3 第3讲 函数的奇偶性、对称性

合集下载

第三讲 函数的奇偶性(教师版)

第三讲 函数的奇偶性(教师版)

第三讲函数的奇偶性1.奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.一条规律奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.两个性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法.三条结论(1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则:y=f(x)是以2(b -a )为周期的周期函数.(3)若f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=-1f (x ),那么函数f (x )是周期函数,其中一个周期为T =2a ;(3)若f (x +a )=f (x +b )(a ≠b ),那么函数f (x )是周期函数,其中一个周期为T =2|a -b |.1.(课本改编题)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.2.(课本改编题)下列函数中,所有奇函数的序号是________.①f (x )=2x 4+3x 2;②f (x )=x 3-2x ;③f (x )=x 2+1x ;④f (x )=x 3+1.3.(2011·广东)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.4.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.5.定义在R 上的函数y =f (x )是奇函数,且满足f (1+x )=f (1-x ).当x ∈[-1,1]时,f (x )=x 3,则f (2 013)的值是( )A .-1B .0C .1D .26.(2011·全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( ). A.-12 B.-14 C.14 D.127.(2012·福州一中月考)f (x )=1x -x 的图象关于( ).A .y 轴对称B .直线y =-x 对C .坐标原点对称D .直线y =x 对称8.(2011·广东)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ).A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数10.(2011·浙江)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 法一 ∵f (-x )=f (x )对于x ∈R 恒成立,∴|-x +a |=|x +a |对于x ∈R 恒成立,两边平方整理得ax =0对于x ∈R 恒成立,故a =0. 法二 由f (-1)=f (1), 得|a -1|=|a +1|,得a =0. 答案011.(2005年北京西城区模拟题)定义在R 上的奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则不等式xf (x )<0的解集为 A.(-3,0)∪(0,3) B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)解析:由奇偶性和单调性的关系结合图象来解. 答案:A12.定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )单调递减,若g (1-m )<g (m ),求m 的取值范围________.解:由g (1-m )<g (m )及g (x )为偶函数,可得g (|1-m |)<g (|m |).又g (x )在(0,+∞)上单调递减,∴|1-m |>|m |,且|1-m |≤2,|m |≤2,解得-1≤m <21.题型一 函数奇偶性的判断及奇偶性质的运用 例1 判断下列函数的奇偶性.(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x ; (3)f (x )=4-x 2|x +3|-3. 探究提高 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域对解决问题是有利的;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 分段函数指在定义域的不同子集有不同对应关系的函数,分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.判断下列函数的奇偶性.(1)f (x )=lg 1-x 1+x ;(2)f (x )=(x -1) 2+x2-x;(3)f (x )={ x 2+x (x >0), x 2-x (x <0);(4)f (x )=lg (1-x 2)|x 2-2|-2.例2已知函数1222)(+-+⋅=xx a a x f 是定义在实数集上的奇函数,求函数的解析式。

2025高考数学一轮总复习知识梳理第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性(含答案)

2025高考数学一轮总复习知识梳理第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性(含答案)

高考数学一轮总复习知识梳理:第三讲 函数的奇偶性与周期性知 识 梳 理知识点一 函数的奇偶性 偶函数 奇函数定义 如果对于函数f (x )的定义域内任意一个x 都有 f (-x )=f (x ) ,那么函数f (x )是偶函数 都有 f (-x )=-f (x ) ,那么函数f (x )是奇函数图象特征 关于 y 轴 对称关于 原点 对称 知识点二 函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有 f (x +T )=f (x ) ,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个 最小的正数 ,那么这个 最小正数 就叫做f (x )的最小正周期.归 纳 拓 展1.奇(偶)函数定义的等价形式(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f -xf x =1(f (x )≠0)⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f -xf x =-1(f (x )≠0)⇔f (x )为奇函数.2.若y =f (x )为奇函数,y =g (x )为奇函数,在公共定义域内(1)y =f (x )±g (x )为奇函数;(2)y =f (x )g (x )与y =f xg x 为偶函数;(3)y =f [g (x )]与y =g [f (x )]为奇函数.同理若y =f (x )与y =g (x )在公共定义域内均为偶函数,则y =f (x )±g (x ),y =f (x )g (x ),y =f xg x ,y =f [g (x )],y =g [f (x )]均为偶函数.若y =f (x )为奇函数,y =g (x )为偶函数,则在公共定义域内y =f (x )g (x )与y =f xg x 均为奇函数,y =f [g (x )]与y =g [f (x )]为偶函数.3.对f (x )的定义域内任一自变量的值x ,最小正周期为T(1)若f (x +a )=-f (x ),则T =2|a |;(2)若f (x +a )=1f x ,则T =2|a |;(3)若f (x +a )=f (x +b ),则T =|a -b |.4.函数图象的对称关系(1)若函数f (x )满足关系f (a +x )=f (b -x ),则f (x )的图象关于直线x =a +b 2对称;(2)若函数f (x )满足关系f (a +x )=-f (b -x ),则f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称.5.一些重要类型的奇偶函数(1)函数f (x )=a x +a -x 为偶函数,函数f (x )=a x -a -x为奇函数; (2)函数f (x )=a x -a -x a x +a -x =a 2x -1a 2x +1为奇函数;(3)函数f (x )=log a b -xb +x 为奇函数;(4)函数f (x )=log a (x +x 2+1)为奇函数.双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(-2,2]是偶函数.( × )(2)若函数f (x )是奇函数,则必有f (0)=0.( × )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.( √ )(4)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b,0)中心对称.( √ )(5)2π是函数f (x )=sin x ,x ∈(0,+∞)的一个周期.( × )(6)周期为T 的奇函数f (x ),一定有f ⎝ ⎛⎭⎪⎫T 2=0.( × )[解析] (6)举反例.函数f (x )=tan x ,T =π,f (T )=f (π)=0,f ⎝ ⎛⎭⎪⎫T 2=f ⎝ ⎛⎭⎪⎫π2无意义,所以f ⎝ ⎛⎭⎪⎫T 2=0不对.题组二 走进教材2.(多选题)(必修1P 85T2改编)给出下列函数,其中是奇函数的为( BC )A .f (x )=x 4B .f (x )=x 5C .f (x )=x +1xD .f (x )=1x 2[解析] 对于f (x )=x 4,f (x )的定义域为R ,由f (-x )=(-x )4=x 4=f (x ),可知f (x )=x 4是偶函数,同理可知f (x )=x 5,f (x )=x +1x 是奇函数,f (x )=1x 2是偶函数. 3.(必修1P 85T3改编)若函数y =f (x )(x ∈(a ,b ))为奇函数,则a +b = 0 .4.(必修1P 85T1改编)若函数y =f (x )(x ∈R )是奇函数,则下列坐标表示的点一定在函数y =f (x )图象上的是( B )A .(a ,-f (a ))B .(-a ,-f (a ))C .(-a ,-f (-a ))D .(a ,f (-a ))[解析] ∵函数y =f (x )为奇函数,∴f (-a )=-f (a ).即点(-a ,-f (a ))一定在函数y =f (x )的图象上.5. (必修1P 87T12改编)设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为_(-2,0)∪(2,5]__.[解析] 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].6.(必修1P 87T11改编)定义在R 上的奇函数f (x )以2为周期,则f (1)+f (2)+f (3)的值是( A )A .0B .1C .2D .3[解析] 根据函数的周期性和奇偶性得到f (3)=f (-1)=-f (1)、f (2)=f (0)=0,从而可求f (1)+f (2)+f (3).因为函数以2为周期,所以f (3)=f (-1),f (2)=f (0),因为函数是定义在R 上的奇函数,所以f (-1)=-f (1),f (0)=0,所以f (1)+f (2)+f (3)=f (1)+f (0)-f (1)=0,故选A.7.(必修1P 86T3改编)已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-3)= -7 .[解析] 因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,故f (x )=2x-1(x ≥0),则f (-3)=-f (3)=-(23-1)=-7.题组三 走向高考8.(2023·新课标Ⅱ,4,5分)若f (x )=(x +a )·ln 2x -12x +1为偶函数,则a =( B )A .-1B .0 C.12 D .1 [解析] f (-x )=(-x +a )ln -2x -1-2x +1=(-x +a )ln 2x +12x -1=(x -a )ln 2x -12x +1,∵f (x )为偶函数,∴f (x )=f (-x ),∴x +a =x -a ,∴a =0.9.(2021·全国乙,4)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( B )A. f ()x -1-1B . f ()x -1+1 C. f ()x +1-1 D . f ()x +1+1[解析] 思路一:将函数f (x )的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f (x )的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.解法一:f (x )=-1+2x +1,其图象的对称中心为(-1,-1),将y =f (x )的图象沿x 轴向右平移1个单位,再沿y 轴向上平移1个单位可得函数f (x -1)+1的图象,关于(0,0)对称,所以函数f (x -1)+1是奇函数,故选B.解法二:选项A ,f (x -1)-1=2x -2,此函数为非奇非偶函数;选项B ,f (x -1)+1=2x ,此函数为奇函数;选项C ,f (x +1)-1=-2x -2x +2,此函数为非奇非偶函数;选项D ,f (x +1)+1=2x +2,此函数为非奇非偶函数,故选B.。

第03讲函数的奇偶性、对称性与周期性(含新定义解答题) (分层精练)(解析)-25年高考数学一轮复习

第03讲函数的奇偶性、对称性与周期性(含新定义解答题) (分层精练)(解析)-25年高考数学一轮复习

分层精练)数周期性转化求值即可.【详解】因为()()110f x f x -++=,所以()()110f f -+=,且()()21log 111f =+=,则()11f -=-,又可得()()20f x f x ++=,()()240f x f x +++=,故()()4f x f x +=,所以函数()f x 是周期4T =的周期函数,()()()47412111f f f =⨯-=-=-.故选:D .4.(2023·内蒙古赤峰·统考模拟预测)函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =()A .0B .1-C .2D .1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则()()157f f =,根据已知得出(7)(3)1f f =-=-,即可得出答案.【详解】 函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,()()()4f x f x f x ∴+=-=-,()()()()4484f x f x f x f x ∴++=+=-+=,则函数()y f x =是周期为8的周期函数,则()()()151587f f f =-=,令3x =-,则(43)(3)1f f +=-=-,(15)1f ∴=-,故选:B.5.(2023上·山东烟台·高一校考期末)函数e x y =-与e x y -=的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】C【分析】画出函数图像即可判断.【详解】根据如下图像即可判断出函数图像关于原点对称.故选:C10,10由上图知:增区间为[2,1),[0,1)--,减区间为零点为2,0,2x =-共3个;最大值为1,最小值为(2)由题设()7.5(80.5)(0.5)f f f =-=-=(3)令[]21,22[1,1]1n n x x n ∈⇒-∈--+且,且存在常数若()()20h x t h x t -⋅+=有8个不同的实数解,令则20n tn t -+=有两个不等的实数根2Δ400t t t ⎧=->⎪>⎪。

