.12.计算。

(1)计算:;(2)计算:.13.计算:(tan60°)﹣1× ﹣|﹣|+23×0.125.14.解不等式组并写出它的所有非负整数解.15.计算:16.计算:.17.计算:.18.计算题:(1)30﹣(﹣3)2﹣()﹣1(2)(﹣3x)3+(x4)2÷(﹣x)5(3)(a+b﹣2)(a﹣b+2)19.计算:(1)化简:(2)解不等式组,并求其最小整数解..答案一、单选题1.A2. C二、填空题3.44. -15.3三、计算题6.(1)解:原式= +3×2﹣2× ﹣1= +6﹣﹣1=5(2)解:去分母得:1﹣3x+6=1﹣x,解得:x=3,经检验x=3是分式方程的解.所以,原方程的解为:x=37.解:原式=﹣9+3 ﹣1﹣(﹣2)3+(8×0.125)2=﹣10+3 +8+1 =3 ﹣18.解:方程整理得:3x(2x+1)﹣2(2x+1)=0,分解因式得:(3x﹣2)(2x+1)=0,可得3x﹣2=0或2x+1=0,解得:x1= ,x2=﹣9.解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c10.解:原式=1+2﹣4+2× =0.11.(1)解:原式=4× +2 ﹣3﹣2+1 =4 ﹣4;(2)解:①+②×5得:13x=13,解得:x=1,把x=1代入②得:2﹣y=1,解得:y=1,所以原方程组的解为:.12.(1)解:原式=1+3 ﹣2× ﹣8=1+3 ﹣﹣8=﹣7+2(2)解:原式= ﹣= = = =13.解:原式=()﹣1• ﹣+8×0.125==114.解:由①得4x+4≤7x+10,-3x≤6,x≥-2,由②得3x-15<x-8,2x<7,x< ,所以-2≤x< ,所以非负整数解为0,1,2,315.解:原式==9+8+1-3=15.16. 解:原式=1.17. 解:原式18.(1)解:原式=1﹣9﹣2=﹣10;(2)解:原式=﹣27x3﹣x3=﹣28x3;(3)解:原式=a2﹣(b﹣2)2=a2﹣b2+4b﹣4.19.(1)解:= •= •=(2)解:,解①得:x≤3,解②得:x>﹣2,故不等式组的解集为:﹣2<x≤3,故不等式的最小整数解为:﹣1。

浙江中考数学备考专题有理数、无理数与实数含答案(精选5份)

浙江中考数学备考专题有理数、无理数与实数含答案(精选5份)

