三相异步电动机及控制电路(教案)
任务四 安装与调试三相异步电动机正反转控制电路电子教案

任务四安装与调试三相异步电动机正反转控制电路教案
教案内容
教学实施过程
设计意图及课程思政
导入新课(10’)
电梯能够上升与下降,摇臂钻床的摇臂能上升和下降,并且可以夹紧和松开工件,其工作过程是朝两个相反的方向运动,这要求驱动电机能实现正、反向的控制。
可在电动机单向连续控制的基础上,增加反转运行,从而实现对电动机正反转的控制。
讲授新课(50’)
一、识读电路图
如图1所示为接触器联锁正反转电路原理图。
在连续单向运行电路的基础上增加了一组接触器和一条控制电路来实现反转控制。
因此,电路中有两个接触器,即正转接触器KM1和反转接触器KM2。
图1 接触器联锁正反转控制电路
控制电路中,有两条电路,一条是由正转起动按钮SB1和接触器KM1线圈实现的正转控制,另一条是由反转起动按钮SB2和KM2线圈实现的反转控制。
其中与正转起动按钮SB1 并联的KM1常开触点和与反转起动按钮SB2并联的KM2常开触点为自锁触点,保证了电动机的连续运行。
当一个接触器通电动作时,通过其辅助常闭触点使得另一个接触器不能通电动作,接触器之间的这种相互制约作用,称为接触器联锁(或互锁),实现互锁作用的辅助常闭触点称为联锁触点(或互锁触点),联锁用符号“▽”表示。
二、线路工作原理
三、绘制线路图
结合接触器联锁正反转主电路和控制电路的组成及原理,绘制接线图。
动手实践(120’)
四、安装线路
1.准备工具和仪表
动画引入微课强化
安全用电规
范。
三相异步电动机的正反转控制授课教案

三相异步电动机的正反转控制授课教案一、教学目标1. 让学生了解三相异步电动机的结构和工作原理。
2. 让学生掌握三相异步电动机的正反转控制方法。
3. 培养学生动手操作和分析问题的能力。
二、教学内容1. 三相异步电动机的结构2. 三相异步电动机的工作原理3. 三相异步电动机的正反转控制电路4. 正反转控制电路的安装与调试5. 故障分析与排除三、教学重点与难点1. 教学重点:三相异步电动机的结构、工作原理和正反转控制方法。
2. 教学难点:正反转控制电路的安装与调试,故障分析与排除。
四、教学方法1. 采用讲授法讲解三相异步电动机的结构、工作原理和正反转控制方法。
2. 采用演示法展示正反转控制电路的安装与调试过程。
3. 采用案例分析法分析故障现象,培养学生解决问题的能力。
五、教学准备1. 准备三相异步电动机的相关资料,如图片、视频等。
2. 准备正反转控制电路的元件,如开关、按钮、电机等。
3. 准备故障案例,用于分析与讨论。
【导入】(简要介绍三相异步电动机的应用场景,引出本节课的主题。
)【讲解】1. 三相异步电动机的结构(讲解三相异步电动机的各个部分及其作用。
)2. 三相异步电动机的工作原理(讲解三相异步电动机的工作原理,包括旋转磁场、电磁转矩等。
)3. 三相异步电动机的正反转控制方法(讲解三相异步电动机的正反转控制方法,如控制电路、开关等。
)【演示】1. 正反转控制电路的安装与调试(演示正反转控制电路的安装过程,包括接线、检查等。
)2. 故障分析与排除(演示故障现象,引导学生分析原因,并提出解决方法。
)【练习】1. 让学生根据所学内容,绘制三相异步电动机的正反转控制电路图。
2. 让学生分析给出的故障案例,并提出解决方案。
【总结】(总结本节课所学内容,强调重点和难点。
)【作业】1. 复习三相异步电动机的结构、工作原理和正反转控制方法。
2. 完成故障案例的分析报告。
六、教学活动1. 实践操作:让学生独立完成三相异步电动机的正反转控制电路的安装与调试。
6.三相异步电动机连续运转控制电路教学设计

5min
作业布置
巩固提高
布置课堂拓展任务,组织学生整理好学习用品,将教学仪器等摆放规范整齐。
明确任务,按时完成;按照“8S”要求整理工位。
2min
板书设计
任务6三相异步电动机连续运转控制电路
一、情境引入
二、创设分析任务
三、任务实施
1.原图图设计
2.工作原理分析
3.线路连接
45min
10min
3min
成果展示与评价
检查各小组完成情况
组织学生进行小组评价;请学生就他们的操作情况进行自评,组织学生进行互评,老师进行师评。
1.积极参与评价;
2.听老师的点评。
7min
课堂小结
小结本次课的主要学习内容
1.组织各组总结,要求学生自主发言;