新高考A版讲义:第三章函数 第3节 函数的基本性质奇偶性

新高考A版讲义:第三章函数 第3节 函数的基本性质奇偶性

第3节 函数的基本性质:奇偶性知识点一 函数奇偶性 1.奇偶性的几何特征一般地,图象关于y 轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数. 2.函数奇偶性的定义(1)偶函数:函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数.(2)奇函数:函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数.3.奇(偶)函数的定义域特征:奇(偶)函数的定义域关于原点对称.题型一、函数奇偶性的判断 例1 判断下列函数的奇偶性.(1)f (x )=1x ;(2)f (x )=x 2(x 2+2);(3)f (x )=xx -1;(4)f (x )=x 2-1+1-x 2.解 (1)f (x )=1x 的定义域为(-∞,0)∪(0,+∞),∵f (-x )=1-x=-1x =-f (x ),∴f (x )=1x 是奇函数.(2)f (x )=x 2(x 2+2)的定义域为R .∵f (-x )=f (x ),∴f (x )=x 2(x 2+2)是偶函数. (3)f (x )=xx -1的定义域为(-∞,1)∪(1,+∞), ∵定义域不关于原点对称,∴f (x )=xx -1既不是奇函数,也不是偶函数.(4)f (x )=x 2-1+1-x 2的定义域为{-1,1}.∵f (-x )=f (x )=-f (x )=0,∴f (x )=x 2-1+1-x 2既为奇函数,又为偶函数. 反思感悟 判断函数奇偶性的方法(1)定义法:①定义域关于原点对称;②确定f (-x )与f (x )的关系. (2)图象法.跟踪训练1 判断下列函数的奇偶性.(1)f (x )=x ;(2)f (x )=1-x 2x ;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解(1)函数f(x)的定义域为[0,+∞),不关于原点对称,所以f(x)=x是非奇非偶函数.(2)f(x)的定义域为[-1,0)∪(0,1],关于原点对称.f(-x)=1-x2-x=-f(x),所以f(x)为奇函数.(3)f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x>0时,-x<0,则f(-x)=(-x)2-(-x)=x2+x=f(x);当x<0时,-x>0,则f(-x)=(-x)2+(-x)=x2-x=f(x),所以f(x)是偶函数.题型二、奇、偶函数图象的应用例2定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.解(1)先描出(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),连线可得f(x)的图象如图.(2)xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).延伸探究把本例中的“奇函数”改为“偶函数”,重做该题.解(1)f(x)的图象如图所示:(2)xf(x)>0的解集是(-∞,-2)∪(0,2).反思感悟可以用奇(偶)函数图象关于原点(y轴)对称这一特性去画图,求值,解不等式等.跟踪训练2已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.解(1)如图,在[0,5]上的图象上选取5个关键点O,A,B,C,D.分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为{x |-2<x <0或2<x <5}. 题型三、利用函数的奇偶性求参数值例3 (1)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.解析 因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f (x )=13x 2+bx +b +1为二次函数,结合偶函数图象的特点,易得b =0.(2)已知函数f (x )=ax 2+2x 是奇函数,则实数a =________.解析 由奇函数定义有f (-x )+f (x )=0,得a (-x )2+2(-x )+ax 2+2x =2ax 2=0,故a =0. 反思感悟 利用奇偶性求参数的常见类型(1)定义域含参数:奇偶函数f (x )的定义域为[a ,b ],根据定义域关于原点对称,利用a +b =0求参数.(2)解析式含参数:根据f (-x )=-f (x )或f (-x )=f (x )列式,比较系数利用待定系数法求解. 跟踪训练3 (1)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 解析 方法一 显然x ∈R ,由已知得f (-x )=(-x )2-|-x +a |=x 2-|x -a |. 又f (x )为偶函数,所以f (x )=f (-x ),即x 2-|x +a |=x 2-|x -a |, 即|x +a |=|x -a |.又x ∈R ,所以a =0.方法二 由题意知f (-1)=f (1),则|a -1|=|a +1|,解得a =0.(2)已知函数f (x )是奇函数,当x ∈(-∞,0)时,f (x )=x 2+mx .若f (2)=-3,则m 的值为________. 解析 ∵f (-2)=-f (2)=3,∴f (-2)=(-2)2-2m =3,∴m =12.知识点二 奇偶性与单调性若函数f (x )为奇函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相同的单调性;若函数f (x )为偶函数,则f (x )在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相反的单调性.题型一、利用奇偶性求解析式 命题角度1 求对称区间上的解析式例1 函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求当x <0时,f (x )的解析式. 解 设x <0,则-x >0,∴f (-x )=-(-x )+1=x +1,又∵函数f (x )是定义域为R 的奇函数,∴当x <0时,f (x )=-f (-x )=-x -1.反思感悟 求给定哪个区间的解析式就设这个区间上的变量为x ,然后把x 转化为-x ,此时-x 成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式.跟踪训练1已知f (x )是R 上的奇函数,且当x ∈(0,+∞)时,f (x )=x (1+x ),求f (x )的解析式. 解 因为x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-x [1+(-x )]=x (x -1). 因为f (x )是R 上的奇函数,所以f (x )=-f (-x )=-x (x -1),x ∈(-∞,0).f (0)=0.所以f (x )=⎩⎪⎨⎪⎧x (1+x ),x ≥0,-x (x -1),x <0.命题角度2 构造方程组求解析式例2 设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ), 由f (x )+g (x )=1x -1.①,用-x 代替x ,得f (-x )+g (-x )=1-x -1,∴f (x )-g (x )=1-x -1,② (①+②)÷2,得f (x )=1x 2-1;(①-②)÷2,得g (x )=xx 2-1.反思感悟 f (x )+g (x )=1x -1对定义域内任意x 都成立,所以可以对x 任意赋值,如x =-x .利用f (x ),g (x )一奇一偶,把-x 的负号或提或消,最终得到关于f (x ),g (x )的二元方程组,从中解出f (x )和g (x ).跟踪训练2设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+2x ,求函数f (x ),g (x )的解析式. 解 ∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ), 由f (x )+g (x )=2x +x 2.①用-x 代替x ,得f (-x )+g (-x )=-2x +(-x )2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.题型二、利用函数的奇偶性与单调性比较大小例3设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)解析因为函数f(x)为R上的偶函数,所以f(-3)=f(3),f(-2)=f(2).又当x∈[0,+∞)时,f(x)是增函数,且π>3>2,所以f(π)>f(3)>f(2),故f(π)>f(-3)>f(-2).反思感悟利用函数的奇偶性与单调性比较大小(1)自变量在同一单调区间上,直接利用函数的单调性比较大小;(2)自变量不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.跟踪训练3(1)已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(-10)的大小关系为() A.f(1)>f(-10) B.f(1)<f(-10)C.f(1)=f(-10) D.f(1)和f(-10)关系不定答案A解析∵f(x)是偶函数,且在[0,+∞)上单调递减,∴f(-10)=f(10)<f(1).(2)定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,下列不等式中成立的有________.(填序号)①f(a)>f(-b);②f(-a)>f(b);③g(a)>g(-b);④g(-a)<g(b);⑤g(-a)>f(-a).解析f(x)为R上奇函数,增函数,且a>b>0,∴f(a)>f(b)>f(0)=0,又-a<-b<0,∴f(-a)<f(-b)<f(0)=0,∴f(a)>f(b)>0>f(-b)>f(-a),∴①正确,②错误.x∈[0,+∞)时,g(x)=f(x),∴g(x)在[0,+∞)上单调递增,∴g(-a)=g(a)>g(b)=g(-b),∴③正确,④错误.又g(-a)=g(a)=f(a)>f(-a),∴⑤正确.题型三、利用函数的奇偶性与单调性解不等式例4(1)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数.若f(-3)=0,则f(x)x<0的解集为________.解析∵f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,∴f(x)在区间(0,+∞)上是减函数.∴f(3)=f(-3)=0.当x>0时,由f(x)<0,解得x>3;当x<0时,由f(x)>0,解得-3<x<0.故所求解集为{x |-3<x <0或x >3}.(2)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围为( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 解析 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝⎛⎭⎫13, 即-13<2x -1<13,解得13<x <23.反思感悟 利用函数奇偶性与单调性解不等式,一般有两类 (1)利用图象解不等式; (2)转化为简单不等式求解.①利用已知条件,结合函数的奇偶性,把已知不等式转化为f (x 1)<f (x 2)或f (x 1)>f (x 2)的形式; ②根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f ”转化为简单不等式(组)求解.跟踪训练4 设定义在[-2,2]上的奇函数f (x )在区间[0,2]上是减函数,若f (1-m )<f (m ),求实数m 的取值范围.解 因为f (x )是奇函数且f (x )在[0,2]上是减函数,f (x )在[-2,2]上是减函数. 所以不等式f (1-m )<f (m )等价于⎩⎪⎨⎪⎧1-m >m ,-2≤m ≤2,-2≤1-m ≤2,解得-1≤m <12.1.下列函数中奇函数的个数为( ) ①f (x )=x 3; ②f (x )=x 5; ③f (x )=x +1x;④f (x )=1x2.A .1B .2C .3D .4 答案 C2.已知f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点中一定在函数f (x )的图象上的是( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3) 答案 A解析 f (-3)=2即点(-3,2)在奇函数的图象上, ∴(-3,2)关于原点的对称点(3,-2)必在f (x )的图象上.3.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 答案 A解析 F (-x )=f (-x )-f (x )=-[f (x )-f (-x )]=-F (x ). ∴F (x )为奇函数4.若f (x )=3x 3+5x +a -1为奇函数,则a 的值为( ) A .0 B .-1 C .1 D .2 答案 C解析 ∵f (x )为R 上的奇函数, ∴f (0)=0得a =1.5.如图,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )A .-2B .2C .1D .0答案 A解析 f (-2)+f (-1)=-f (2)-f (1) =-32-12=-2.6.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 答案 4解析 f (x )=x 2+(a -4)x -4a 是偶函数,∴a =4.7.已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为________. 答案 5解析 因为f (x )是奇函数, 所以f (-3)=-f (3)=-6,所以(-3)2+a (-3)=-6,解得a =5.8.若f (x )为R 上的奇函数,给出下列四个说法: ①f (x )+f (-x )=0; ②f (x )-f (-x )=2f (x );③f(x)·f(-x)<0;④f(x)f(-x)=-1.