2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共36分)1.x是最大的负整数,y是最小的正整数,z是绝对值最小的数,则x−y+z的值是().A.−2B.−1C.0D.22.大于-2.5且小于3.5的整数之和为().A.-3B.2C.0D.33.下列说法中,正确的是().A.两个负数的差一定是负数B.只有0的绝对值等于它本身C.有理数可以分为正有理数和负有理数D.只有0的相反数等于它本身4.下列4个式子,计算结果最小的是()A.−5+(−12)B.−5−(−12)C.−5×(−12)D.−5÷(−1 2)5.用四舍五入法,把4.76精确到十分位,取得的近似数是()A.5B.4.7C.4.8D.4.77 6.下列说法中正确的是()A.正数都带“+”号B.不带“+”号的数都是负数C.负数一定带“−”号D.带“−”号的数都是负数7.下列说法中正确的个数有()①最大的负整数是−1;②相反数是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示−a的点一定在原点的左边;⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A.1个B.2个C.3个D.4个8.如图,a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,−a,b,−b按照从大到小的顺序排列,正确的是()A.b>−a>a>−b B.b>a>−a>−bC.−a>b>a>−b D.−a>−b>a>b9.已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5 10.7个有理数相乘的积是负数,那么其中负因数的个数最多有()A.2种可能B.3种可能C.4种可能D.5种可能11.下列对于式子(−3)2的说法,错误的是()A.指数是2B.底数是−3C.幂为−3D.表示2个−3相乘12.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3B.3,3C.2,4D.3,4二、填空题(每题3分,共18分)13.绝对值大于2且不大于4的非负整数有.14.﹣123的倒数等于.15.某平台进行“天宫课堂”中国空间站全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000=.16.若|a-1|与|b+2|互为相反数,则a+b-12的值为.17.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c.18.定义运算a∗b={a b(a≤b,a≠0)b a(a>b,a≠0),若(m−1)∗(m−3)=1,则m的值为.三、计算题(共8分)19.计算(1)(−134)−(+613)−2.25+103;(2)214×(−67)÷(12−2);(3)(−34+56−712)÷(−124);(4)−14−16×[2−(−3)2].四、解答题(共5题,共35分)20.把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③﹣13,④0.618,⑤﹣√16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{ ……};分数集合:{ ……};无理数集合:{ ……}.21.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,−(−1),−1.5,−|−2|,−312.22.如果a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2.那么代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是多少?23.暑假《孤注一掷》成为了群众观影的首选,某市7月31日该电影首映日的售票量为1.1万张,8月1日到8月7日售票量的变化如下表(正号表示售票量比前一天多,负号表示售票量比前一天少):请根据以上信息,回答下列问题:(1)8月2日的售票量为多少万张?(2)8月7日与7月31日相比较,哪一天的售票量多?多多少万张?(3)若平均每张票价为50元,则8月1日到8月7日该市销售《孤注一掷》电影票共收入多少万元?24.2022年天猫平台“双十一”促销活动如火如荼地进行.小明发现天猫平台甲、乙、丙三家店铺在销售同一款标价均为30元的杯子,但三家的促销方式不同,具体优惠信息如下:(1)若小明想买25个该款杯子,请你帮小明分别计算一下甲、乙、丙三家店铺优惠后的实际价格,再挑选哪家店铺购买更优惠.(2)若小明想从丙店铺购买n个(n>100)该款杯子,请用含n的代数式表示优惠后购买的总价.(3)若小明想花费3000元在丙店铺来购买该款杯子,且恰好用完,则他能买多少个该款杯子?(注:假设小明均一次性购买)五、实践探究题(共3题,共23分)25.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5=.(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+⋯+a100的值.26.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?27.小江同学注意到妈妈手机中的电费短信(如下左图),对其中的数据产生了浓厚的兴趣,谷85度是什么意思电费是如何计算的?第一档与第二档又有什么关系?表1:宁波市居民生活用电标准(部分修改)【解读信息】通过互联网查询后获得上表(如表1).小江家采用峰谷电价计费,谷时用电量为85度,那么峰时用电量就是227−85=142度,由于小江家年用电量处在第一档,故9月份电费为:0.568×142+0.288×85=105.136≈105.14.第一档年用电量的上限为2760度,所以截至9月底小江家已经用电2760-581=2179度.不难发现,第二档所有电价均比第一档提高0.05元/度,第三档所有电价均比第一档提高0.3元/度.【理解信息】(1)若采用普通电价计费,小江家九月份的电费为元.(精确到0.01)(2)若采用峰谷电价计费,假设某月谷时用电量与月用电量的比值为m,那么处在第一档的1度电的电费可以表示成元.(用含有m的代数式表示)(3)【重构信息】12月份,小江家谷时用电量与月用电量的比值为0.2.请根据上述对话完成下列问题:①通过计算判断:截至12月底小江家的年用电量是否仍处于第一档?②12月份谁家的用电量多,多了多少?答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】C 13.【答案】-3,-4 14.【答案】﹣3515.【答案】3.79×106 16.【答案】−3217.【答案】2 18.【答案】1或419.【答案】(1)解:原式=(−134−214)+(−613+313)=−4−3=−7;(2)解:原式=94×(−67)÷(−32)=94×(−67)×(−23)=94×67×23=97; (3)解:原式=(−34+56−712)×(−24)=−34×(−24)+56×(−24)−712×(−24) =18−20+14=12;(4)解:原式=−1−16×[2−9]=−1−16×(−7)=−1+76=16.20.【答案】解:整数有:⑤﹣√16=﹣4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③﹣13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1)21.【答案】解:如图所示,,由图可知,−312⟨−|−2|<−1.5<−(−1)<3.22.【答案】解:∵a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2,∴a+b=0,cd=1,y+1=0,x−1=2或x−1=−2,解得y=−1,x=3或x=−1,当x=3时,原式=0+13+(−2)×(−1)=0+13+2=213;当x=−1时,原式=0+1−1+(−2)×(−1)=−1+2=1;综上,代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是213或1.23.【答案】(1)解:1.1+0.5+0.1=1.7(万张)(2)解:8月1日:1.1+0.5=1.6(万张);8月2日:1.6+0.1=1.7(万张);8月3日:1.7-0.3=1.4(万张);8月4日:1.4-0.2=1.2(万张);8月5日:1.2+0.4=1.6(万张);8月6日:1.6-0.2=1.4(万张);8月7日:1.4+0.1=1.5(万张).1.5-1.1=0.4(万张)答:8月7日的售票量多,多0.4万张.(3)解:1.6+1.7+1.4+1.2+1.6+1.4+1.5=10.4(万张)50x10.4=520(万元)答:共收入520万元24.【答案】(1)解:甲:30×25×90%−30×3=585(元)乙:30×25−60−50×2=590(元)丙:30×10+30×90%×15=705(元)因为585<590<705,所以挑选甲店铺更优惠.(2)解:30×10+30×90%×(50−10)+30×80%×(100−50)+30×70%×(n−100)=21n+480(元)(3)解:假设花费3000元以标价30元来购买该款杯子,则能买3000÷30=100个,那么优惠后至少能买100个.由(2)可知,令21n+480=3000,n=120答:他能买120个该款杯子.25.【答案】(1)19×11=12(19−111)(2)1(2n−1)(2n+1);12(12n−1−12n+1)(3)解:a1+a2+a3+⋯+a100=12(1−13)+12(13−15)+12(15−17)+...+12(1199−1201) =12×(1−13+13−15+15−17+...+1199−1201)=12×(1−1201) =12×200201=100201.26.【答案】(1)2或10(2)解:设点P表示的数为y,分四种情况:①P为【A,B】的好点.由题意,得y−(−20)=2(40−y),解得y=20,t=(40−20)÷2=10(秒);②A为【B,P】的好点.由题意,得40−(−20)=2[y−(−20)],解得y=10,t=(40−10)÷2=15(秒);③P为【B,A】的好点.由题意,得40−y=2[y−(−20)],解得y=0,t=(40−0)÷2=20(秒);④A为【P,B】的好点由题意得y−(−20)=2[40−(−20)]解得y=100(舍).⑤B为【A,P】的好点30=2t,t=15.综上可知,当t为10秒、15秒或20秒时,P、A和B中恰有一个点为其余两点的好点.故答案为:2或10.27.【答案】(1)122.13(2)(0.568-0.28m)(3)解:①假设小江家12月的用电量未超过第一档,那么该月最多支付电费:281×(0.568−0.28×0.2)=143.872(元),∵143.872<154.55,∴小江家12月份的用电量必定超过第一档;②设小江家12月份用电量为x度,143.872+0.8×0.618(x−281)+0.2×0.338(x−281)=154.55,143.872+0.4944x−138.9264+0.0676x−18.9956=154.55解得x=300,300−275=25(度),即小江家用电量多,比小北家多用25度.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共30分)1.-3,4,0,√2这四个数中,无理数是()A.-3B.4C.0D.√2 2.下列运算结果正确的是()A.√10÷√5=√5B.√9=±3C.(−√2)2=2D.√2+√3=√53.下列说法正确的是()A.4的平方根是2B.8的立方根是±2C.如果一个数的立方根是这个数本身,那么这个数是-1,0或1D.如果一个数的平方根是这个数本身,那么这个数是1或04.下列说法中:①立方根等于本身的是﹣1,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤π−3是负分数;其中正确的个数是()A.0个B.1个C.2个D.3个5.如图,实数-√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点6.若|x−y|−|x−z|=|y−z|,则实数x、y、z之间的大小关系可能为()A.x>y>z B.z>y>x C.y>x>z D.x>z> y7.数轴上依次排列的四个点,它们表示的数分别为a,b,c,d,若|a-c|=6,|a-d|=10,|b-d|=5,则|b-c|的值为().A.6B.5C.4D.1 8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,已知实数a在数轴上的对应点位置如图所示,则化简√(a−2)2的结果是()A.a﹣2B.﹣a﹣2C.1D.2﹣a 10.按顺序排列的若干个数:x1,x2,x3,……,x n(n是正整数),从第二个数x2开始,每一个数都等于1与它前面的那个数的差的倒数,即:x2=11−x1,x3=11−x2……,下列选项正确是()①若x2=5,则x7=45;②若x1=2,则x1+x2+x3+⋯+x2023=1013;③若(x1+1)(x2+1)x6=−1,则x1=√2A.①和③B.②和③C.①和②D.①②③都正确二、填空题(每题3分,共18分)11.比较大小:7-4√30.(填“<”“>”或“=”)12.已知一个立方体的体积是27cm3,那么这个立方体的棱长是cm.13.若y=√x−2+√2−x−3,则x+y的立方根是.14.若a与b互为相反数,m与n互为倒数,k的算术平方根为√2,则2022a+2021b+ mnb+k2的值为.15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8第二次→[√8]=2第三次→[√2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .16.电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足关系式Q =I 2Rt .已知导线的电阻为10Ω,通电2s 时间导线产生90J 的热量,则电流I 为 A .三、计算题(共6分)17.计算:(1)(√18−√12)×√3;(2)(√3+1)2−(1−√5)(√5+1).四、作图题(共9分)18.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数; (2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).五、解答题(共4题,共32分)19.把下列各数分别填在相应的括号内.﹣12,0,0.16,312,√3,﹣23√5,π3,√16,﹣√22,﹣3.14 有理数:{ }; 无理数:{ }; 负实数:{ }; 正分数:{ }.20.(1)先化简,再求值.已知a =1,b =−2,求多项式3ab −15b 2+5a 2−6ba +15a 2−2b 2的值. (2)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接. −1.5,−22,−(−4),0,−|−3|,√921.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,2a +9是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x. ①请用含x 的代数式表示线段BP 的长. ②当x 取何值时,BP =2AP ?22.解答下列各题:(1)计算:√(−10)2−(√15)2+√64.(2)已知点A(2,1),B(−4,a)在反比例函数y =kx(k ≠0)的图象上,试求a 的值. 六、实践探究题(共3题,共25分)23.数学活动课上,张老师说:“√2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(√2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”请你解答:(1)√5的整数部分是 ,小数部分是 .(2)已知8+√3=x +y ,其中x 是一个整数,且0<y <1,请求出3x +(y −√3)2020的值.24.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4.1]=4.(1)则[11.8]= ;[−11.9]= ;(2)现对119进行如下操作:119→第一次[√119]=10→第二次[√10]=3→第三次[√3]=1,这样对119只需进行3次操作后变为1.①对15进行1次操作后变为▲ ,对200进行3次操作后变为▲ ;②对实数m恰进行2次操作后变成1,则m最小可以取到▲ ;③若正整数m进,3次操作后变为1,求m的最大值.25.阅读材料:若点M,N在数轴上分别表示实数m,n,那么M,N之间的距离可表示为|m−n|.例如|3−1|,即表示3,1在数轴上对应的两点之间的距离;同样:|5+3|= |5−(−3)|表示5,−3在数轴上对应的两点之间的距离.根据以上信息,完成下列题目:(1)已知A,B,C为数轴上三点,点A对应的数为√2,点C对应的数为1.①若点B对应的数为−2,则B,C两点之间的距离为;②若点A到点B的距离与点A到点C的距离相等,则点B对应的数是.(2)对于|x−3|+|x+4|这个代数式.①它的最小值为;②若|x−3|+|x+4|+|y−1|+|y+2|=10,则x+y的最大值为.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】C11.【答案】>12.【答案】313.【答案】-114.【答案】215.【答案】25516.【答案】3√2217.【答案】(1)解:原式=√54−√36=3√6−6(2)3+2√3+1−1+5=8+2√3 18.【答案】(1)解:如图1所示,Rt△ABC即为所求;(2)解:如图所示,Rt△DEF即为所求;(3)解:如图所示,OPQ 即为所求.19.【答案】解:有理数:﹣12,0,0.16,312,√16,﹣3.14;无理数:√3,﹣23√5,π3,﹣√22;负实数:﹣12,﹣23√5,﹣√22,-3.14;正分数:0.16,312.20.