2.教师总结。
1.小组讨论:总结本次课学习的重点内容,及难点内容,积极发言;
首先,什么叫自锁,
(简单的说就是自己把自己锁起来。一个线圈用自己的辅助常开触头,将启动按钮并联起来,当启动按钮按下后,辅助触头自动吸合,此时即使启动按钮断开了,依然能够通过辅助触头这一条回路给线圈供电,这就是辅助触头自锁)
该电路合上电源开关QS,电源引入,按下启动按钮SB2,SB2的常开触点闭合,KM的线圈得电,交流接触器KM主触点与KM辅助触点同时闭合,KM主触点闭合后,三相异步电动机得电,电动机开始旋转;KM辅助触点闭合以后,即使松开SB2,SB2常开触点断开,KM线圈依然得电,电动机连续运转,SB2形成自锁;由于热继电器的热元件串联在主电路中,辅助常闭触点串联在控制电路中:当电动机发生过载运行时,定子绕组中的电流会增加,若超过热继电器的整定电流时,热继电器的热元件就会发热弯曲,从而推动其常闭触点断开,切断控制电路,避免电动机因长期过载运行而损坏。
三相异步电动机的正转控制线路教案

工作原理:
合上电源隔离开关QS。
“自锁”由于启动按钮上并联了接触器的常开辅助触头,当松开按钮之后,由接触器的常开辅助触阔大自行保持导通,使接触器得以保持通电状态。
接触器自锁控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压(或零压)保护作用。
1、欠压保护
“欠压”是批线路电压低于电动机应加的额定电压。
“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源停转,避免电动机在欠压下运行的一种保护。
采用接触器自锁控制线路就可避免电动机欠压运行。
因为当线路电压下降到一定值(一般指低于额定电压85%以下)时,接触器线圈两端的电压出同样下降到此值,从而使接触器线圈磁通减弱,产。
三相笼型异步电动机点动控制线路教案

三相笼型异步电动机点动控制线路教案一、教学目标:1. 了解三相笼型异步电动机点动控制线路的基本原理。
2. 学会点动控制线路的安装与调试。
3. 能够分析并解决点动控制线路的常见故障。
二、教学内容:1. 三相笼型异步电动机点动控制线路的基本原理。
2. 点动控制线路的安装与调试步骤。
3. 点动控制线路的常见故障分析与解决方法。
三、教学准备:1. 准备三相笼型异步电动机及其控制设备。
2. 准备相关工具和仪器设备,如螺丝刀、扳手、电压表、电流表等。
3. 准备教学PPT或教案。
四、教学过程:1. 引入新课:通过讲解三相笼型异步电动机的工作原理及其应用,引出点动控制线路的重要性。
2. 讲解点动控制线路的基本原理:讲解点动控制线路的工作原理,包括控制电路和主电路的连接方式,以及各个元件的作用。
3. 演示点动控制线路的安装与调试:通过实际操作,演示点动控制线路的安装与调试过程,包括接线、检查电路、通电测试等步骤。
4. 分析并解决点动控制线路的常见故障:通过案例分析,讲解点动控制线路的常见故障及其原因,并提供解决方法。
5. 课堂小结:总结点动控制线路的特点、安装与调试要点,以及故障处理方法。
五、教学评价:1. 学生能准确描述三相笼型异步电动机点动控制线路的基本原理。
2. 学生能够熟练进行点动控制线路的安装与调试。
3. 学生能够分析并解决点动控制线路的常见故障。
教学反思:在教学过程中,要注意理论与实践相结合,让学生通过实际操作来加深对点动控制线路的理解。
要关注学生的学习情况,及时解答学生的疑问,确保学生能够掌握点动控制线路的相关知识。
六、教学活动:1. 小组讨论:学生分组讨论点动控制线路在实际应用中的案例,分享各自的学习心得。
2. 提问与解答:学生提问,教师解答,针对点动控制线路的安装、调试及故障处理环节进行深入探讨。
3. 实践操作:学生分组进行点动控制线路的安装与调试,教师巡回指导,确保每位学生都能掌握操作要领。
七、教学拓展:1. 对比分析:引导学生分析点动控制线路与其他控制线路(如自锁控制线路、多地控制线路等)的异同,提高学生的综合分析能力。
三相笼型异步电动机点动控制线路教案

一、教学目标1. 知识与技能:(1)掌握三相笼型异步电动机的点动控制原理;(2)学会点动控制线路的安装与调试;(3)能够分析并解决点动控制过程中出现的问题。