其中一定正确的为________.(填序号)答案①②解析∵f(x)在R上为奇函数,∴f(-x)=-f(x).∴f(x)+f(-x)=f(x)-f(x)=0,故①正确.f(x)-f(-x)=f(x)+f(x)=2f(x),故②正确.当x=0时,f(x)·f(-x)=0,故③不正确.当x=0时,f(x)f(-x)分母为0,无意义,故④不正确.9.判断下列函数的奇偶性:(1)f(x)=x3+x5;(2)f(x)=|x+1|+|x-1|;(3)f(x)=2x2+2x x+1.考点函数的奇偶性判定与证明题点判断简单函数的奇偶性解(1)函数的定义域为R.∵f(-x)=(-x)3+(-x)5=-(x3+x5)=-f(x),∴f(x)是奇函数.(2)f(x)的定义域是R.∵f(-x)=|-x+1|+|-x-1|=|x-1|+|x+1|=f(x),∴f(x)是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.10.(1)如图①,给出奇函数y=f(x)的局部图象,试作出y轴右侧的图象并求出f(3)的值.(2)如图②,给出偶函数y=f(x)的局部图象,试作出y轴右侧的图象并比较f(1)与f(3)的大小.解(1)由奇函数的性质可作出它在y轴右侧的图象,图③为补充后的图象.易知f(3)=-2.(2)由偶函数的性质可作出它在y 轴右侧的图象,图④为补充后的图象,易知f (1)>f (3).11.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =-2x答案 B解析 对于函数y =|x |+1,f (-x )=|-x |+1=|x |+1=f (x ), 所以y =|x |+1是偶函数,当x >0时,y =x +1, 所以在(0,+∞)上单调递增.另外,函数y =x 3不是偶函数,y =-x 2+1在(0,+∞)上单调递减,y =-2x 不是偶函数.故选B.12.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .f (x )+|g (x )|是偶函数 B .f (x )-|g (x )|是奇函数 C .|f (x )|+g (x )是偶函数 D .|f (x )|-g (x )是奇函数 考点 函数的奇偶性判定与证明 题点 判断抽象函数的奇偶性 答案 A解析 由f (x )是偶函数,可得f (-x )=f (x ), 由g (x )是奇函数可得g (-x )=-g (x ), 故|g (x )|为偶函数, ∴f (x )+|g (x )|为偶函数.13.函数f (x )=4-x 22-|x +2|的定义域为________,为______函数(填“奇”或“偶”).答案 [-2,0)∪(0,2] 奇解析 依题意有⎩⎪⎨⎪⎧4-x 2≥0,2-|x +2|≠0,解得-2≤x ≤2且x ≠0, ∴f (x )的定义域为[-2,0)∪(0,2].∵f (x )=4-x 22-|x +2|=4-x 2-x=-4-x 2x ,定义域关于原点对称,∴f (-x )=4-x 2x =-f (x ),∴f (x )为奇函数.14.函数f (x )=ax 3+bx +cx +5满足f (-3)=2,则f (3)的值为________.答案 8解析 设g (x )=f (x )-5=ax 3+bx +cx (x ≠0),∵g (-x )=-ax 3-bx -cx =-g (x ),∴g (x )是奇函数,∴g (3)=-g (-3)=-[f (-3)-5] =-f (-3)+5=-2+5=3, 又g (3)=f (3)-5=3, ∴f (3)=8.15.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.考点 函数图象的对称性 题点 中心对称问题 答案 43解析 根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.16.设函数f (x )=ax 2+1bx +c 是奇函数(a ,b ,c ∈Z ),且f (1)=2,f (2)<3,求a ,b ,c 的值.解 由条件知f (-x )+f (x )=0, ∴ax 2+1bx +c +ax 2+1c -bx =0,∴c =0. 又f (1)=2,∴a +1=2b .∵f (2)<3,∴4a +12b <3,∴4a +1a +1<3,解得-1<a <2,∴a =0或1. ∴b =12或1,由于b ∈Z ,∴a =1,b =1,c =0.1.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,g (x ),x <0,且f (x )为偶函数,则g (-2)等于( ) A .6 B .-6 C .2 D .-2考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 A解析 g (-2)=f (-2)=f (2)=22+2=6.2.如果奇函数f (x )在区间[-3,-1]上是增函数且有最大值5,那么函数f (x )在区间[1,3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5答案 A解析 f (x )为奇函数,∴f (x )在[1,3]上的单调性与[-3,-1]上一致且f (1)为最小值, 又已知f (-1)=5,∴f (-1)=-f (1)=5,∴f (1)=-5,故选A.3.已知函数y =f (x )是R 上的偶函数,且f (x )在[0,+∞)上是减函数,若f (a )≥f (-2),则a 的取值范围是( )A .a ≤-2B .a ≥2C .a ≤-2或a ≥2D .-2≤a ≤2答案 D解析 由f (a )≥f (-2)得f (|a |)≥f (2),∴|a |≤2,∴-2≤a ≤2.4.已知函数y =f (x )是偶函数,其图象与x 轴有4个交点,则方程f (x )=0的所有实根之和是( )A .4B .2C .1D .0答案 D解析 y =f (x )是偶函数,所以y =f (x )的图象关于y 轴对称,所以f (x )=0的所有实根之和为0.5.设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A .f (-x 1)>f (-x 2)B .f (-x 1)=f (-x 2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不确定考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案A解析∵x1<0,x1+x2>0,∴x2>-x1>0,又f(x)在(0,+∞)上是减函数,∴f(x2)<f(-x1),∵f(x)是偶函数,∴f(-x2)=f(x2)<f(-x1).6.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.答案-5解析由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.7.已知奇函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(1)的x的取值范围是________.考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案(-∞,1)解析由于f(x)在[0,+∞)上单调递增,且是奇函数,所以f(x)在R上单调递增,f(x)<f(1)等价于x<1.8.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是________.答案f(-2)<f(1)<f(0)解析∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(m-1)x2-6mx+2=(m-1)x2+6mx+2恒成立,∴m=0,即f(x)=-x2+2.∵f(x)的图象开口向下,对称轴为y轴,在[0,+∞)上单调递减,∴f(2)<f(1)<f(0),即f(-2)<f(1)<f(0).9.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.考点 单调性与奇偶性的综合应用题点 求奇偶函数的单调区间解 (1)因为函数f (x )的图象关于原点对称,所以f (x )为奇函数,则f (0)=0.设x <0,则-x >0,因为当x >0时,f (x )=x 2-2x +3.所以当x <0时,f (x )=-f (-x )=-(x 2+2x +3)=-x 2-2x -3.于是有f (x )=⎩⎪⎨⎪⎧ x 2-2x +3,x >0,0,x =0,-x 2-2x -3,x <0.(2)先画出函数在y 轴右侧的图象,再根据对称性画出y 轴左侧的图象,如图.由图象可知函数f (x )的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).10.已知函数f (x )=ax +b x +c (a ,b ,c 是常数)是奇函数,且满足f (1)=52,f (2)=174. (1)求a ,b ,c 的值;(2)试判断函数f (x )在区间⎝⎛⎭⎫0,12上的单调性并证明. 考点 单调性与奇偶性的综合应用题点 判断或证明奇偶函数在某区间上的单调性解 (1)∵f (x )为奇函数,∴f (-x )=-f (x ),∴-ax -b x +c =-ax -b x-c , ∴c =0,∴f (x )=ax +b x. 又∵f (1)=52,f (2)=174, ∴⎩⎨⎧ a +b =52,2a +b 2=174.∴a =2,b =12.综上,a =2,b =12,c =0.(2)由(1)可知f (x )=2x +12x .函数f (x )在区间⎝⎛⎭⎫0,12上为减函数.证明如下:任取0<x 1<x 2<12,则f (x 1)-f (x 2)=2x 1+12x 1-2x 2-12x 2=(x 1-x 2)⎝⎛⎭⎫2-12x 1x 2=(x 1-x 2)4x 1x 2-12x 1x 2.∵0<x 1<x 2<12,∴x 1-x 2<0,2x 1x 2>0,4x 1x 2-1<0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在⎝⎛⎭⎫0,12上为减函数.11.设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为() A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)答案 C解析 ∵f (x )为奇函数,f (x )-f (-x )x <0,即f (x )x <0,∵f (x )在(0,+∞)上为减函数且f (1)=0,∴当x >1时,f (x )<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f (x )为减函数且f (-1)=0,即x <-1时,f (x )>0.综上使f (x )x<0的解集为(-∞,-1)∪(1,+∞). 12.已知f (x +y )=f (x )+f (y )对任意实数x ,y 都成立,则函数f (x )是( )A .奇函数B .偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数答案 A解析 令x =y =0,所以f (0)=f (0)+f (0),所以f (0)=0.又因为f (x -x )=f (x )+f (-x )=0,所以f (-x )=-f (x ),所以f (x )是奇函数,故选A.13.已知y =f (x )+x 2是奇函数且f (1)=1,若g (x )=f (x )+2,则g (-1)=________. 考点 函数奇偶性的应用题点 利用奇偶性求函数值答案 -1解析 ∵y =f (x )+x 2是奇函数,∴f (-x )+(-x )2=-[f (x )+x 2],∴f (x )+f (-x )+2x 2=0,∴f (1)+f (-1)+2=0.∵f (1)=1,∴f (-1)=-3.∵g (x )=f (x )+2,∴g (-1)=f (-1)+2=-3+2=-1.14.已知定义在R 上的函数f (x )满足f (1-x )=f (1+x ),且f (x )在[1,+∞)上为单调减函数,则当x =________时,f (x )取得最大值;若不等式f (0)<f (m )成立,则m 的取值范围是________. 答案 1 (0,2)解析 由f (1-x )=f (1+x )知,f (x )的图象关于直线x =1对称,又f (x )在(1,+∞)上单调递减,则f (x )在(-∞,1]上单调递增,所以当x =1时f (x )取到最大值.由对称性可知f (0)=f (2),所以f (0)<f (m ),得0<m <2,即m 的取值范围为(0,2).15.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)等于( )A .-3B .-1C .1D .3考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 C解析 ∵f (x )-g (x )=x 3+x 2+1,∴f (-x )-g (-x )=-x 3+x 2+1.∵f (x )是偶函数,g (x )是奇函数,∴f (-x )=f (x ),g (-x )=-g (x ).∴f (x )+g (x )=-x 3+x 2+1.∴f (1)+g (1)=-1+1+1=1.16.设f (x )是定义在R 上的奇函数,且对任意a ,b ∈R ,当a +b ≠0时,都有f (a )+f (b )a +b>0. (1)若a >b ,试比较f (a )与f (b )的大小关系;(2)若f (1+m )+f (3-2m )≥0,求实数m 的取值范围.解 (1)因为a >b ,所以a -b >0,由题意得f (a )+f (-b )a -b>0, 所以f (a )+f (-b )>0.又f (x )是定义在R 上的奇函数,所以f (-b )=-f (b ),所以f (a )-f (b )>0,即f (a )>f (b ).(2)由(1)知f (x )为R 上的单调递增函数,因为f (1+m )+f (3-2m )≥0,所以f (1+m )≥-f (3-2m ),即f (1+m )≥f (2m -3),所以1+m ≥2m -3,所以m ≤4.所以实数m 的取值范围为(-∞,4].。