【答案】(1)解:3ab −15b 2+5a 2−6ba +15a 2−2b 2=−3ab −17b 2+20a 2,当a =1,b =−2时,原式=−3×1×(−2)−17×(−2)2+20×12=6−68+20=−42.(2)解:如图所示:,−22<−|−3|<−1.5<0<√9<−(−4)21.【答案】(1)解:∵2a +9是27的立方根,∴2a +9=√273=3, 则a =−3.∵a ,b 互为相反数,∴b=−a=3.∴AB=3−(−3)=6(2)解:①∵点P在射线BA上,它在数轴上对应的数为x.∴线段BP=3−x②当点P在点A右侧时,∵BP=2AP,∴3−x=2(x+3),解得x=−1.当点P在点A左侧时,∵BP=2AP,∴3−x=2(−3−x),解得x=−9.综上,当x=−1或−9时,BP=2AP.22.【答案】(1)解:原式=10−15+8=3(2)解:∵点A(2,1),B(−4,a)在反比例函数y=kx(k≠0)的图象上,∴k=1×2=−4⋅a,∴a=−1 2.23.【答案】(1)2;√5-2(2)解:∵1<√3<2,∴9<8+√3<10,∵8+√3=x+y,其中x是一个整数,且0<y<1,∴x=9,y=8+√3−9=√3−1∴3x+(y−√3)2020=3×9+(√3−1−√3)2020=27+1=28.24.【答案】(1)11;-12(2)解:①3;1②4;③∵[x]=1,∴1≤x<2,∴1≤√m<2,∴1≤m<4,∴1≤√m<16,∴1≤m<256.∵3次操作,故m≥16.∴16≤m<256.∵m是整数.∴m的最大值为255.25.【答案】(1)3;2√2−1(2)7;42024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共30分)1.-3,4,0,√2这四个数中,无理数是()A.-3B.4C.0D.√2 2.下列运算结果正确的是()A.√10÷√5=√5B.√9=±3C.(−√2)2=2D.√2+√3=√53.下列说法正确的是()A.4的平方根是2B.8的立方根是±2C.如果一个数的立方根是这个数本身,那么这个数是-1,0或1D.如果一个数的平方根是这个数本身,那么这个数是1或04.下列说法中:①立方根等于本身的是﹣1,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤π−3是负分数;其中正确的个数是()A.0个B.1个C.2个D.3个5.如图,实数-√2+1在数轴上的对应点可能是()A .A 点B .B 点C .C 点D .D 点6.若|x −y|−|x −z|=|y −z|,则实数x 、y 、z 之间的大小关系可能为( )A .x >y >zB .z >y >xC .y >x >zD .x >z >y7.数轴上依次排列的四个点,它们表示的数分别为a ,b ,c ,d ,若|a -c|=6,|a -d|=10,|b -d|=5,则|b -c|的值为( ). A .6B .5C .4D .18.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.如图,已知实数a 在数轴上的对应点位置如图所示,则化简√(a −2)2的结果是( )A .a ﹣2B .﹣a ﹣2C .1D .2﹣a10.按顺序排列的若干个数:x 1,x 2,x 3,……,x n (n 是正整数),从第二个数x 2开始,每一个数都等于1与它前面的那个数的差的倒数,即:x 2=11−x 1,x 3=11−x 2……,下列选项正确是( )①若x 2=5,则x 7=45;②若x 1=2,则x 1+x 2+x 3+⋯+x 2023=1013;③若(x 1+1)(x 2+1)x 6=−1,则x 1=√2 A .①和③ B .②和③ C .①和②D .①②③都正确二、填空题(每题3分,共18分)11.比较大小:7-4√3 0. (填“<”“>”或“=”)12.已知一个立方体的体积是27cm 3,那么这个立方体的棱长是 cm . 13.若y =√x −2+√2−x −3,则x +y 的立方根是 .14.若a 与b 互为相反数,m 与n 互为倒数,k 的算术平方根为√2,则2022a +2021b +mnb +k 2的值为 .15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8第二次→[√8]=2第三次→[√2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是.16.电流通过导线时会产生热量,电流I(单位:A)、导线电阻R(单位:Ω)、通电时间t(单位:s)与产生的热量Q(单位:J)满足关系式Q=I2Rt.已知导线的电阻为10Ω,通电2s时间导线产生90J的热量,则电流I为A.三、计算题(共6分)17.计算:(1)(√18−√12)×√3;(2)(√3+1)2−(1−√5)(√5+1).四、作图题(共9分)18.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数;(2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).五、解答题(共4题,共32分)19.把下列各数分别填在相应的括号内.﹣12,0,0.16,312,√3,﹣23√5,π3,√16,﹣√22,﹣3.14有理数:{ };无理数:{ };负实数:{ };正分数:{ }.20.(1)先化简,再求值.已知a=1,b=−2,求多项式3ab−15b2+5a2−6ba+15a2−2b2的值.(2)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接.−1.5,−22,−(−4),0,−|−3|,√921.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,2a +9是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x. ①请用含x 的代数式表示线段BP 的长. ②当x 取何值时,BP =2AP ?22.解答下列各题:(1)计算:√(−10)2−(√15)2+√64.(2)已知点A(2,1),B(−4,a)在反比例函数y =kx(k ≠0)的图象上,试求a 的值. 六、实践探究题(共3题,共25分)23.数学活动课上,张老师说:“√2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(√2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”请你解答:(1)√5的整数部分是 ,小数部分是 .(2)已知8+√3=x +y ,其中x 是一个整数,且0<y <1,请求出3x +(y −√3)2020的值.24.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4.1]=4.(1)则[11.8]= ;[−11.9]= ;(2)现对119进行如下操作:119→第一次[√119]=10→第二次[√10]=3→第三次[√3]=1,这样对119只需进行3次操作后变为1.①对15进行1次操作后变为 ▲ ,对200进行3次操作后变为 ▲ ;②对实数m恰进行2次操作后变成1,则m最小可以取到▲ ;③若正整数m进,3次操作后变为1,求m的最大值.25.阅读材料:若点M,N在数轴上分别表示实数m,n,那么M,N之间的距离可表示为|m−n|.例如|3−1|,即表示3,1在数轴上对应的两点之间的距离;同样:|5+3|= |5−(−3)|表示5,−3在数轴上对应的两点之间的距离.根据以上信息,完成下列题目:(1)已知A,B,C为数轴上三点,点A对应的数为√2,点C对应的数为1.①若点B对应的数为−2,则B,C两点之间的距离为;②若点A到点B的距离与点A到点C的距离相等,则点B对应的数是.(2)对于|x−3|+|x+4|这个代数式.①它的最小值为;②若|x−3|+|x+4|+|y−1|+|y+2|=10,则x+y的最大值为.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】C11.【答案】>12.【答案】313.【答案】-114.【答案】215.【答案】25516.【答案】3√2217.【答案】(1)解:原式=√54−√36=3√6−6(2)3+2√3+1−1+5=8+2√3 18.【答案】(1)解:如图1所示,Rt△ABC即为所求;(2)解:如图所示,Rt△DEF即为所求;(3)解:如图所示,OPQ 即为所求.19.【答案】解:有理数:﹣12,0,0.16,312,√16,﹣3.14;无理数:√3,﹣23√5,π3,﹣√22;负实数:﹣12,﹣23√5,﹣√22,-3.14;正分数:0.16,312.20.【答案】(1)解:3ab −15b 2+5a 2−6ba +15a 2−2b 2=−3ab −17b 2+20a 2,当a =1,b =−2时,原式=−3×1×(−2)−17×(−2)2+20×12=6−68+20=−42.(2)解:如图所示:,−22<−|−3|<−1.5<0<√9<−(−4)21.【答案】(1)解:∵2a +9是27的立方根,∴2a +9=√273=3, 则a =−3.∵a ,b 互为相反数,∴b=−a=3.∴AB=3−(−3)=6(2)解:①∵点P在射线BA上,它在数轴上对应的数为x.∴线段BP=3−x②当点P在点A右侧时,∵BP=2AP,∴3−x=2(x+3),解得x=−1.当点P在点A左侧时,∵BP=2AP,∴3−x=2(−3−x),解得x=−9.综上,当x=−1或−9时,BP=2AP.22.【答案】(1)解:原式=10−15+8=3(2)解:∵点A(2,1),B(−4,a)在反比例函数y=kx(k≠0)的图象上,∴k=1×2=−4⋅a,∴a=−1 2.23.【答案】(1)2;√5-2(2)解:∵1<√3<2,∴9<8+√3<10,∵8+√3=x+y,其中x是一个整数,且0<y<1,∴x=9,y=8+√3−9=√3−1∴3x+(y−√3)2020=3×9+(√3−1−√3)2020=27+1=28.24.【答案】(1)11;-12(2)解:①3;1②4;③∵[x]=1,∴1≤x<2,∴1≤√m<2,∴1≤m<4,∴1≤√m<16,∴1≤m<256.∵3次操作,故m≥16.∴16≤m<256.∵m是整数.∴m的最大值为255.25.【答案】(1)3;2√2−1(2)7;42024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题4分,共40分)1.2023的相反数是()A.2023B.|2023|C.12023D.-2023 2.-2023的倒数是()A.2023B.12023C.-2023D.−1 20233.计算3+(−1)的结果为()A.-4B.2C.-2D.4 4.下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5| 5.在4,-2,0,13四个数中,最小的为()A.4B.-2C.0D.13 6.下列计算中错误的有()个.( 1 )√9=±3;(2)﹣1﹣1=0 ;(3)(﹣1)﹣1=0;(4)(﹣1)0=1.A.1B.2C.3D.4 7.我们可用数轴直观研究有理数及其运算.如图,将物体从点A向左平移5个单位到点B,可以描述这一变化过程的算式为().A .2+(−5)B .2−(−5)C .2×(−5)D .2÷(−5)8.杭州亚运会赛会志愿者招募自启动以来,得到了社会群体和高校学生的积极响应,注册总人数超32万人.其中32万用科学记数法可表示为( ) A .32×104B .3.2×105C .3.2×106D .0.32×1069.“宁波地铁”发文称,2023年2月13日至6月30日,每天晚上8点后及法定节假日全天,宁波地铁1—5号线全线网皆可免费乘车,免费时段无需购票、刷卡、扫码,可直接进站乘车.2月17日,宁波地铁限时段免费后的首个周五,地铁客流量达到约107.6万人次.数107.6万用科学记数法表示为( ) A .1.076×105B .10.76×105C .1.076×106D .0.1076×10610.如图是某品牌鞋服店推出的优惠活动,小明看中了一双鞋子和一双原价80元的袜子,若购买这双鞋子和这双袜子所付的费用与单独购买这双鞋子所付的费用相同,则这双鞋子的原价可能是( ).A .269元B .369元C .569元D .669元二、填空题(每题5分,共30分)11.若a ,b 互为相反数,则(a +b)2= . 12.请任意写出一个介于−12到−13之间的数 .13.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .14.定义:[x]表示不大于x 的最大整数, (x)表示不小于x 的最小整数, 例如: [2.3]=2, (2.3)=3,[−2.3]=−3,(−2.3)=−2. 则[1.7]+(−1.7)= . 15.如果实数x ,y 满足方程组{x −2y =−1x +y =2,那么(2x -y )2022= .16.请用“<”符号将下面实数(−3)2,√18,−6,|−4|连接起来 .三、计算题(共10分)17.用简便运算进行计算: (1)(12−16+13)×(−24);(2)(−0.25)2019×42020;四、解答题(共3题,共40分)18.先计算,再阅读材料,解决问题: (1)计算: (13−16+12)×12 .(2)认真阅读材料,解决问题: 计算:130÷(23−110+16−25). 分析:利用通分计算 23−110+16−25的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:(23−110+16−25)÷130=(23−110+16−25)×30 =23×30−110×30+16×30−25×30 =20−3+5−12=10 . 故原式 =110. 请你根据对所提供材料的理解,选择合适的方法计算: (−152)÷(34−526+12−213) . 19.新农村建设中,某镇成立了新型农业合作社,扩大了油菜种植面积,今年2000亩油菜喜获丰收.该合作社计划租赁5台油菜收割机机械化收割,一台收割机每天大约能收割40亩油菜.(1)求该合作社按计划几天可收割完这些油菜;(2)该合作社在完成了一半收割任务时,从气象部门得知三天后有降雨,于是该合作社决定再租赁3台油菜收割机加入抢收,并把每天的工作时间延长10%,请判断该合作社能否完成抢收任务,并说明理由.20.为节约用水,某市居民生活用水按级收费,水费分为三个等级(如图);例如:某户用水量为35吨,则水费为20×2.5+(30-20)×3.45=101.75(元).(1)若某住户收到一张自来水总公司水费专用发票,其中上期抄表数为587吨,本期抄表数为617吨,请计算本期该用户应付的水费.(2)若该住户的用水量为x吨(20<x≤40),应付水费为y元,求出y关于x的函数表达式.(3)小明爸爸收到水费短信通知:2022年2月本期用水量为45吨,水费为150.5元.根据此通知求出第三级收费标准a的值.答案解析部分1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】B9.【答案】C10.【答案】C11.【答案】012.【答案】−2513.【答案】314.【答案】015.【答案】116.【答案】-6<|−4|<√18<(−3)217.【答案】(1)解:原式 =12×(−24)−16×(−24)+13×(−24) =(−12)−(−4)+(−8)=(−12)+(−8)+4=−20+4=−16或 原式 =(36−16+26)×(−24) =46×(−24) =−16(2)解:原式= (−0.25)2019×42019×4=(−0.25×4)2019×4=(−1)2019×4=(−1)×4=−4 .18.【答案】(1)解:计算: (13−16+12)×12 =13×12−16×12+12×12 =4−2+6=8(2)解:原式的倒数是: (34−526+12−213)×(−52) , =34×(−52)−526×(−52)+12×(−52)−213×(−52) , =−39+10−26+8 ,=−47 ,故原式 =−147. 19.【答案】(1)解:设该合作社按计划x 天可收割完这些油菜5×40x =2000解得:x =10答:该合作社按计划10天可收割完这些油菜;(2)解:原来一天的收割量:5×40=200(亩),现在一天的收割量:(5+3)×40×(1+10%)=352(亩),现在三天可完成的收割量:352×3=1056(亩)>1000亩.答:该合作社能完成抢收任务.20.【答案】(1)解:用水量:617−587=30(吨).水费:20×2.5+(30−20)×3.45=84.5(元).答:本期该用户应付水费84.5元.(2)解:y =2.5×20+3.45×(x −20)=3.45x −19(20<x ≤40)∴y 关于x 的函数表达式为:y =3.45x −19(20<x ≤40)(3)解:据题意可列方程:20×2.5+20×3.45+(45−40)a =150.5解得a =6.3答:a 的值为6.3.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题1.2022的倒数是()A.2022B.-2022C.12022D.−1 20222.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(午位:dBm),则下列信号最强的是()A.-50B.-60C.-70D.-80 3.计算结果等于2的是()A.|−2|B.−|2|C.2−1D.(−2)0 4.(−2)2+22=()A.0B.2C.4D.8 5.如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.2 6.据中国宁波网消息:2023年一季度宁波全市实现地区生产总值380180000000元,同比增长4.5%.数380180000000用科学记数法表示为()A.0.38018×1012B.3.8018×1011C.3.8018×1010D.38.018×10107.已知数轴上的点A,B分别表示数a,b,其中−1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.8.已知M=20222,N=2021×2023,则M与N的大小关系是()A.M>N B.M<N C.M=N D.不能确定9.已知方程组{a−2b=63a−b=m中,a,b互为相反数,则m的值是()A.4B.﹣4C.0D.8 10.在某次演讲比赛中,五位评委要给选手圆圆打分,得到互不相等的五个分数。