2. 过程与方法:(1)通过实物演示,观察三相笼型异步电动机的点动控制过程;(2)动手实践,安装并调试点动控制线路;(3)小组讨论,分析点动控制过程中的注意事项。
3. 情感态度与价值观:(1)培养对电气设备的兴趣和好奇心;(2)增强团队合作意识,提高动手操作能力。
二、教学内容1. 三相笼型异步电动机的点动控制原理(1)介绍三相笼型异步电动机的结构和工作原理;(2)讲解点动控制的基本原理及控制电路。
2. 点动控制线路的安装与调试(1)介绍点动控制线路的元件及功能;(2)演示点动控制线路的安装过程;(3)指导学生动手实践,安装点动控制线路;(4)讲解点动控制线路的调试方法及注意事项。
三、教学重点与难点1. 教学重点:(1)三相笼型异步电动机的点动控制原理;(2)点动控制线路的安装与调试。
2. 教学难点:(1)点动控制线路的安装步骤及注意事项;(2)点动控制过程中的故障分析与解决。
四、教学准备1. 教学资源:(1)三相笼型异步电动机及点动控制线路实物;(2)安装工具及调试设备;(3)教学PPT及教材。
2. 课前准备:(1)检查设备是否正常运行;(2)准备好安装工具及调试设备;(3)确保学生已掌握相关基础知识。
五、教学过程1. 导入新课:(1)通过提问方式复习相关基础知识;(2)引入点动控制线路的概念及应用。
2. 知识讲解:(1)讲解三相笼型异步电动机的点动控制原理;(2)介绍点动控制线路的元件及功能;(3)阐述点动控制过程中的注意事项。
3. 动手实践:(1)分组进行点动控制线路的安装;(2)指导学生进行调试,观察电动机的点动效果;(3)解答学生在安装与调试过程中遇到的问题。
4. 课堂讨论:(1)分析点动控制过程中的注意事项;(2)讨论点动控制线路在实际应用中的优势与局限性。
三相异步电动机的正反转控制电路(公开课教案)

三相异步电动机的正反转控制电路(公开课教案)第一章:绪论1.1 课程背景本课程旨在通过学习三相异步电动机的正反转控制电路,使学生掌握电动机的基本工作原理、正反转控制电路的构成及工作原理,培养学生运用电动机控制电路解决实际问题的能力。
1.2 教学目标(1) 了解三相异步电动机的基本工作原理。
(2) 掌握三相异步电动机的正反转控制电路的构成及工作原理。
(3) 学会分析电动机控制电路,并能运用控制电路解决实际问题。
1.3 教学内容本章主要介绍三相异步电动机的基本工作原理、正反转控制电路的构成及工作原理。
第二章:三相异步电动机的基本工作原理2.1 教学目标(1) 了解三相异步电动机的结构及工作原理。
(2) 掌握三相异步电动机的启动原理及运行特性。
2.2 教学内容本章主要介绍三相异步电动机的结构、工作原理、启动原理及运行特性。
第三章:正反转控制电路的构成及工作原理3.1 教学目标(1) 了解正反转控制电路的构成。
(2) 掌握正反转控制电路的工作原理。
3.2 教学内容本章主要介绍正反转控制电路的构成、工作原理及控制方式。
第四章:正反转控制电路的安装与调试4.1 教学目标(1) 学会正反转控制电路的安装与调试。
(2) 能够分析并解决正反转控制电路安装与调试过程中遇到的问题。
4.2 教学内容本章主要介绍正反转控制电路的安装步骤、注意事项及调试方法。
第五章:案例分析与实践5.1 教学目标(1) 能够分析实际工程中的正反转控制电路案例。
(2) 学会运用正反转控制电路解决实际问题。
5.2 教学内容本章主要分析实际工程中的正反转控制电路案例,培养学生运用控制电路解决实际问题的能力。
教学方法:结合课堂讲解、实验演示、学生实践等多种教学方式,使学生更好地理解和掌握三相异步电动机的正反转控制电路。
教学评价:通过课堂提问、作业批改、实验报告和期末考试等方式,评估学生对三相异步电动机的正反转控制电路的掌握程度。
第六章:正反转控制电路的设计与优化6.1 教学目标(1) 能够根据实际需求设计正反转控制电路。
任务三三相异步电动机的正反转控制电路教学设计方案

项目三
三、教学过程
(一)、相关知识回顾
三相异步电动机最基本的 两种控制电路 1、三相异 步电动机正转控制线路 (1)点动控制 点动( 定义):按下按钮电动机 得电运转,松开按钮电动 机失电停转 应用:机床、 立柱快速移动,电葫芦( 起重设备)的控制 (2)连续控制(长动) 自锁(定义):松开启动 按钮,接触器通过自身常 开辅助触头使其线圈保持 得电。 应用:普车主轴电动机工 作 2、低压电器应用
请各位领导专家批评指正!