第3讲函数的奇偶性与单调性

第3讲函数的奇偶性与单调性

第3讲函数的奇偶性与单调性考点梳理一.奇、偶函数的概念一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.如果对于任意的x∈A都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.(3)若f(x)为偶函数,则f(-x)=f(x)=f(|x|).(4)若奇函数f(x)定义域中含有0,则必有f(0)=0.但f(0)=0不能说f(x)为奇函数。

(5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.考点自测1.(2012·海安中学)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x +b(b为常数),则f(-1)的值是________.解析由f(0)=0,得b=-1,所以f(-1)=-f(1)=-(2+2-1)=-3.答案-32.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是________.解析由f(x)是偶函数知,f(x)=f(-x),即ax2+bx=a(-x)2-bx,∴2bx=0,∴b=0.又f(x)的定义域应关于原点对称,即(a-1)+2a=0,∴a=13,故a+b=1 3.答案1 33.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.解析 f (x )是偶函数,其图象关于y 轴对称,又f (x )在[0,+∞)上递增, ∴f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇔|2x -1|<13⇔13<x <23.答案 ⎝ ⎛⎭⎪⎫13,23三.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若f (x 1)<f (x 2),则f (x )在区间D 上是增函数; ②若f (x 1)>f (x 2),则f (x )在区间D 上是减函数. (2)单调性、单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.四. 函数单调性的四种判断方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:(复合函数中)同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.(3)导数法:利用导数研究函数的单调性.(高二内容) (4)图象法:利用图象研究函数的单调性.考点自测1.(2013·南京鼓楼模拟)函数f (x )=1+x -1-x 的最大值为M ,最小值为m ,则Mm =________.解析 由⎩⎨⎧1+x ≥0,1-x ≥0得-1≤x ≤1.因为f (x )在[-1,1]上是单调增函数,所以M=f (1)=2,m =f (-1)=-2,所以Mm =-1. 答案 -12.(2012·连云港模拟)已知函数f (x )=x -kx (k >0,x >0),则f (x 2+1)与f (x )的大小关系是________.解析 因为f (x )在(0,+∞)上单调递增,且x 2+1≥2x >x (x >0),所以f (x 2+1)>f (x ). 答案 f (x 2+1)>f (x )3.(2013·济南外国语学校检测)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析 f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1. 答案 (0,1]考向一 函数单调性的判断【例1】 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 审题视点 可利用定义或导数法讨论函数的单调性. 解 设-1<x 1<x 2<1, f (x )=a x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a x 2-x 1(x 1-1)(x 2-1)当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增.[方法总结] 证明函数的单调性用定义法的步骤:取值—作差—变形—确定符号—下结论.【训练1】 已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ), ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.考向二 函数单调性的应用【例2】 (2013·鞍山模拟)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或m ≥2或m ≤-2.[方法总结] 函数单调性的应用,主要有两个方面,即应用单调性求字母取值范围,二是应用单调性比较数值大小或解函数不等式.【训练2】 (1)已知函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,2x -x 2,x <0,若f (1-a 2)>f (a ),则实数a 的取值范围是________.(2)已知函数f (x )=2-axa -1(a ≠1)是区间(0,1]上的减函数,则实数a 的取值范围为________.解析 (1)画图象或求导,可知函数f (x )是R 上的增函数,于是由f (1-a 2)>f (a ),得1-a 2>a ,即a 2+a -1<0,解得-1-52<a <-1+52. (2)由题意,当x =1时,2-ax =2-a ≥0,所以a ≤2且a ≠1,a ≠0. 若a <0,则2-ax 是增函数,要使f (x )是区间(0,1]上的减函数,必有a -1<0,即a <1.所以a <0.若a >0,则2-ax 是减函数,要使f (x )是区间(0,1]上的减函数,必有a -1>0,即a >1.所以1<a ≤2.综上,得a 的取值范围是(-∞,0)∪(1,2]. 答案 (1)⎝ ⎛⎭⎪⎫-1-52,-1+52 (2)(-∞,0)∪(1,2]高考经典题组训练1.(2012·陕西卷改编)下列函数:①y =x +1;②y =-x 3;③y =1x ;④y =x |x |,其中既是奇函数又是增函数的序号是________.解析 y =-x 3;y =1x ,y =x |x |是奇函数,仅y =x |x |是增函数. 答案 ④3.(2012·上海卷)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析 因为y =e x 是增函数,所以由题意,y =|x -a |在区间[1,+∞)上是增函数,所以a ≤1. 答案 (-∞,1]4.(2010·天津卷改编)设f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x-1)+4f (m )恒成立,求实数m 的取值范围.解 由题意,得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在⎣⎢⎡⎭⎪⎫32,+∞上恒成立.因为y =-3x 2-2x +1在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,所以当x =32时,y min =-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32.层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.(2013·南京金陵中学检测)下列函数中:①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;满足“对任意x 1x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的函数序号是________.解析 由题意,即判断哪些函数是(0,+∞)内的减函数.仅f (x )=1x 符合题意. 答案 ①2.下列函数中:①y =-x +1;②y =x ;③y =x 2-4x +5;④y =2x ,在区间(0,2)上为增函数的是________(填所有正确的编号).解析 y =-x +1在R 上递减;y =x 在R +上递增;y =x 2-4x +5在(-∞,2]上递减,在[2,+∞)上递增,y =2x 在R +上递减. 答案 ②3.(2012·镇江调研)若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是________. 解析 因为f (x )是二次函数且开口向上, 所以要使f (x )在(-∞,1]上是单调递减函数,则必有-a 2-4a +12≥1,即a 2-4a +3≤0,解得1≤a ≤3.答案 [1,3]4.(2011·新课标全国卷)下列函数:①y =x 3;②y =|x |+1;③y =-x 2+1;④y = 2-|x |.既是偶函数又在(0,+∞)单调递增的函数序号是________.解析 y =x 3是奇函数,y =-x 2+1与y =2-|x |在(0,+∞)上是减函数. 答案 ②5.已知f (x )是定义在(-1,1)上的奇函数,且f (x )在(-1,1)上是减函数,则不等式f (1-x )+f (1-x 2)<0的解集为________. 解析 由f (x )是定义在(-1,1)上的奇函数, 及f (1-x )+f (1-x 2)<0, 得f (1-x )<-f (1-x 2), 所以f (1-x )<f (x 2-1).又因为f (x )在(-1,1)上是减函数, 所以⎩⎨⎧-1<1-x <1,-1<1-x 2<1,解得0<x <1.1-x >x 2-1.故原不等式的解集为(0,1). 答案 (0,1)6.(2012·南师附中检测)已知函数y =f (x )是定义在R 上的偶函数,当x ≤0时,y =f (x )是减函数,若|x 1|<|x 2|,则结论:①f (x 1)-f (x 2)<0;②f (x 1)-f (x 2)>0;③f (x 1)+f (x 2)<0;④f (x 1)+f (x 2)>0中成立的是________(填所有正确的编号). 解析 由题意,得f (x )在[0,+∞)上是增函数,且f (x 1)=f (|x 1|),f (x 2)=f (|x 2|),从而由0≤|x 1|<|x 2|,得f (|x 1|)<f (|x 2|),即f (x 1)<f (x 2),f (x 1)-f (x 2)<0,只能①是正确的. 答案 ①二、解答题(每小题15分,共30分) 7.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数.(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明 法一 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0.因为f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x 2)>f (x 1),因此f (x )在(0,+∞)上是增函数. 法二 因为f (x )=1a -1x , 所以f ′(x )=⎝ ⎛⎭⎪⎫1a -1x ′=1x 2>0,所以f (x )在(0,+∞)上为增函数.(2)解 因为f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,故a =25.8.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数.(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明法一因为函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),所以令x=y=0,得f(0)=0.再令y=-x,得f(-x)=-f(x).在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).又由x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2).因此f(x)在R上是减函数.法二设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2)=f(x1-x2).又由x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2),所以f(x)在R上为减函数.(2)解因为f(x)在R上是减函数,所以f(x)在[-3,3]上也是减函数,所以f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.所以f(x)在[-3,3]上的最大值为2,最小值为-2.。