2020年全国中考数学试卷分类汇编(一)专题2 实数(无理数,平方根,立方根)(含解析)

2020年全国中考数学试卷分类汇编(一)专题2 实数(无理数,平方根,立方根)(含解析)

实数(无理数,平方根,立方根)一.选择题1.(2020•湖北武汉•3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2 D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.(2020•江苏省盐城市•3分)实数a,b在数轴上表示的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|【分析】根据在数轴上表示的两个实数,右边的总比左边的大,即可判断.【解答】解:根据实数a,b在数轴上表示的位置可知:a<0,b>0,∴a<b.故选:C.【点评】本题考查了实数与数轴、绝对值,解决本题的关键是掌握数轴.3.(2020•湖北武汉•3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2 D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4. (2020•江苏省常州市•2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:m6÷m2=m6﹣2=m4.故选:B.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.5. (2020•江苏省常州市•2分)8的立方根为()A.B.C.2 D.±2【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选:C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.6 (2020•江苏省淮安市•3分)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.520【分析】设较小的奇数为x,较大的为x+2,根据题意列出方程,求出解判断即可.【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7. (2020•江苏省连云港市•3分)3的绝对值是()A.﹣3 B.3 C.D.【分析】根据绝对值的意义,可得答案.【解答】解:|3|=3,故选:B.【点评】本题考查了实数的性质,利用绝对值的意义是解题关键.8. (2020•江苏省苏州市•3分)在下列四个实数中,最小的数是()A. 2B. 13C. 0D. 3【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13<3,所以四个实数中,最小的数是-2.故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9. (2020•江苏省南京市•2分)3的平方根是()A.9 B.C.﹣D.±【分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.【解答】解:∵()2=3,∴3的平方根.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10. (2020•湖南省怀化市•3分)下列数中,是无理数的是()A.﹣3 B.0 C.D.【分析】根据无理数的三种形式求解即可.【解答】解:﹣3,0,是有理数,是无理数.故选:D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.11. (2020•湖南省株洲市·4分)下列不等式错误的是()A.﹣2<﹣1 B.π<C.D.>0.3【分析】对于选项A,根据两个负数绝对值大的反而小即可得﹣2<﹣1;对于选项B,由3<π<4,,即可得;对于选项C,由,6.25<10,可得;对于选项D,由实数大小的比较可得.由此可得只有选项C错误.【解答】解:A.根据两个负数绝对值大的反而小可得﹣2<﹣1,原不等式正确,故此选项不符合题意;B.由3<π<4,可得,原不等式正确,故此选项不符合题意;C.由,6.25<10,可得,原不等式错误,故此选项符合题意;D.由=0.3333…,可得,原不等式正确,故此选项不符合题意.故选:C.【点评】本题考查了实数的大小比较及无理数的估算,熟练运用实数大小的比较方法及无理数的估算方法是解决问题的关键.12. (2020•湖南省长沙市·3分)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③B.①③C.①④D.②④【分析】根据实数的分类和π的特点进行解答即可得出答案.【解答】解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A.【点评】此题考查了实数,熟练掌握实数的分类和“π”的意义是解题的关键.二.填空题1.(2020•湖北武汉•3分)计算的结果是3.【分析】根据二次根式的性质解答.【解答】解:==3.故答案为:3.【点评】解答此题利用如下性质:=|a|.2.(2020•湖北襄阳•3分)函数y=中自变量x的取值范围是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.3.(2020•湖南省常德•3分)若代数式在实数范围内有意义,则x的取值范围是x>3.【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.【解答】解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.4.(2020•湖南省常德•3分)计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=﹣+2=3.故答案为:3.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.5.(2020•湖北省黄冈市•3分)计算=﹣2.【分析】依据立方根的定义求解即可.【解答】解:=﹣2.故答案为:﹣2.【点评】本题主要考查的是立方根的性质,熟练掌握立方根的性质是解题的关键.6.(2020•湖北省黄冈市•3分)若|x﹣2|+=0,则﹣xy=2.【分析】根据非负数的性质进行解答即可.【解答】解:∵|x﹣2|+=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴,故答案为2.【点评】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.。