谢
谢
二、重点、难点
重点、难点
重点
理解三相异步 电动机的正反 转控制线路的 工作原理。
难点
接触器联锁 正反转控制 线路的工作 原理。 。
二、重点、难点
(一)、相关知识回顾 三相异步电动机最基本的两种控制 电路 1、三相异步电动机正转控制 线路 (1)点动控制 点动(定义):按下按钮电动机得 电运转,松开按钮电动机失电停转 应用:机床、立柱快速移动,电葫 芦(起重设备)的控制 (2)连续 控制(长动) 二是从服务社会角度, 针对学生素质培养与实 际岗位需求相统计客观 要求,为社会培养真正 需要的应用型、专业型 技术人才,从而为铁道 电气化技术发展提供人 才保障,为社会创造价 值。
三相异步电动机的控制电路
任务三
三相异步电动机的正反转控制电路 教学设计方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机的工作原理及控制电路三相异步电动机和其他电动机想比较,具有结构简单,制造方便、运行可靠、价格低廉等一系列优点,因此应用广泛。
三相异步电动机的原理和结构一、三相异步电动机的工作原理(一)、三相交流电机的旋转磁场1、旋转磁场的产生:三相交流电通给三相定子绕组(三个线圈彼此互隔1200分布在定子铁心内圆的圆周上)经过画图分析不同时间产生的磁场的位置,发现旋转磁场,并找出其特点2、旋转磁场的特点:大小不变,以一个转速向某一个方向旋转,这个转速把它命名为旋转磁场的同步转速n1n1=60 f / p (f为电源频率;p为磁极对数)3、思考:如何改变旋转磁场的方向方法:任意调换三相电源中的任意两根相线(交换两根相线即改变了三相电源的相序,从而可以改变旋转磁场的方向)(二)、三相异步电动机的工作原理1、分析工作原理:三相电通给定子绕组,产生旋转磁场,静止的转子相对于旋转磁场有一个相对的切割磁力线的运动,产生感应电动势,产生感应电流,转子绕组上有了电流,在磁场中会受到电磁力的作用,形成电磁转矩T,驱动转子旋转起来,实现了电能转换成机械能的目的。
2、体会“三相异步电动机”名称的由来:“三相”:三相电通入三相定子绕组“异步”:不同步,肉眼看不见的旋转磁场转速n1 和看到的转子转速n2大小不同(方向相同),且n1 >n2“电动机”:最终实现了电能转换成机械能 3、简化模型:在三相异步电动机的工作原理中:给定子绕组通电,然后转子绕组通过电磁感应产生电,这一点与变压器相似(一次侧通电,二次侧感应出电),所以经常为了分析的方便将三相异步电动机的结构比作变压器,如右图:4、思考:如何改变转子旋转的方向 方法:通过任意调换两相电流的相序,改变旋转磁场的方向,就改变了转子的旋转方向5、转差率 S=(n 1-n )/n 1转子从静止开始运行,转差率S 是从1趋向于0(但不能等于0,0<S ≤1)二、 三相异步电动机的基本结构 1、 三相异步电动机的结构基本结构:定子有定子铁心和定子绕组 转子有转子铁心和转子绕组材料:铁心均由硅钢片叠压而成;转子绕组:可分为笼型和绕线型(其中笼型因结构简单等得到广泛应用)三、 三相异步电动机的铭牌数据1、额定容量(功率)P N (单位:KW ) 含义:指转轴上输出的机械功率表达式:机械功率=电动机的有功功率⨯电动机效率 2、额定电压U N (单位:V ):加在定子绕组上的线电压3、额定电流IN(单位:A):输入定子绕组的线电流4、额定转速n N (单位:r/min)5、额定频率f N(单位:HZ):我国工频为50HZ6、绝缘等级7、接法:定子绕组有Y和△两种接法三相异步电动机的起动一、起动要求:1.应有足够大的起动转矩TS;2.