人教版高一数学必修第三节 函数的奇偶性与周期性

人教版高一数学必修第三节 函数的奇偶性与周期性

第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).5.设f (x )是定义在R 上周期为2的奇函数,当0≤x ≤1时,f (x )=x 2-x ,则f ⎝⎛⎭⎫-52=( ) A .-14B .-12C.14D.12解析:选C 因为f (x )是定义在R 上周期为2的奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12.又当0≤x ≤1时,f (x )=x 2-x ,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12=-14,则f ⎝⎛⎭⎫-52=14. 6.(2019·益阳、湘潭调研)定义在R 上的函数f (x ),满足f (x +5)=f (x ),当x ∈(-3,0]时,f (x )=-x -1,当x ∈(0,2]时,f (x )=log 2x ,则f (1)+f (2)+f (3)+…+f (2 019)的值等于( )A .403B .405C .806D .809解析:选B 定义在R 上的函数f (x ),满足f (x +5)=f (x ),即函数f (x )的周期为5.又当x ∈(0,2]时,f (x )=log 2x ,所以f (1)=log 21=0,f (2)=log 22=1.当x ∈(-3,0]时,f (x )=-x -1,所以f (3)=f (-2)=1,f (4)=f (-1)=0,f (5)=f (0)=-1.故f (1)+f (2)+f (3)+…+f (2 019)=403×[f (1)+f (2)+f (3)+f (4)+f (5)]+f (2 016)+f (2 017)+f (2 018)+f (2 019)=403×1+f (1)+f (2)+f (3)+f (4)=403+0+1+1+0=405.7.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2的值为________. 解析:由已知可得f ⎝⎛⎭⎫1e 2=ln 1e2=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2). 又因为f (x )是偶函数,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2)=f (2)=ln 2. 答案:ln 28.(2019·惠州调研)已知函数f (x )=x +1x -1,f (a )=2,则f (-a )=________.解析:法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x 为奇函数,故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2. 所以f (a )+f (-a )=-2,故f (-a )=-4. 法二:由已知得f (a )=a +1a-1=2,即a +1a =3,所以f (-a )=-a -1a -1=-⎝⎛⎭⎫a +1a -1=-3-1=-4. 答案:-49.(2019·陕西一测)若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax,x ∈[-4,-1]的值域为________.解析:由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即⎣⎡⎦⎤-2,-12. 答案:⎣⎡⎦⎤-2,-12 10.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是____________.解析:当x >0时,lg x >0,所以x >1, 当x <0时,由奇函数的对称性得-1<x <0, 故填(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)11.f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式. 解:当x <0时,-x >0,则f (-x )=-2(-x )2+3(-x )+1=-2x 2-3x +1. 由于f (x )是奇函数,故f (x )=-f (-x ), 所以当x <0时,f (x )=2x 2+3x -1. 因为f (x )为R 上的奇函数,故f (0)=0.综上可得f (x )的解析式为f (x )=⎩⎪⎨⎪⎧-2x 2+3x +1,x >0,0,x =0,2x 2+3x -1,x <0.12.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. 解:(1)证明:由f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎣⎡⎦⎤32+⎝⎛⎭⎫32+x =-f ⎣⎡⎦⎤32-⎝⎛⎭⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函数,且T =3是其一个周期. (2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.B 级1.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9解析:选B 因为f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1),所以当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x ≤6时,f (x )=0有三个根,即x 5=4,x 6=5,x 7=6,故f (x )的图象在区间[0,6]上与x 轴的交点个数为7.2.(2019·洛阳统考)若函数f (x )=ln(e x +1)+ax 为偶函数,则实数a =________. 解析:法一:(定义法)∵函数f (x )=ln(e x +1)+ax 为偶函数,∴f (-x )=f (x ), 即ln(e -x +1)-ax =ln(e x +1)+ax ,∴2ax =ln(e -x+1)-ln(e x+1)=ln e -x +1e x +1=ln 1e x =-x ,∴2a =-1,解得a =-12.法二:(特殊值法)由题意知函数f (x )的定义域为R ,由f (x )为偶函数得f (-1)=f (1), ∴ln(e -1+1)-a =ln(e 1+1)+a ,∴2a =ln(e -1+1)-ln(e 1+1)=ln e -1+1e +1=ln 1e =-1,∴a =-12.答案:-123.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].。

《函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用》

《函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用》

备战高考数学“棘手”问题培优专题讲座---函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用一.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)即可.(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.函数y=f(x)满足:(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|;(8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;(9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.【方法点拨】1.函数奇偶性、对称性间关系:(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;一般的,若对于R上的任意x都有f(a-x)=f(a+x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (-x +a )+f (x +a )=2b , 则y =f (x )的图象关于点(a ,b )中心对称.2. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍, 为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍. (注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)3. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________.【分析】由f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12对称,由函数f (x +1)是奇函数,f (x )关于点(1,0)中心对称,根据函数对称性、周期性间关系,知函数f (x )的周期为2,作出函数f (x )的图象即可.【解析】因为函数f (x +1)是奇函数,所以f (-x +1)=-f (x +1),又因为f ⎝ ⎛⎭⎪⎫12+x = f ⎝ ⎛⎭⎪⎫12-x ,所以f (1-x )=f (x ),所以f (x +1)=-f (x ),即f (x +2)=-f (x +1)=f (x ), 所以 函数f (x )的周期为2,且图象关于直线x =12对称.作出函数f (x )的图象如图所示,由图象可得f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4.【答案】4 二、典型例题1.奇偶性与周期性的综合问题1.已知偶函数y =f (x )(x ∈R)在区间[-1,0]上单调递增,且满足f (1-x )+f (1+x )=0,给出下列判断:①f (5)=0; ②f (x )在[1,2]上是减函数; ③函数f (x )没有最小值; ④函数f (x )在x =0处取得最大值; ⑤f (x )的图象关于直线x =1对称. 其中正确的序号是________.解:因为f (1-x )+f (1+x )=0,所以f (1+x )=-f (1-x )=-f (x -1),所以f (2+x )=-f (x ),所以f (x +4)=f (x ),即函数f (x )是周期为4的周期函数.由题意知,函数y =f (x )(x ∈R)关于点(1,0)对称,画出满足条件的图象如图所示,结合图象可知①②④正确.答案:①②④2. 已知定义在R 上的偶函数()f x 满足:当(]1,0x ∈-时,()2x f x =,且()1f x +的图像关于原点对称,则20192f ⎛⎫= ⎪⎝⎭( )A .2B C .2-D .【解题思路】根据偶函数及()1f x +的图像关于原点对称可知,函数的周期;根据周期性及()1f x +为奇函数,可得20192f ⎛⎫⎪⎝⎭的值.解:由题可知函数()f x 的图像关于直线0x =和点()1,0对称,所以函数()f x 的周期为4,则12201933114252222222f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 答案:C3.已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1,则( )A .f (-3)<f (2)<f ⎝⎛⎭⎫52B .f ⎝⎛⎭⎫52<f (-3)<f (2)C .f (2)<f (-3)<f ⎝⎛⎭⎫52D .f (2)<f ⎝⎛⎭⎫52<f (-3) 解: ∵f (x -1)=f (x +1),则函数f (x )的周期T =2.当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1=x ·e x-1e x +1,则f (-x )=-x ·e -x -1e -x +1=-x ·1-e x 1+e x =x ·e x -1e x +1=f (x ),则函数f (x )为偶函数,因此f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12,f (-3)=f (-1)=f (1),f (2)=f (0). 当0 ≤x ≤1时,函数y =x 与y =1-2e x +1均为增函数且都不小于0, 所以f (x )=x ⎝⎛⎭⎫1-2e x +1在区间[0,1]上是增函数,∴f (1)>f ⎝⎛⎭⎫12>f (0),即f (-3)>f ⎝⎛⎭⎫52>f (2). 答案:D4.(2018年全国2卷)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5. 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1D .-3+1解:由题可知f (x +2)=f (x )=-f (-x ),所以f ⎝⎛⎭⎫2 0192=f ⎝⎛⎭⎫1 008+32=f ⎝⎛⎭⎫32=-f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫12. 又当x ∈(0,1)时,f (x )=3x -1,所以f ⎝⎛⎭⎫12=3-1,则f ⎝⎛⎭⎫2 0192=-f ⎝⎛⎭⎫12=-3+1. 答案:D奇偶性与周期性综合问题的解题策略函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6. 已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______ 解:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 答案:(-1,4)7. 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12, 又∵当-1≤x <0时,f (x )=-4x 2+2, ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:18. 若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 解:由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76 =-316+sin π6=516.答案:5169.已知f (x )是定义在R 上的偶函数,且f (x +2)=-f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解:由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以函数f (x )的周期为4,∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5)=2.5. 答案:2.510.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 解:由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1.答案:-111.已知定义在R 上的函数f (x )满足f (2)=15,且对任意的x 都有f (x +3)=-1f (x ),则f (8)=________;f (2 015)=________. 解:由f (x +3)=-1f (x ),得f (x +6)=-1f (x +3)=f (x ), 故函数f (x )是周期为6的周期函数.故f (8)=f (2)=15,f (2 015)=f (6×335+5)=f (5)=-1f (2)=-115=-5.答案:15;-513.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.解:函数f (x )是奇函数,则f (0)=0,由f (x )=2x -x 2,x ∈[0,2]知f (1)=1,f (2)=0,又f (x )的周期为4,所以f (2 018)+f (2 019)+f (2 020)=f (2)+f (3)+f (0)=f (3)=f (-1)=-f (1)=-1. 答案:-114.已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.解:由函数f (x )是周期为2的奇函数得f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫65=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45, 又当x ∈[0,1)时,f (x )=lg(x +1), 所以f ⎝⎛⎭⎫2 0165=-f ⎝⎛⎭⎫45=-lg 95=lg 59, 故f ⎝⎛⎭⎫2 0165+lg 18=lg 59+lg 18=lg 10=1. 答案:115.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 答案: 216.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.解:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22, 即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10. 答案:-1017.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为________.解:因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为7. 答案:718.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.解:在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f (x )在[-1,0]上是减函数,根据函数的周期性知, 函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f (x )在[0,2]上的最大值f (x )max =f (1)=2,f (x )的最小值f (x )min =f (0)=f (2)=20=1, 且f (x )是周期为2的周期函数.∴f (x )的最大值是2,最小值是1,故③错误. 答案:①②1. 已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝⎛⎭⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.a >b =c B.b >a =c C.b >c >a D.a >c >b解:依题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数,f (2)=f (0)=0,又f (3)=-f (2)=0,且f (x )在[0,1)上是增函数, 于是有f ⎝⎛⎭⎫12>f (0)=f (2)=f (3),即a >b =c . 答案:A2.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2解:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1),∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1), 即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ), 则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.3. 已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数, 那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数 解:由题意知f (x +2)=1f (x +1)=f (x ),所以f (x )的周期为2, 又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数, 则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.选A7.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解:∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π,又∵当0≤x <π时,f (x )=0, ∴f ⎝⎛⎭⎫5π6=0,∴f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 故选A. 8.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16解:由题可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f(x+12)=f[(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4,故选B.9.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x+4)=f(x)+f(2),则f(2 014)等于( )A.0B.3C.4D.6解:依题意,得f(-2+4)=f(-2)+f(2)=f(2),即2f(2)=f(2),f(2)=0,f(x+4)=f(x),f(x)是以4为周期的周期函数,又2014=4×503+2,所以f(2014)=f(2)=0.故选A.答案:A11.奇函数f(x)的定义域为R. 若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2 B.-1 C.0 D.1解:因为f(x)为R上的奇函数,所以f(-x)=-f(x),f(0)=0.因为f(x+2)为偶函数,所以f(x+2)=f(-x+2),所以f(x+4)=f(-x)=-f(x),所以f(x+8)=f(x),即函数f(x)的周期为8,故f(8)+f(9)=f(0)+f(1)=1. 故选D12.f(x)是R上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2,则函数y=f(x)-|log5x|的零点个数为( )A.4 B.5 C.8 D.10解:由零点的定义可得f(x)=|log5x|,两个函数图象如图,总共有5个交点,所以共有5个零点。