最新中考数学总复习(2)无理数与实数-精练精析(1)及答案解析

最新中考数学总复习(2)无理数与实数-精练精析(1)及答案解析

就是 a 的平方根,由此即可解决问题.
解答:
解:∵(±2)2=4,
∴4 的平方根是±2.
故答案为:±2.
点评:
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;
0 的平方根是 0;负数没有平方根.
10.计算: = 3 .
考点:
算术平方根.
专题:
计算题.
分析:
根据算术平方根的定义计算即可.
考点:
算术平方根.
专题:
计算题.
பைடு நூலகம்分析:
首先根据算术平方根的定义计算先 =2,再求 2 的算术平方根即可.
解答:
解:∵ =2,
∴ 的算术平方根为 .
故答案为: .
点评:
此题考查了算术平方根的定义,解题的关键是知道 =2,实际上这个题是
求 2 的算术平方根.注意这里的双重概念.
12.计算:
=
﹣8 .
考点:
要进“5000G网课视频共享群”的到QQ:763491846的空间日志查看(另有全部学科的300个资料群)
资料下载来源:黄冈中学资料共享群:761889459,全国初中数学教师群:95837671,
无理数与实数 1 参考答案与试题解析
一.选择题(共 8 小题)
1.8 的平方根是( )
A. 4
B.±4
之值的个位数字为何?
4.已知边长为 a 的正方形的面积为 8,则下列说法中,错误的是( ) A.a 是无理数 B.a 是方程 x2﹣8=0 的一个解
C.a 是 8 的算术平方根 D.a 满足不等式组
5.化简 得( ) A.100 B.10 C. D.±10
6.若实数 x、y 满足 A.1 B. C.2 D.

2020年中考数学无理数和实数专题卷五

2020年中考数学无理数和实数专题卷五

B. 2x+5x+5=0
C. 2x+5x- 5=0
8.介于 +1 和
之间的整数是( )
A. 2
B. 3
9.实数 a 在数轴上的位置如图所示,则
C. 4
a,- a,
2
,a
的大小关系是(

D. 5< m< 6 D. ﹣3 D. 0.35
D. 2x+5=0 D. 5
2
A. a<- a< <a
2
B.- a< <a<a
12.若 x 的平方根是 4 ,则 的值是 ________.
13.在 , 0.2020020002 …(每两个 2 之间 0 的个数逐次加 1), , ﹣0. , 中,无理数有
________ 个.
14.若

是同类项,则
的值为 ________
15.已知 △ ABC的内角满足
=________度。
第 5页 共 6页
在 Rt△ OAP 中, sinP= 设 OA=3x,则 OP=5x, AP=4x ∴ 4x= 解之: x= ∴ OA=3× =10 ∴ ⊙ O 的半径为 10
第 6页 共 6页
23. ( 1)解:∵ m = +2, n = -2
∴ m+n=2 ,mn=3
第 4页 共 6页
( m + 1) (n+ 1)=mn+(m+n)+1=2 +3+1=
( 2)解:
24.解:( 3﹣ π) 0+4sin45 ﹣°
+|1 ﹣
| =1+4 × ﹣ 2
﹣1
=1
﹣2

2020年中考数学一轮专项复习——无理数与实数 中考真题汇编(含解析答案)

2020年中考数学一轮专项复习——无理数与实数中考真题汇编一.选择题1.(2019•济南)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>0 2.(2019•南通)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间3.(2019•莱芜区)在下列四个实数中,最大的数是()A.﹣1 B.﹣C.D.4.(2019•大庆)有理数﹣8的立方根为()A.﹣2 B.2 C.±2 D.±4 5.(2019•宁夏)下列各式中正确的是()A.=±2 B.=﹣3 C.=2 D.﹣=6.(2019•包头)计算|﹣|+()﹣1的结果是()A.0 B.C.D.6 7.(2019•吉林)若a为实数,则下列各式的运算结果比a小的是()A.a+1 B.a﹣1 C.a×1 D.a÷1 8.(2019•柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是()A.﹣6 B.6 C.5 D.﹣5 9.(2019•邵阳)下列各数中,属于无理数的是()A.B.1.414 C.D.10.(2019•宜昌)如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是()A.点A B.点B C.点C D.点D 11.(2019•咸宁)下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数12.(2019•荆门)﹣的倒数的平方是()A.2 B.C.﹣2 D.﹣13.(2019•广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.<0 14.(2019•常德)下列各数中比3大比4小的无理数是()A.B.C.3.1 D.15.(2019•舟山)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1 C.0 D.12019 16.(2019•南京)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根17.(2019•白银)下列整数中,与最接近的整数是()A.3 B.4 C.5 D.618.(2019•重庆)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间二.填空题19.(2019•恩施州)0.01的平方根是.20.(2019•青海)根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y 值等于.21.(2019•青海)﹣5的绝对值是;的立方根是.22.(2019•莱芜区)计算:(﹣)﹣1++|1﹣π|=.23.(2019•上海)如果一个正方形的面积是3,那么它的边长是.24.(2019•陕西)已知实数﹣,0.16,,π,,,其中为无理数的是.25.(2019•辽阳)6﹣的整数部分是.26.(2019•遂宁)阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i 叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=.27.(2019•台州)若一个数的平方等于5,则这个数等于.28.(2019•临沂)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.29.(2019•舟山)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).30.(2019•成都)估算:≈(结果精确到1)三.解答题31.(2019•济南)计算:()﹣1+(π+1)0﹣2cos60°+32.(2019•青海)计算:(﹣1)0+(﹣)﹣1+|﹣1|﹣2cos45°33.(2019•大庆)计算:(2019﹣π)0+|1﹣|﹣sin60°.34.(2019•沈阳)计算:(﹣)﹣2+2cos30°﹣|1﹣|+(π﹣2019)0.35.(2019•陕西)计算:﹣2×+|1﹣|﹣()﹣236.(2019•永州)计算:(﹣1)2019+×sin60°﹣(﹣3).37.(2019•通辽)计算:﹣14﹣|﹣1|+(﹣1.414)0+2sin60°﹣(﹣)﹣138.(2019•上海)计算:|﹣1|﹣×+﹣8参考答案一.选择题1.解:由图可知,b <0<a ,且|b |<|a |, ∴a ﹣5>b ﹣5,6a >6b ,﹣a <﹣b ,a ﹣b >0, ∴关系式不成立的是选项C . 故选:C .2.解:由勾股定理得,OB ==,∵9<13<16, ∴3<<4,∴该点位置大致在数轴上3和4之间. 故选:C .3.解:∵﹣<﹣1<<,∴四个实数中,最大的数是. 故选:C .4.解:有理数﹣8的立方根为.故选:A . 5.解:A .,故选项A 不合题意;B .,故选项B 不合题意;C .,故选项C 不合题意;D .,故选项D 符合题意.故选:D .6.解:原式=3+3=6. 故选:D .7.解:A .a +1>a ,选项错误;B.a﹣1<a,选项正确;C.a×1=a,选项错误;D.a÷1=a,选项错误;故选:B.8.解:∵(3﹣mi)2=32﹣2×3×mi+(mi)2=9﹣6mi+m2i2=9+m2i2﹣6mi=9﹣m2﹣6mi,∴复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,∴﹣6m=12,∴m=﹣2,∴9﹣m2=9﹣(﹣2)2=9﹣4=5.故选:C.9.解:=2是有理数;是无理数;故选:C.10.解:因为无理数π大于3,在数轴上表示大于3的点为点D;故选:D.11.解:0既不是正数也不是负数,0是有理数.故选:C.12.解:﹣的倒数的平方为:.故选:B.13.解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.14.解:∵四个选项中是无理数的只有和,而>4,3<<4∴选项中比3大比4小的无理数只有.故选:A.15.解:由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.16.解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.17.解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.18.解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.二.填空题(共12小题)19.解:0.01的平方根是±0.1,故答案为:±0.1;20.解:当x=1时,x2﹣=1﹣<0,∴y=(1﹣)(1+)=1﹣3=﹣2,故答案为:﹣2.21.解:﹣5的绝对值是5;的立方根是.故答案为:5,.22.解:原式=﹣3+4+π﹣1=π.故答案为:π.23.解:∵正方形的面积是3,∴它的边长是.故答案为:24.解:,、0.16是有理数;无理数有、π、.故答案为:、π、.25.解:∵1<<2,∴6﹣的整数部分是6﹣2=4.故答案为:4.26.解:(1+2i)(2﹣i)+(2﹣i)2=2﹣i+4i﹣2i2+4+i2﹣4i =6﹣i﹣i2=6﹣i+1=7﹣i.故答案为:7﹣i.27.解:若一个数的平方等于5,则这个数等于:±.故答案为:±.28.解:∵=10,∴m4=104,∴m=±10.故答案为:±1029.解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b30.解:∵,∴,而37.7﹣36<49﹣37.7∴≈6.故答案为:6三.解答题(共8小题)31.解:()﹣1+(π+1)0﹣2cos60°+=2+1﹣2×+3=3﹣1+3=532.解:原式=1﹣3+﹣1﹣2×=1﹣3+﹣1﹣=﹣3.33.解:原式=1+﹣1﹣=.34.解:原式=4+2×﹣+1+1=6.35.解:原式=﹣2×(﹣3)+﹣1﹣4=1+.36.解:(﹣1)2019+×sin60°﹣(﹣3)=﹣1+2×+3=﹣1+3+3=537.解:原式=﹣1﹣(﹣1)+1+2×+2=﹣1﹣+1+1++2=3.38.解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3。