在保证TS 足够大前提下,起动电流IS越小越好二、笼型异步电动机的起动(一)、直接起动(全压起动)1、分析过程:在起动瞬间n=0,切割旋转磁场的速度最快,所以产生的感应电动势和感应电流最大,相对应的定子绕组的起动电流过大,是额定电流(4-7)倍;2、存在问题:(1)起动电流过大,引起电网电压明显降低和电机发热(2)起动转矩由于磁通和功率因素低,所以起动转矩TS并不大,若低于负载转矩,则无法带动负载起动故一般直接起动只适用于小型的笼型异步电动机(与电源容量相比),可按经验公式来确定是否能直接起动(二)、笼型异步电动机的减压起动为了能安全起动,对笼型异步电动机实行减压起动1.定子串接电抗器或电阻的减压起动方法:起动时,电抗器或电阻接入定子电路;起动后,切除电抗器或电阻,进行正常运行特点:能耗较大,实际应用不多,不深入研究。
2.Y-△起动方法:起动时将定子接成Y形,运行时定子绕组接成△形研究起动情况: IsY = 1/3 * Is△TsY= 1/3 * Ts△适用场所:运行于△形的笼型异步电动机,轻载起动3.自耦变压器起动方法:起动时接入自耦变压器,运行时切除自耦变压器全压运行研究起动情况:Is’= k2 * Is Ts’= k2 * Ts(k为变压比且k <1)适用场所:轻载起动总结:笼型异步电动机的降压起动可以降低起动电流的大小,但与此同时起动转矩也减小了,所以它只适用于轻载起动三、三相异步电动机的调速由转差率公式 S=(n1-n)/n1 得:n= n1 (1-S)=60f1(1-s)/p所以调速方法有:1、改变定子绕组的磁极对数p-----变极调速2、改变供电电网的频率f变频调速3、改变定电动机的转差率S,方法有改变电压调速、绕线式电机转子串电阻调速和串级调速。
(一)、变极调速方法:通常用改变定子绕组的接法来改变磁极对数,转子均采用笼型转子原理:将定子绕组串联,p大,电动机低速运行;将定子绕组并联,p小,电动机高速运行接线方式:△(低速)/YY(高速)、Y(低速)/YY(高速)等(二)、变频调速方法:改变电源频率注意点:电源频率降低调速时,若电源电压不变时,则磁通将增加,是铁心饱和,从而导致铁损增加,这是不允许的。
因此在变频调速的同时,为了保证磁通不变,就必须降低电源电压。
使U1/f1为常数。
(三)、改变转差率S1、改变定子电压调速适用场所:笼型异步电动机,向下调速特点:调速范围很宽,缺点是低压时机械特性太软,转速变化大2、转子串电阻调速适用场所:中、小容量的绕线转子异步电动机,向下调速特点:方法简单四、三相异步电动机的反转与制动(一)、三相异步电动机的反转1、方法:改变三相电中任意两相电流相序,从而改变旋转磁场的方向,达到改变三相异步电动机的转子转动的方向(二)、三相异步电动机的制动制动状态:转速方向n与电磁转矩T相反制动结果:1、位能性负载一般处于制动状态是使其保持一定的运行速度2、机械负载制动时一般是停车制动方法:分为机械制动和动力制动两类1、机械制动:采用电磁抱闸闸制动2、动力制动:(1)、能耗制动方法:切断电动机三相电源的同时,在任意二相绕组中接入直流电,并在定子回路中串入电阻用以限制强大的制动电流。
原理:在任意二相绕组中接入直流电流,在转子空间获得一个大小、方向不变的恒定磁场,从而使转子产生一个与电动机原转向相反的电磁转矩以实现制动。
其实质是:用直流磁场消耗掉转子的动能,所以这种方法又叫动能制动或直流制动。
(2)、电源反接制动方法:改变电动机定子绕组与电源联接相序原理:产生一个与转速相反的电磁转矩T注意点:a、为了限制制动电流和增大制动转矩,在转子回路串入制动电阻b、当转速接近为0时,需立即切断电源,让电机停车三相异步电动机的电气控制三相异步电动机的典型控制一三相笼型异步电动机起动控制电路(一)、三相笼型异步电动机全压起动所谓全压起动,是将额定电压直接加在定子绕组上1点动控制电路点动:按下控制按钮,交流接触器线圈得电,主电路交流接触器的主触头闭和,电动机直接起动;松开控制按钮,交流接触器线圈失电,主电路交流接触器的主触头分断,电动机停