专题——函数的奇偶性,周期性,对称性

专题——函数的奇偶性,周期性,对称性

专题1函数的奇偶性,周期性,对称性知识梳理【题型解读】【知识储备】一.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称二.关于函数对称性的结论扩充1.若函数y =f (x )的图象关于x =a 对称⇔对定义域内任意x 都有f (a +x )=f (a -x )⇔对定义域内任意x 都有f (x )=f (2a -x )⇔y =f (x +a )是偶函数。

2.函数y =f (x )的图象关于点(a,0)对称⇔对定义域内任意x 都有f (a -x )=-f (a +x )⇔f (2a -x )=-f (x )⇔y =f (x +a )是奇函数。

3.若函数y =f (x )对定义域内任意x 都有f (x +a )=f (b -x ),则函数f (x )的图象的对称轴是x =a +b2。

4.若函数y =f (x )对定义域内任意x 都有f (a +x )+f (b -x )=c ,则函数f (x )的图象的对称中心为22a b c+(,)。

5.函数y =f (|x -a |)的图象关于x =a 对称。

三.关于函数周期性的结论扩充1.若满足f (x +a )=-f (x ),则f (x +2a )=f ((x +a )+a )=-f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。

2.若满足f (x +a )=1f (x ),则f (x +2a )=f ((x +a )+a )=1f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。