2020年中考复习实数中无理数的估值专题训练题(二)(解析版)

2020中考复习实数中无理数的估值专题训练试题(二)姓名:___________班级:___________考号:___________一、选择题3最接近的整数是1.下列整数中,与√25A. 2B. 3C. 4D. 52.估计√7+1的值().A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间3.整数n满足n<2√6<n+1,则n的值为A. 4B. 5C. 6D. 74.如图,数轴上点P表示的数可能是()A. √17B. √13C. √7D. √35.若√7的整数部分为x,小数部分为y,则x(y−√7)的值是()A. √7B. −4C. 4D. −√76.如图,已知数轴上的点A、B、C、D分别表示数−2、−1、1、2,则表示1−√7的点P应落在线段A. AB上B. OB上C. OC上D. CD上7.若√40.40≈6.356,则√0.404的值约为A. 63.56B. 0.006356C. 635.6D. 0.63568.定义:对任意实数,表示不超过的最大整数,如,,.对数字进行如下运算:①;②;③,这样对数字运算次后的值就为,像这样对一个正整数总可以经过若干次运算后值为,则数字经过()次运算后的结果为.A. B. C. D.二、填空题9.满足√5<x<√18的整数x的值是_________.10.大于−√2,小于√10的整数有__________个.11.把无理数√17,√11,√5,−√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是______.12.规定:[x]表示不超过x的最大整数,例如:[3.69]=3,[−3.69]=−4,[√3]=1.计算:[−√17]−1=______ .13.已知5a+2的立方根是3,3a+b−1的算术平方根是4,c是√13的整数部分.则a−b−c的值为_____.+2=x的正实数根为x0,设m<x0<n,其中m、n是两个连续的整数,14.若方程4x则m+n=_________.三、解答题3的整数部分,求a+2b+c的15.已知√2a−1=3,3a+b−1平方根是±4,c是√75平方根.16.已知实数√3+1的整数部分为m,小数部分为n.(1)求m,n的值;(2)在平面直角坐标系中,试判断点(m−1,n−1)位于第几象限;(3)若m,n+1为一个直角三角形的斜边与一条直角边的长,求这个直角三角形的面积.17.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出√2的近似值,得出1.4<√2<1.5。

2020全国中考数学试卷分类汇编第二期专题2 实数(无理数,平方根,立方根)(含解析)