止运行2连动控制电路连动:按下控制按钮,交流接触器线圈得电,主电路交流接触器的主触头闭和,电动机直接起动;松开控制按钮,由于交流接触器常开辅助触头闭和,线圈依然得电,主电路交流接触器的主触头依然闭和,电动机连续运行3点、连动控制比较:(1)“自锁”设计:用交流触器常开辅助触头与控制按钮并联(2)“自锁”作用:只要按下控制按钮,保证线圈一直有电,无论是否松开控制按钮,电动机可以连续运行(二)正反转控制电路分析原理:“从主电路着眼”:主电路中的KM1闭和时将三相电按L1L2L3的顺序引进;KM1分断,KM2闭和时将三相电按L3L2L1的顺序引进,与KM1比较,它改变了两相电流相序;故可知KM1和KM2控制正反转。
“从控制电路着手”:分析具体的控制原理图b:按下SB2,KM1线圈得电KM1主触头闭和电动机正转KM1辅助常开触头闭和形成自锁KM1辅助常闭触头分断,KM2线圈不能得电按下SB3,KM1线圈失电KM1主触头分断KM1辅助常闭触头闭和,KM2线圈得电KM2主触头闭和电动机反转KM2辅助常闭触头分断,KM1线圈不能得电图a同样按照“从主电路着眼,从控制电路着手”的原则分析。
图中用到了“自锁”,还有“互锁”(又叫联锁)设计方法:将交流接触器的常闭辅助触头串联在对方线圈的支路中设计作用:可以控制两个线圈不能同时得电,保证了主电路KM1、KM2的主触头不能同时闭和而造成L1L3两相形成短路比较图a和b:同样可以控制正反转,操作上a图烦琐(要想反转,必须先按下停止按钮SB1再按SB3才可以),所以图b要好思考问题:1)为什么图b可以做到按钮直接切换正反转呢因为它用的是复合按钮,采用机械联锁的方法,直接切换正反转2)线路的故障分析:a.合上电源开关,电动机立即正转,当按下停止按钮时,电动机停转;但一松开停止按钮,电动机又正向起动答案:起动SB2常开、常闭接反了b. 合上电源开关,按下正转(或反转)按钮,正转(或反转)接触器就不停地吸合与释放,电路无法工作;当松开按钮时,接触器不再吸合。
答案:互锁KM1、KM2常闭辅助触头接反了(三)、三相笼型异步电动机降压起动控制电路有两种控制电路: 1、接触器自动控制的Y---△降压起动电路按下SB2→KM线圈通电→KM(4-5)闭合自锁→KM主触点闭合→电动机绕组接成Y起动→KM Y主触点闭合→KM Y线圈通电→KM Y(5-8)连锁触点分断(使KM△控制回路分断,实现联锁)→ KM Y主触点分断按下SB3→ KM Y线圈断电→KM Y(5-8)联锁触点闭合,接通KM△部分控制电路→ KM△(8-9)自锁触点闭合自锁→ KM△线圈通电→ KM△主触点闭合,电动机绕组接成△形运行KM△(5-6)联锁触点断开,分断KM Y控制电路,实现联锁总结:采用Y-△减压起动,设备简单、经济,可频繁操作。
2、时间继电器自动控制的Y----△降压起动电路注意:时间继电器的动作。
时间继电器经过一定延时后,其延时常闭触头打开,切断KMY控制电路,最终使电动机接成△接到电网上运行,完成了整个起动过程。
3、自耦变压器降压起动控制电路(略)(四)三相异步电动机的制动控制1、单向反接制动控制电路(1)、原理:反接制动的关键在于电动机电源相序的改变,且当转速下降接近于零时,能自动将电源切除。
为此采用了速度继电器SR(KS)来检测电动机的速度变化。
(2)、控制过程:起动时,按下起动按钮SB2,接触器KM1通电并自锁,电动机M通电运行。
电动机正常运转时,速度继电器KS的常开触头闭合,为反接制动作好准备。
停车时,按下停止按钮SB1,KM1线圈断电,电动机M脱离电源,由于此时电动机的惯性,转速仍较高,KS的常开触头仍处于闭合状态,所以SB1常开触头闭合时,反接制动接触器KM2线圈得电并自锁,其主触头闭合,使电动机得到相序相反的三相交流电源,进入反接制动状态,转速迅速下降。