3.若函数满足f (x +a )=-1f (x ),同理可得2a 是函数的一个周期(a ≠0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 函数的奇偶性、对称性1.函数的奇偶性 奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称 奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称 (1)f (x )为奇函数⇔f (x )的图象关于原点对称;f (x )为偶函数⇔f (x )的图象关于y 轴对称. (2)如果函数f (x )是偶函数,那么f (x )=f (|x |).(3)既是奇函数又是偶函数的函数只有一种类型,即f (x )=0,x ∈D ,其中定义域D 是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(5)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.3.函数的对称性(1)若函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )关于直线x =a +b2对称,特别地,当a =b =0时,函数y =f (x )关于y 轴对称,此时函数y =f (x )是偶函数.(2)若函数y =f (x )满足f (x )=2b -f (2a -x ),则函数y =f (x )关于点(a ,b )对称,特别地,当a =0,b =0时,f (x )=-f (-x ),则函数y =f (x )关于原点对称,此时函数f (x )是奇函数.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.( ) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.( )(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( ) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( )(5)若函数f (x )=x 2+(a +2)x +b ,x ∈[a ,b ]的图象关于直线x =1对称,则a +b =2.( ) 答案:(1)√ (2)× (3)√ (4)√ (5)√ [教材衍化]1.(必修1P35例5改编)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x |D .y =2-x解析:选B.根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数,也不是偶函数.故选B.2.(必修1P45B 组T6改编)已知函数f (x )是奇函数,且在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上的值域为________.解析:法一:根据题意作出y =f (x )的简图,由图知函数f (x )在[-b ,-a ]上的值域为[-4,3]法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ], 由题意得f (b )≤f (-x )≤f (a ), 即-3≤-f (x )≤4, 所以-4≤f (x )≤3,即在区间[-b ,-a ]上的值域为[-4,3]. 答案:[-4,3]3.(必修1P45B 组T4改编)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:1 [易错纠偏](1)利用奇偶性求解析式时忽视定义域;(2)忽视奇函数的对称性; (3)忽视定义域的对称性.1.设函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+4x -3,则函数f (x )的解析式为f (x )=________.解析:设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2+4(-x )-3]=-x 2+4x +3,由奇函数的定义可知f (0)=0,所以f (x )=⎩⎪⎨⎪⎧x 2+4x -3,x >0,0,x =0,-x 2+4x +3,x <0.答案:⎩⎪⎨⎪⎧x 2+4x -3,x >0,0,x =0,-x 2+4x +3,x <02.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.解析:由题图可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,所以当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].答案:(-2,0)∪(2,5]3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 解析:因为f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, 所以a -1+2a =0, 所以a =13.又f (-x )=f (x ), 所以b =0, 所以a +b =13.答案:13判断函数的奇偶性(1)函数y =|x -4|-49-x 2的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数(2)(2020·“七彩阳光”联盟联考)已知函数f (x )=|e |x |-2e|+e |x |,g (x )=3sin 2x ,下列描述正确的是( )A .f (g (x ))是奇函数B .f (g (x ))是偶函数C .f (g (x ))既是奇函数又是偶函数D .f (g (x ))既不是奇函数又不是偶函数【解析】 (1)由9-x 2>0可得-3<x <3,所以x -4<0, f (x )=|x -4|-49-x 2=4-x -49-x 2=-x 9-x 2,f (-x )=|x +4|-49-x 2=4+x -49-x2=x 9-x 2=-f (x ),所以函数y =|x -4|-49-x2是奇函数,故选A.(2)由题意知f (x )是偶函数,g (x )是奇函数,f (g (-x ))=f (-g (x ))=f (g (x )),故f (g (x ))是偶函数.【答案】 (1)A (2)B判定函数奇偶性的3种常用方法(1)定义法(2)图象法(3)性质法①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒](1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同关系时,才能判断其奇偶性.1.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数解析:选D.f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.2.判断下列函数的奇偶性.(1)f(x)=3-2x+2x-3;(2)f(x)=4-x2|x+3|-3;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)因为函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,所以函数f (x )既不是奇函数,也不是偶函数.(2)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0,所以f (x )的定义域为[-2,0)∪(0,2],关于原点对称. 所以f (x )=4-x 2(x +3)-3=4-x 2x. 所以f (x )=-f (-x ), 所以f (x )是奇函数.(3)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x , 则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ), 故原函数是偶函数.函数奇偶性的应用(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于________.【解析】 (1)因为f (x )为偶函数, 所以f (-x )-f (x )=0恒成立, 所以-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,所以x ln a =0恒成立,所以ln a =0,即a =1.(2)f (-1)+g (1)=2,即-f (1)+g (1)=2①, f (1)+g (-1)=4,即f (1)+g (1)=4②, 由①②得,2g (1)=6,即g (1)=3. 【答案】 (1)1 (2)3已知函数奇偶性可以解决的4个问题(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出. (3)求解析式中的参数:利用待定系数法求解,根据f (x )±f (-x )=0得到关于参数的恒等式,由系数的对等性得参数的方程或方程(组),进而得出参数的值.(4)画函数图象:利用奇偶性可画出另一对称区间上的图象.1.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1D .-2解析:选B.设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B.2.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))=( )A .-1B .-2C .1D .2解析:选A.因为f (x )为奇函数,所以f (-8)=-f (8) =-log 39=-2,所以g [f (-8)]=g (-2)=f (-2)=-f (2) =-log 33=-1.3.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.解析:当x <0时,则-x >0,所以f (-x )=(-x )(1-x ).又f (x )为奇函数,所以f (-x )=-f (x )=(-x )(1-x ),所以f (x )=x (1-x ).答案:x (1-x )函数的对称性(1)已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),当0<x <1时,f (x )=2x -1,则f (log 29)=( )A .-79B .8C .-10D .-259(2)已知函数f (x )=ax +bx -b ,其图象关于点(-3,2)对称,则f (2)的值是________.【解析】 (1)f (x +2)=-f (x )=f (-x ),所以f (x )的图象的对称轴为x =1,f (log 29)=-f ⎝⎛⎭⎫log 294,因为1<log 294<2,故f ⎝⎛⎭⎫log 294=f ⎝⎛⎭⎫2-log 294=f ⎝⎛⎭⎫log 2169,其中0<log 2169<1,所以f ⎝⎛⎭⎫log 2169=2log 2169-1=79, 故f (log 29)=-79,故选A.(2)因为函数f (x )=ax +b x -b =a +ab +bx -b ,所以函数的对称中心为(b ,a ).又因为函数f (x )=ax +bx -b ,其图象关于点(-3,2)对称,所以a =2,b =-3.所以函数f (x )的解析式为f (x )=2x -3x +3,所以f (2)=2×2-32+3=15.【答案】 (1)A (2)15(1)函数满足f (x +t )=f (t -x )(或f (x )=f (2t -x )),则函数关于直线x =t 对称,若函数满足f (x +2t )=f (x ),则函数f (x )以2t (t ≠0)为周期.(2)若函数y =f (x )的对称中心为(a ,b ),根据函数y =f (x )图象上任意点关于该对称中心的对称点也在此函数图象上,利用恒等式求解.1.用min{a ,b }表示a ,b 两数中的最小值.若函数f (x )=min{|x |,|x +t |}的图象关于直线x =-12对称,则t 的值为( )A .-2B .2C .-1D .1解析:选D.由于函数f (x )是两个函数y 1=|x |,y 2=|x +t |中的较小者,因此f (x )在不同的定义域内取值不同,故需作出其图象求解.在同一坐标系中,分别作出函数y =|x |与y =|x +t |的草图(如图).由图象知f (x )的图象为图中的实线部分(A -B -C -O -E ).由于f (x )的图象关于直线x =-12对称,于是-t +02=-12,所以t =1.2.函数f (x )=x -ax -a -1的图象的对称中心是(4,1),则a =________.解析:因为f (x )=x -a x -a -1=x -a -1+1x -a -1=1+1x -a -1,所以函数f (x )图象的对称中心是(a +1,1). 由已知得a +1=4,故a =3. 答案:3函数性质的综合应用(高频考点)函数的奇偶性及单调性是函数的两大性质,在高考中常常将它们综合在一起命题,以选择题或填空题的形式考查,难度稍大,为中高档题.主要命题角度有:(1)函数的奇偶性与单调性相结合; (2)函数的奇偶性与对称性相结合. 角度一 函数的奇偶性与单调性相结合(2020·金丽衢十二校联考)定义在R 上的偶函数f (x )满足:f (4)=f (-2)=0,在区间(-∞,-3)与[-3,0]上分别单调递增和单调递减,则不等式xf (x )>0的解集为( )A.(-∞,-4)∪(4,+∞)B.(-4,-2)∪(2,4)C.(-∞,-4)∪(-2,0)D.(-∞,-4)∪(-2,0)∪(2,4)【解析】因为f(x)是偶函数,所以f(4)=f(-4)=f(2)=f(-2)=0,又f(x)在(-∞,-3),[-3,0]上分别单调递增与单调递减,所以xf(x)>0的解集为(-∞,-4)∪(-2,0)∪(2,4),故选D.【答案】 D角度二函数的奇偶性与对称性相结合在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)()A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数【解析】由f(x)=f(2-x),函数f(x)关于x=1对称,又因为f(x)在R上是偶函数,所以f(x)关于y轴对称.又因为f(x)在区间[1,2]上是减函数,所以f(x)在[0,1]上为增函数,在[-1,0]上为减函数,故函数图象如图所示.由图可知B正确.【答案】 B(1)关于奇偶性、单调性、对称性的综合性问题,关键是利用奇偶性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f(x)为偶函数⇔f(x)=f(|x|).②若奇函数在x=0处有意义,则f(0)=0.1.(2020·湖州模拟)设f (x )是定义在R 上以2为周期的偶函数,在区间[-1,0]上是严格单调递增函数,且满足f (e)=0,f (2e)=1,则不等式⎩⎪⎨⎪⎧0≤x ≤10≤f (x )≤1的解集为________.解析:根据函数周期为2且为偶函数知,f (e)=f (e -2)=0,f (2e)=f (2e -4)=f (6-2e)=1,因为0<6-2e<e -2<1,且根据对称性知函数在[0,1]上单调递减,所以⎩⎨⎧0≤x ≤10≤f (x )≤1的解为6-2e ≤x ≤e -2,故填[6-2e ,e -2].答案:[6-2e ,e -2]2.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________. 解析:因为f (x )的图象关于直线x =2对称, 所以f (4-x )=f (x ),所以f (4-1)=f (1)=f (3)=3,即f (1)=3. 因为f (x )是偶函数,所以f (-x )=f (x ), 所以f (-1)=f (1)=3. 答案:3核心素养系列3 逻辑推理、数学运算——奇偶函数的二次结论及应用结论一:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c . [结论简证]由于函数f (x )是奇函数,所以f (-x )=-f (x ),所以g (-x )+g (x )=f (-x )+c +f (x )+c =2c .对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( )A .4和6B .3和1C .2和4D .1和2【解析】 设g (x )=a sin x +bx ,则f (x )=g (x )+c ,且函数g (x )为奇函数.注意到c ∈Z ,所以f (1)+f (-1)=2c 为偶数.故选D.【答案】 D由上述例题可知,这类问题的求解关键在于观察函数的结构,构造出一个奇函数.有些问题是直观型的,直接应用即可,但有些问题是复杂型的,需要变形才能成功.