实数(无理数,平方根,立方根)一.选择题1.(2020•山东省枣庄市•3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1-a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.【解答】解:A.|a|>1,故本选项错误;B.∵a<0,b>0,∴ab<0,故本选项错误;C.a+b<0,故本选项错误;D.∵a<0,∴1-a>1,故本选项正确;故选D.【点评】此题主要考查了实数与数轴,正确结合数轴分析是解题关键.2. (2020•四川省达州市•3分)下列各数中,比3大比4小的无理数是()A.3.14 B.C.D.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.解:3=,4=,A.3.14是有理数,故此选项不合题意;B.是有理数,故此选项不符合题意;C.是比3大比4小的无理数,故此选项符合题意;D.比4大的无理数,故此选项不合题意;故选:C.3. (2020•山东东营市•3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A. 2-B. 2C. 2±D. 4【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】4的算术平方根42,故选:B.【点睛】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握.4.(2020•山东聊城市•3分)在实数﹣1,﹣,0,中,最小的实数是()A.﹣1 B.C.0 D.﹣【分析】直接利用实数比较大小的方法得出答案.【解答】解:∵|﹣|>|﹣1|,∴﹣1>﹣,∴实数﹣1,﹣,0,中,﹣<﹣1<0<.故4个实数中最小的实数是:﹣.故选:D.【点评】此题主要考查了实数比较大小,正确掌握实数大小比较方法是解题关键.5. (2020•四川省凉山州•4分)下列等式成立的是()A.=±9 B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2 D.(tan45°﹣1)0=1【分析】根据算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定逐一判断即可得.【解答】解:A.=9,此选项计算错误;B.|﹣2|=﹣2,此选项错误;C.(﹣)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.【点评】本题主要考查实数的运算,解题的关键是掌握算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定.6. (2020•四川省凉山州•4分)函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x +1≥0, 解得x ≥﹣1. 故答案为:x ≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 二.填空题1. (2020•四川省遂宁市•4分)下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有 3 个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3.【点评】本题考查了无理数的知识,解答本题的掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 2. (2020•山东省潍坊市•3分)若|a -2|+=0,则a +b = .【分析】根据非负数的性质列式求出A.b 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得,a -2=0,b -3=0,解得a =2,b =3,∴a +b =2+3=5. 故答案为5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 3. 2020年内蒙古通辽市计算:(1)0(3.14)π-= ______;(2)2cos45︒=______;(3)21-= ______.【答案】 (1). 1 (2). 2 (3). -1【解析】 【分析】根据零指数幂,特殊角的三角函数值,乘方运算法则分别计算即可.【详解】解:0(3.14)π-=1,2cos45︒=2×22=2, 21-=-1,故答案为:1,2,-1.【点睛】本题考查了零指数幂,特殊角的三角函数值,乘方运算,掌握运算法则是关键. 4. (2020•山东淄博市•4分)计算:+= 2 .【分析】分别根据立方根的定义与算术平方根的定义解答即可. 【解答】解:+=﹣2+4=2.故答案为:2【点评】本题主要考查了立方根与算术平方根,熟记立方根与二次根式的性质是解答本题的关键.5. (2020•陕西•3分)计算:(2+)(2﹣)= 1 .【分析】先利用平方差公式展开得到原式=22﹣()2,再利用二次根式的性质化简,然后进行减法运算. 【解答】解:原式=22﹣()2=4﹣3 =1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.6. (2020•广东省•4分)若2-a +|b +1|=0,则(a +b )2020=_________. 【答案】1【解析】算术平方根、绝对值都是非负数,∴a =2,b =-1,-1的偶数次幂为正 【考点】非负数、幂的运算 7. (2020•北京市•2分)写出一个比大且比小的整数 2或3(答案不唯一) .【分析】先估算出和的大小,再找出符合条件的整数即可.【解答】解:∵1<<2,3<<4,∴比大且比小的整数2或3(答案不唯一).故答案为:2或3(答案不唯一).【点评】本题主要考查了估算无理数的大小,根据题意估算出和的大小是解答此题的关键.8. (2020•四川省南充市•4分)计算:0122+=__________. 2 【解析】 【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值. 【详解】解:0122+ 2-1+1 22.【点睛】此题考查了实数的运算,零指数幂,熟练掌握运算法则是解本题的关键.三、解答题1.(2020•山东东营市•4分)(1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(136-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+---36=-;2.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 3. (2020•山东东营市•4分)(1)计算:()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(1)36-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+--- 36=-;4.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.(2020•广东省深圳市•5分)计算:【考点】实数的计算【答案】2【解析】6.(2020•广西省玉林市•6分)计算:•(π﹣3.14)0﹣|﹣1|+()2.【分析】先计算(π﹣3.14)0、|﹣1|、()2,再加减求值.【解答】解:原式=×1﹣(﹣1)+9=﹣+1+9=10.【点评】本题考查了零指数幂的意义、绝对值的化简、及开平方乘方运算.掌握零指数幂及绝对值的意义,是解决本题的关键.7. (2020•甘肃省天水市•6分)计算:114sin60|32|2020124-︒⎛⎫--+-+ ⎪⎝⎭【答案】33+;【解析】【分析】先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;【详解】原式34(23)12342=⨯--+-+,23231234=-++-+,33=+;【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握运算法则.8.(2020•北京市•5分)计算:()﹣1++|﹣2|﹣6sin45°.【分析】直接利用负整数指数幂的性质以及二次根式的性质和特殊角的三角函数值分别化简得出答案. 【解答】解:原式=3+3+2﹣6×=3+3+2﹣3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 9.(2020•贵州省黔西南州•12分)计算(﹣2)2﹣|﹣|﹣2cos 45°+(2020﹣π)0;【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;【解答】解:原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;【点评】此题主要考查了实数运算,正确掌握相关运算法则是解题关键. 10. (2020•四川省内江市•7分)计算:(﹣)﹣1﹣|﹣2|+4sin 60°﹣+(π﹣3)0.【分析】先计算负整数指数幂、去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.【点评】本题主要考查实数的运算,解题的关键是掌握负整数指数幂和零指数幂的规定、熟记三角函数值、绝对值的性质、二次根式的性质.11. (2020•四川省乐山市•9分)计算:022cos60(2020)π--︒+-. 【答案】2 【解析】 【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.【详解】解:原式=12212-⨯+ =2.【点睛】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键. 12. (2020•四川省遂宁市•7分)计算:﹣2sin 30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=2﹣2×﹣(﹣1)+4﹣1=2﹣1﹣+1+4﹣1=+3.【点评】本题主要考查实数的运算,解题的关键是掌握二次根式和绝对值的性质、熟记特殊锐角三角函数值、负整数指数幂与零指数幂的规定.13. (2020•四川省自贡市•8分)计算:)-⎛⎫--+- ⎪⎝⎭11256π. 【解析】561)61(1121-=-=-+- (2020•四川省自贡市•10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式-x 2的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以+x 1的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离. ⑴. 发现问题:代数式++-x 1x 2的最小值是多少?⑵. 探究问题:如图,点A,B,P 分别表示的是-1,2,x ,=AB 3.∵++-x 1x 2的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时+>PA PB 3∴++-x 1x 2的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是;②.利用上述思想方法解不等式:++->x 3x 14x–1–2–3–412340A BP③.当a 为何值时,代数式++-x a x 3的最小值是2.【解析】(3)①设A 表示4,B 表示-2,P 表示x ∴线段AB 的长度为6,则|2||4|++-x x 的几何意义表示为P A +PB ,当P 在线段AB 上时取得最小值6 ②设A 表示-3,B 表示1,P 表示x ,∴线段AB 的长度为4,则|1||3|-++x x 的几何意义表示为P A +PB ,∴不等式的几何意义是P A +PB >AB ,∴P 不能在线段AB 上,应该在A 的左侧或者B 的右侧,即不等式的解集为3-<x 或1>x③设A 表示-a ,B 表示3,P 表示x ,则线段AB 的长度为|3|--a ,|3|||-++x a x 的几何意义表示为P A +PB ,当P 在线段AB 上时P A +PB 取得最小值,∴2|3|=--a ∴23=+a 或23-=+a ,即1-=a 或5-=a ;14. (2020•新疆维吾尔自治区新疆生产建设兵团•6分)计算:()()213π-++-【解析】 【分析】分别计算平方,绝对值,零次幂,算术平方根,再合并即可得到答案. 【详解】解: ()()213π-++-112=-=【点睛】本题考查的是乘方,绝对值,零次幂,算术平方根的运算,掌握以上运算是解题的关键.–1–2–3–41234。

中考数学总复习无理数与实数-精练精析及答案解析

无理数与实数1一.选择题(共8小题)1.8的平方根是()A.4 B.±4C.2 D.2.的平方根是()A.±3 B.3 C.±9D.93.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.84.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组5.化简得()A.100 B.10 C. D.±106.若实数x、y满足=0,则x+y的值等于()A.1 B. C.2 D.7.下列实数中是无理数的是()A.B.2﹣2C.5. D.sin45°8.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题)9.4的平方根是_________ .10.计算:= _________ .11.的算术平方根为_________ .12.计算:= _________ .13.一个数的算术平方根是2,则这个数是_________ .14.计算:﹣= _________ .15.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是_________ (结果需化简).16.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是_________ (用含n 的代数式表示)三.解答题(共6小题)17.计算:﹣4cos45°+()﹣1+|﹣2|.18.计算:.19.计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.20.计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.21.若的整数部分为a,小数部分为b,求a2+b2的值.22.己知+(x﹣2)2=0,求x﹣y的平方根.无理数与实数1参考答案与试题解析一.选择题(共8小题)1.8的平方根是()A. 4 B.±4C.2D.考点:平方根.分析:直接根据平方根的定义进行解答即可解决问题.解答:解:∵,∴8的平方根是.故选:D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.的平方根是()A.±3B.3 C.±9D.9考点:平方根;算术平方根.专题:计算题.分析:根据平方运算,可得平方根、算术平方根.解答:解:∵,9的平方根是±3,故选:A.点评:本题考查了算术平方根,平方运算是求平方根的关键.3.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.8考点:算术平方根.分析:利用已知得出≈9.98,进而得出答案.解答:解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴≈9.98,∴≈998,即其个位数字为8.故选:D.点评:此题主要考查了算术平方根,得出的近似值是解题关键.4.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数 B. a是方程x2﹣8=0的一个解C.a是8的算术平方根 D. a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是无理数,a是方程x2﹣8=0的一个解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选:D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.5.化简得()A.100 B.10 C.D.±10考点:算术平方根.分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.6.若实数x、y满足=0,则x+y的值等于()A. 1 B.C.2 D.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:分类讨论.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2x﹣1=0,y﹣1=0,解得x=,y=1,所以,x+y=+1=.故选:B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.下列实数中是无理数的是()A.B.2﹣2C.5. D.s in45°考点:无理数.专题:常规题型.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.8.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,π和是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二.填空题(共8小题)9.4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.计算:= 3 .考点:算术平方根.专题:计算题.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.故答案为:3.点评:本题较简单,主要考查了学生开平方的运算能力.11.的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.故答案为:.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.计算:= ﹣8 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别根据负整数指数幂、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=﹣1﹣8+1+|3﹣4|=﹣8.故答案为:﹣8.点评:本题考查的是实数的运算,熟知负整数指数幂、0指数幂及特殊角的三角函数值是解答此题的关键.13.一个数的算术平方根是2,则这个数是 4 .考点:算术平方根.专题:计算题.分析:利用算术平方根的定义计算即可得到结果.解答:解:4的算术平方根为2,故答案为:4点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.14.计算:﹣= ﹣3 .考点:算术平方根.分析:根据算术平方根的定义计算即可得解.解答:解:﹣=﹣3.故答案为:﹣3.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.15.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.16.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)考点:算术平方根.专题:规律型.分析:观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.三.解答题(共6小题)17.计算:﹣4cos45°+()﹣1+|﹣2|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用绝对值法则计算即可得到结果.解答:解:原式=2﹣4×+2+2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别进行二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等运算,然后按照实数的运算法则计算即可.解答:解:原式=2﹣2×+1﹣8=.点评:本题考查了实数的运算,涉及了二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等知识,属于基础题.19.计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及负整指数幂、特殊角的三角函数值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果解答:解:原式=+﹣﹣(﹣1)=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得结果.解答:解:原式=1﹣+2++3=6.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.21.若的整数部分为a,小数部分为b,求a2+b2的值.考点:估算无理数的大小.分析:根据2,可得a、b的值,根据乘方运算,可得幂,根据实数的运算,可得答案.解答:解:的整数部分为a,小数部分为b,a=2,b=﹣2,a2+b2=22+(﹣2)2=4+(7﹣4+4)=15﹣4.点评:本题考查了估算无理数的大小,利用了2得出a、b是解题关键.22.己知+(x﹣2)2=0,求x﹣y的平方根.考点:非负数的性质:算术平方根;非负数的性质:偶次方;平方根.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵+(x﹣2)2=0,∴,解得,∴x﹣y=﹣2+7=5.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无理数与实数一、选择题1.四个数0,1,,中,无理数的是()A. B.1 C. D.02.4的平方根是()A. B.2 C.-2 D.163.下列无理数中,与最接近的是()A. B.C.D.4.估计的值在()A. 2和3之间B. 3和4之间 C. 4和5之间 D. 5和6之间5.7的算术平方根是()A. 49B.C.﹣D.±6.的值等于()A. 3B. -3C. ±3D.7.( )A. B.C.D.8.当x分别取,,0,2时,使二次根式的值为有理数的是()A.B.C. 0D.29.已知:a× =b×1 =c÷ ,且a、b、c都不等于0,则a、b、c中最小的数是()A. a B . b C.c D.a和c10.设a是9的平方根,B=()2,则a与B的关系是()A. a=±BB. a=BC. a=﹣B D. 以上结论都不对11.下列各组数中互为相反数的是()A. 5和B. 和C. 和D. ﹣5和12.已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A. x是有理数B. x不能在数轴上表示C. x是方程4x=8的解D. x是8的算术平方根二、填空题13.﹣的相反数是________,倒数是________,绝对值是________.14.计算:3-1-()0=________.15.计算:________.16.比较大小:3________ (填<,>或=).17.若=2.449,=7.746,=244.9,=0.7746,则x=________,y=________.18.比较大小:﹣3________cos45°(填“>”“=”或“<”).19.一个正数的平方根分别是x+1和x﹣5,则x=________.20.化简( -1)0+( )-2- + =________.21.已知实数x,y满足|x-4|+ =0,则以x,y的值为两边长的等腰三角形的周长是________.22.如图,数轴上点A所表示的实数是________.三、解答题23. 计算:(﹣2)3+ +10+|﹣3+ |.24. (1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化简,再求值•(a2﹣b2),其中a= ,b=﹣2 .25.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根答案解析一、选择题1.【答案】A【解析】:A. 属于无限不循环小数,是无理数,A符合题意;B.1是整数,属于有理数,B不符合题意;C. 是分数,属于有理数,C不符合题意;D.0是整数,属于有理数,D不符合题意;故答案为:A.【分析】无理数:无限不循环小数,由此即可得出答案.2.【答案】A【解析】:∵22=2,(-2)2=4,∴4的平方根是±2.故答案为:A.【分析】平方根:如果一个数的平方等于a,那么这个数叫做a的平方根,由此即可得出答案.3.【答案】C【解析】:4= ,与最接近的数为,故答案为:C.【分析】根据算数平方根的意义,4=,再根据算术平方根的性质,被开方数越大,其算术根越大,通过观察发现的被开方数17最接近的被开方数,从而得出答案。

4.【答案】B【解析】:∵,∴,故的值在3和4之间.故答案为:B.【分析】先估计无理数的大小,因,则可得所在的范围,从而求出的取值范围.5.【答案】B【解析】 7的算术平方根是7的正平方根,即7的算术平方根为.故答案为:B.【分析】根据算术平方根的意义即可得出答案。

6.【答案】A【解析】:【分析】根据算术平方根的性质即可求解。

7.【答案】B【解析】 |1- |= .故答案为:B.【分析】根据绝对值的意义,即可解答。

8.【答案】D【解析】当x=−3时, = ,故此数据不合题意;当x=−1时, = ,故此数据不合题意;当x=0时, = ,故此数据不合题意;当x=2时, =0,故此数据符合题意;故答案为:D.【分析】把x分别取− 3 ,,0,2时代入二次根式,计算出结果,能开得尽方的就是有理数,否则就是无理数。

9.【答案】B【解析】∵a× =b×1 =c÷ ,∴a× =b×1 =c× ,∵1 >>,∴b<c<a,∴a、b、c中最小的数是b.故答案为:B.【分析】分数越大则和它相乘的字母所代表的数就越小.10.【答案】A【解析】由题意得a= ,B=3, a=±B ,故答案为:A.【分析】根据平方根的定义得出a=±3,再根据二次根式的性质得出B的值,通过比较即可得出答案。

11.【答案】B【解析】 A、∵,∴5和两数相等,故此选项不符合题意;B、∵﹣|﹣|=﹣,﹣(﹣)= ,∴和是互为相反数,故此选项符合题意;C、∵﹣=﹣2和=﹣2,∴和两数相等,故此选项不符合题意;D、∵﹣5和,不是互为相反数,故此选项不符合题意.故答案为:B.【分析】分别化简各项中的不最简数,然后根据相反数的定义判断.12.【答案】D【解析】根据题意,得:(舍去),A. 是无理数,故不符合题意.B. 是实数,实数和数轴上的点是一一对应的,可以在数轴上表示,故不符合题意.C.方程的解是:不是,故不符合题意.D. 是8的算术平方根.符合题意.故答案为:D.【分析】根据正方形的面积计算方法列出关于x的一元二次方程,用直接开平方法求出x的值,再根据实际检验得出正方形的边长,然后根据x的值,可以看出是无理数,根据实数与数轴上的点一一对应可知,x能在数轴上表示,根据算数平方根的定义知x是8的算术平方根,根据方程根的定义,x的值不能使方程4x=8的左边和右边相等,故x不是方程4x=8的解。

二、填空题13.【答案】;;【解析】﹣的相反数是﹣(﹣)= ,倒数是=﹣,绝对值是|﹣|= .故本题的答案是:;﹣;.【分析】根据定义写出即可.14.【答案】【解析】:原式==-故答案为:-【分析】根据负指数及0指数的意义,分别化简,再按有理数的减法法则进行计算即可。

15.【答案】【解析】原式=2×+1-2+=故答案为:【分析】根据实数的运算性质可求解。

16.【答案】<【解析】∵32=9,9<10,∴3< ,故答案为:<.【分析】根据算数平方根的性质,被开方数越大,则算术根就越大,由3是9的算数平方根,而9<10,从而得出答案。

17.【答案】60000;0.6【解析】故答案为:【分析】当被开方数的小数点向左或向右每移动两位,则它的算术平方根的小数点就向左或向右移动一位,根据此规律求解即可。

18.【答案】>【解析】∵≈3.742,∴﹣3≈0.742,∵cos45°= ≈0.707,∵0.742>0.707,∴﹣3>co s45°,故答案为:>.【分析】由特殊角的锐角三角函数可得cos45°==0707,而=,所以-3=,而0.742>0.707,所以-3cos45°。

19.【答案】2【解析】:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【分析】根据一个正数的平方根有两个,且这两个互为相反数,即可得出方程,求解得出x的值。

20.【答案】-1【解析】:原式=1+4-3-3=-1.故答案为:-1【分析】根据0指数,负指数,算术平方根,立方根的意义,分别化简,再根据有理数的加法算出结果即可。

21.【答案】20【解析】解得:以的值为两边长的三角形是等腰三角形,所以这个三角形的三边是:或构不成三角形.舍去.周长为:故答案为:【分析】本题考查的是绝对值和算数平方根的非负性,所以可知| x − 4 | ≥ 0 , y − 8 ≥ 0,即可求出x=4,y=8,;根据三角形的三边关系,可知4不能做腰,所以底边长为4,腰长为8 ,周长为20 .22.【答案】【解析】由勾股定理,得斜线的为= ,由圆的性质,得点表示的数为,故答案为:.【分析】根据勾股定理得出直角三角形的斜边的长,根据同圆的半径相等及线段的和差即可得出答案。

三、解答题23.【答案】解:原式=﹣8+4+1+3﹣=﹣【解析】【分析】原式利用乘方的意义,算术平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.24.【答案】(1)解:﹣2sin45°+(2﹣π)0﹣()﹣1=2 ﹣2× +1﹣3=2 ﹣+1﹣3= ﹣2(2)解:•(a2﹣b2)= •(a+b)(a﹣b)=a+b,当a= ,b=﹣2 时,原式= +(﹣2 )=﹣【解析】【分析】(1)根据算术平方根的意义、特殊角的锐角三角函数值、零指数幂的意义、负整数指数幂的意义即可求解。

即原式=2=;(2)先将多项式化简,再约分,最后将a、b的值代入即可求解。

即原式==a+b==.25.【答案】(1)解:∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2.∵c是的整数部分,∴c=3(2)解:当a=5,b=2,c=3时,3a﹣b+c=16,3a﹣b+c的平方根是±4最新审定版资料【解析】【分析】(1)立方根为3的数时27,所以5a+2=27,即可求出a的值;算数平方根为4的数是16,所以3a+b-1=16,即可求出b 的值;,所以它的整数部分为3.(2)将a、b、c的值带入到代数式中求出结果,再求出这个结果的平方根.欢迎下载!。

相关文档
最新文档