结论二:若函数f (x )是奇函数,则函数g (x )=f (x -a )+h 的图象关于点(a ,h )对称. [结论简证]函数g (x )=f (x -a )+h 的图象可由f (x )的图象平移得到,不难知结论成立.函数f (x )=x x +1+x +1x +2+x +2x +3的图象的对称中心为( ) A .(-4,6) B .(-2,3) C .(-4,3) D .(-2,6)【解析】 设g (x )=-1x -1-1x -1x +1,则g (-x )=-1-x -1-1-x -1-x +1=1x -1+1x+1x +1=-g (x ),故g (x )为奇函数.易知f (x )=3-⎝ ⎛⎭⎪⎫1x +1+1x +2+1x +3=g (x +2)+3,所以函数f (x )的图象的对称中心为(-2,3).故选B.【答案】 B此类问题求解的关键是从所给函数式中分离(或变形)出奇函数,进而得出图象的对称中心,然后利用图象的对称性实现问题的求解.结论三:若函数f (x )为偶函数,则f (x )=f (|x |). [结论简证]当x ≥0时,|x |=x ,所以f (|x |)=f (x );当x <0时,f (|x |)=f (-x ),由于函数f (x )为偶函数,所以f (-x )=f (x ),故f (|x |)=f (x ). 综上,若函数f (x )为偶函数,则f (x )=f (|x |).(1)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________;(2)若偶函数f (x )满足f (x )=x 3-8(x ≥0),则f (x -2)>0的条件为________.【解析】 (1)易知函数f (x )的定义域为R ,且f (x )为偶函数.当x ≥0时,f (x )=ln(1+x )-11+x2,易知此时f (x )单调递增.所以f (x )>f (2x -1)⇒f (|x |)>f (|2x -1|),所以|x |>|2x -1|,解得13<x <1. (2)由f (x )=x 3-8(x ≥0),知f (x )在[0,+∞)上单调递增,且f (2)=0.所以,由已知条件可知f (x -2)>0⇒f (|x -2|)>f (2).所以|x -2|>2,解得x <0或x >4.【答案】 (1)⎝⎛⎭⎫13,1 (2){x |x <0或x >4}[基础题组练]1.(2020·舟山市普陀三中高三期中)下列函数既是奇函数,又在(0,+∞)上单调递增的是( )A .y =-x 2B .y =x 3C .y =log 2xD .y =-3-x解析:选B.A.函数y =-x 2为偶函数,不满足条件.B .函数y =x 3为奇函数,在(0,+∞)上单调递增,满足条件.C .y =log 2x 的定义域为(0,+∞),为非奇非偶函数,不满足条件.D .函数y =-3-x 为非奇非偶函数,不满足条件.2.(2020·衢州高三年级统一考试)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( )A .-x 3-ln(1-x )B .x 3+ln(1-x )C .x 3-ln(1-x )D .-x 3+ln(1-x )解析:选C.当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),因为f (x )是R 上的奇函数,所以当x <0时,f (x )=-f (-x )=-[(-x )3+ln(1-x )],所以f (x )=x 3-ln(1-x ).3.若f (x )=(e x -e -x )(ax 2+bx +c )是偶函数,则一定有( ) A .b =0 B .ac =0C .a =0且c =0D .a =0,c =0且b ≠0解析:选C.设函数g (x )=e x -e -x .g (-x )=e -x -e x =-g (x ),所以g (x )是奇函数.因为f (x )=g (x )(ax 2+bx +c )是偶函数.所以h (x )=ax 2+bx +c 为奇函数.即h (-x )+h (x )=0恒成立,有ax 2+c =0恒成立.所以a =c =0.当a =c =b =0时,f (x )=0,也是偶函数,故选C.4.设f (x )是定义在实数集上的函数,且f (2-x )=f (x ),若当x ≥1时,f (x )=ln x ,则有( ) A .f ⎝⎛⎭⎫13<f (2)<f ⎝⎛⎭⎫12 B .f ⎝⎛⎭⎫12<f (2)<f ⎝⎛⎭⎫13C .f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2)D .f (2)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13解析:选C.由f (2-x )=f (x )可知函数f (x )的图象关于x =1对称,所以f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫13=f ⎝⎛⎭⎫53,又当x ≥1时,f (x )=ln x 单调递增,所以f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫53<f (2),即f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2),故选C. 5.若函数f (x )=ln(ax +x 2+1)是奇函数,则a 的值为( ) A .1 B .-1 C .±1D .0解析:选C.因为f (x )=ln(ax +x 2+1)是奇函数,所以f (-x )+f (x )=0.即ln(-ax +x 2+1)+ln(ax +x 2+1)=0恒成立,所以ln[(1-a 2)x 2+1]=0,即(1-a 2)x 2=0恒成立,所以1-a 2=0,即a =±1.6.(2020·杭州四中第一次月考)设奇函数f (x )在(0,+∞)上为单调递减函数,且f (2)=0,则不等式3f (-x )-2f (x )5x≤0的解集为( )A .(-∞,-2]∪(0,2]B .[-2,0)∪[2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,0)∪(0,2]解析:选D.因为函数f (x )在(0,+∞)上为单调递减函数,且f (2)=0,所以函数f (x )在(0,2)上的函数值为正,在(2,+∞)上的函数值为负,当x >0时,不等式3f (-x )-2f (x )5x ≤0等价于3f (-x )-2f (x )≤0,又f (x )是奇函数,所以有f (x )≥0,所以有0<x ≤2,同理当x <0时,可解得-2≤x <0.综上,不等式3f (-x )-2f (x )5x≤0的解集为[-2,0)∪(0,2],故选D.7.若f (x )=k ·2x +2-x 为偶函数,则k =________,若f (x )为奇函数,则k =________. 解析:f (x )为偶函数时,f (-1)=f (1),即k 2+2=2k +12,解得k =1.f (x )为奇函数时,f (0)=0,即k +1=0,所以k =-1(或f (-1)=-f (1),即k 2+2=-2k -12,解得k =-1).答案:1 -18.若关于x 的函数f (x )=tx 2+2x +t 2+2 018x 5x 2+t (t >0)的最大值为M ,最小值为N ,且M +N =4,则实数t 的值为________.解析:因为f (x )=tx 2+2x +t 2+2 018x 5x 2+t =t +2x +2 018x 5x 2+t=t +g (x ),其中g (x )是奇函数,M +N =t +g (x )+t +g (-x )=2t =4⇒t =2.答案:29.(2020·杭州市富阳二中高三质检)已知定义在R 上的函数f (x )满足:①f (1+x )=f (1-x );②在[1,+∞)上为增函数,若x ∈⎣⎡⎦⎤12,1时,f (ax )<f (x -1)成立,则实数a 的取值范围为________.解析:根据题意,可知函数f (x )的图象关于直线x =1对称, 因为其在[1,+∞)上为增函数,则在(-∞,1)上是减函数, 并且自变量离1越近,则函数值越小, 由f (ax )<f (x -1)可得,|ax -1|<|x -1-1|, 化简得|ax -1|<|x -2|,因为x ∈⎣⎡⎦⎤12,1,所以|x -2|=2-x , 所以该不等式可以化为x -2<ax -1<2-x ,即不等式组⎩⎪⎨⎪⎧(a -1)x >-1(a +1)x <3在x ∈⎣⎡⎦⎤12,1上恒成立, 从而有⎩⎪⎨⎪⎧(a -1)×12>-1(a -1)×1>-1(a +1)×12<3(a +1)×1<3,解得0<a <2,故答案为(0,2).答案:(0,2)10.(2020·温州调研)已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x-1,函数g (x )=x 2-2x +m .如果对于任意x 1∈[-2,2],存在x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是________.解析:当x ∈(0,2]时,f (x )=2x -1∈(0,3],又f (x )是定义在[-2,2]上的奇函数,所以f (0)=0,当x ∈[-2,0)时,f (x )∈[-3,0),所以函数f (x )的值域是[-3,3].当x ∈[-2,2]时,g (x )=x 2-2x +m ∈[m -1,m +8].由任意x 1∈[-2,2],存在x 2∈[-2,2],使得g (x 2)=f (x 1),可得[-3,3]⊆[m -1,m +8],所以⎩⎪⎨⎪⎧m -1≤-3,m +8≥3⇒-5≤m ≤-2.答案:[-5,-2]11.已知函数f (x )=2x +k ·2-x ,k ∈R . (1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞),都有f (x )>2-x 成立,求实数k 的取值范围. 解:(1)因为f (x )=2x +k ·2-x 是奇函数, 所以f (-x )=-f (x ),k ∈R , 即2-x +k ·2x =-(2x +k ·2-x ),所以(k +1)·(1+22x )=0对一切k ∈R 恒成立, 所以k =-1.(2)因为x ∈[0,+∞),均有f (x )>2-x , 即2x +k ·2-x >2-x 对x ∈[0,+∞)恒成立, 所以1-k <22x 对x ∈[0,+∞)恒成立, 所以1-k <(22x )min ,因为y =22x 在[0,+∞)上单调递增, 所以(22x )min =1.所以1-k <1,解得k >0. 所以实数k 的取值范围为(0,+∞).12.(2020·绍兴一中高三期中)已知f (x )为偶函数,当x ≥0时,f (x )=-(x -1)2+1,求满足f [f (a )]=12的实数a 的个数.解:令f (a )=x ,则f [f (a )]=12变形为f (x )=12;当x ≥0时,f (x )=-(x -1)2+1=12,解得x 1=1+22,x 2=1-22; 因为f (x )为偶函数,所以当x <0时,f (x )=12的解为x 3=-1-22,x 4=-1+22;综上所述,f (a )=1+22,1-22,-1-22,-1+22; 当a ≥0时,f (a )=-(a -1)2+1=1+22,方程无解;f (a )=-(a -1)2+1=1-22,方程有2解; f (a )=-(a -1)2+1=-1-22,方程有1解; f (a )=-(a -1)2+1=-1+22,方程有1解; 故当a ≥0时,方程f (a )=x 有4解,由偶函数的性质,易得当a <0时,方程f (a )=x 也有4解,综上所述,满足f [f (a )]=12的实数a 的个数为8.[综合题组练]1.已知f (x )是奇函数,且当x <0时,f (x )=x 2+3x +2.若当x ∈[1,3]时,n ≤f (x )≤m 恒成立,则m -n 的最小值为 ( )A.94 B .2 C.34D.14解析:选A.设x >0,则-x <0,所以f (x )=-f (-x )=-[(-x )2+3(-x )+2]=-x 2+3x -2.所以在[1,3]上,当x =32时,f (x )max =14;当x =3时,f (x )min =-2.所以m ≥14且n ≤-2.故m -n ≥94.2.(2020·宁波效实中学高三月考)对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数.下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos(x +1)解析:选D.由f (x )为准偶函数的定义可知,若f (x )的图象关于x =a (a ≠0)对称,则f (x )为准偶函数,A ,C 中两函数的图象无对称轴,B 中函数图象的对称轴只有x =0,而D 中f (x )=cos(x +1)的图象关于x =k π-1(k ∈Z )对称.3.已知函数f (x )=a -12x +1.若f (x )为奇函数,则a =________.解析:法一:因为f (x )是奇函数,所以f (-x )=-f (x ),即a -12-x +1=-⎝ ⎛⎭⎪⎫a -12x +1,则2a =12-x +1+12x +1=2x 1+2x +12x +1=2x +12x +1=1,所以a=12. 法二:因为f (x )为奇函数,定义域为R ,所以f (0)=0.所以a -120+1=0,所以a =12.经检验,当a =12时,f (x )是一个奇函数.答案:124.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝⎛⎭⎫12x,则f (1),g (0),g (-1)之间的大小关系是________.解析:在f (x )-g (x )=⎝⎛⎭⎫12x中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x .联立方程组解得f (x )=2-x -2x 2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1). 答案:f (1)>g (0)>g (-1)5.(2020·杭州学军中学高三质检)已知函数y =f (x )在定义域[-1,1]上既是奇函数,又是减函数.(1)求证:对任意x 1,x 2∈[-1,1],有[f (x 1)+f (x 2)]·(x 1+x 2)≤0; (2)若f (1-a )+f (1-a 2)<0,求实数a 的取值范围. 解:(1)证明:若x 1+x 2=0,显然不等式成立. 若x 1+x 2<0,则-1≤x 1<-x 2≤1, 因为f (x )在[-1,1]上是减函数且为奇函数, 所以f (x 1)>f (-x 2)=-f (x 2), 所以f (x 1)+f (x 2)>0.所以[f (x 1)+f (x 2)](x 1+x 2)<0成立. 若x 1+x 2>0,则1≥x 1>-x 2≥-1, 同理可证f (x 1)+f (x 2)<0.所以[f (x 1)+f (x 2)](x 1+x 2)<0成立.综上得证,对任意x 1,x 2∈[-1,1],有[f (x 1)+f (x 2)]·(x 1+x 2)≤0恒成立.(2)因为f (1-a )+f (1-a 2)<0⇔f (1-a 2)<-f (1-a )=f (a -1),所以由f (x )在定义域[-1,1]上是减函数,得⎩⎪⎨⎪⎧-1≤1-a 2≤1,-1≤a -1≤1,1-a 2>a -1,即⎩⎪⎨⎪⎧0≤a 2≤2,0≤a ≤2,a 2+a -2<0,解得0≤a <1.故所求实数a 的取值范围是[0,1).6.(2020·宁波市余姚中学高三模拟)设常数a ∈R ,函数f (x )=(a -x )|x |. (1)若a =1,求f (x )的单调区间;(2)若f (x )是奇函数,且关于x 的不等式mx 2+m >f [f (x )]对所有的x ∈[-2,2]恒成立,求实数m 的取值范围.解:(1)当a =1时,f (x )=(1-x )|x |=⎩⎪⎨⎪⎧(1-x )x ,x ≥0(x -1)x ,x <0,当x ≥0时,f (x )=(1-x )x =-⎝⎛⎭⎫x -122+14, 所以f (x )在⎣⎡⎦⎤0,12内是增函数, 在⎝⎛⎭⎫12,+∞内是减函数; 当x <0时,f (x )=(x -1)x =⎝⎛⎭⎫x -122-14, 所以f (x )在(-∞,0)内是减函数; 综上可知,f (x )的单调增区间为⎣⎡⎦⎤0,12, 单调减区间为(-∞,0),⎝⎛⎭⎫12,+∞. (2)因为f (x )是奇函数,所以f (-1)=-f (1), 即(a +1)·1=-(a -1)·1,解得a =0. 所以f (x )=-x |x |,f [f (x )]=x 3|x |; 所以mx 2+m >f [f (x )]=x 3|x |,即m >x 3|x |x 2+1对所有的x ∈[-2,2]恒成立.因为x ∈[-2,2],所以x 2+1∈[1,5].所以x 3|x |x 2+1≤x 4x 2+1=x 4-1+1x 2+1=x 2+1+1x 2+1-2≤165.所以m >165.所以实数m 的取值范围为⎝⎛⎭⎫165,+∞.。

相关文档
最新文档