电磁场基本方程
电磁场与电磁波公式整理

电磁场与电磁波公式整理第一章A:矢量恒等式()()()A B C B C A C A B ×=×=×i i i ()()()A B C B A C C A B ××=−i i ()uv u v v u ∇=∇+∇ ()uA u A A u ∇=∇+∇i()0U ∇×∇=()0A ∇∇×=i 2()U U ∇∇=∇i2()()A A A ∇×∇×=∇∇−∇iVSAdV A dS ∇=∫∫i iVCAdS A dl ∇×=∫∫in V S AdV AdS e ∇×=×∫∫ n V S udV udS e ∇=∫∫n S C udS udl e ×∇=∫∫ 2)V S u v u dV udSnv v ∂+∇∇=∇∂∫∫i22(()VSuu v v dV uv dS n nv u ∂∂−=−∇∇∂∂∫∫ B:三种坐标系的积分元以及梯度、散度、旋度、和拉普拉斯运算⑴直角坐标系位置矢量微分元:x y z dr dx dy dz e e e =++面积元:,,x y z d dydz d dxdz d dxdy s s s === 体积元:dv dxdydz = x y z u u uu e e e x y z ∂∂∂∇=++∂∂∂ y x z A A A A x y z∇=∂∂∂++∂∂∂i x yz A x y z A A A x yz e ee∂∂∂∇×=2222222u u u u x y z ∇∂∂∂=++∂∂∂()uA u A u A ∇×=∇×+∇×()A B B A A B∇×=∇×−∇×i i i ()()()A B A B B A A B B A ∇=∇×+∇+×∇×+×∇×i i i ()()()()A B A B B A B A A B ∇××=∇−∇+∇−∇i i i i⑵圆柱坐标系位置矢量微分元:z dr d d dz e e e ρφρρφ=++面积元:,,z d d dz d d dz d d d s s s ρφρφρρρφ=== 体积元:dv d d dz ρρφ=z u u u u z e e e ρφρρφ∂∂∂∇=++∂∂∂ ()()()11A A A z A z ρρρφρρρφ∂∂∂∇=++∂∂∂i1z e e e A z A A Az ρφρρφρρφ∂∂∂∇×=∂∂∂22222211()u u u u z ρρρρρφ∂∂∂∂=++∇∂∂∂∂⑶球坐标系位置矢量微分元:sin r r r dr dr d d e e e θφθθφ=++面积元:2sin ,sin ,r d d d d r drd d rdrd r s s s θφθθφθφθ=== 体积元:2sin dv drd d r θθφ=1sin ru u u u r r r e e e θφθθφ∂∂∂∇=++∂∂∂22111()(sin )sin sin r A r r r r rA r A A φθθθθθφ∂∂∂∇=++∂∂∂i2sin 1sin sin re re r e A r ArrA r A r θφθθφθθθφ∂∂∂∇×=∂∂∂ 22222222111()(sin sin sin u u uu r r r r r r θθθθφθ∇∂∂∂∂∂=++∂∂∂∂∂ C:几个定理散度定理:v s FdV F dS ∇=∫∫i i斯托克斯定理:s c F dS F dl∇×=∫∫i i亥姆霍茨定理:()()()F r u r A r =−∇+∇×格林定理:n V S FdV F dS e ∇=∫∫i i高斯定理和环路定理:第二章表一:电荷和电流的三种密度表二:电场和磁场表四:介质中的电(磁)场感应强度:电磁感应定律S in B dS d d dt dt ϕε=−=−∫i in C in E dl ε=∫i S C S d Bd dt tE dl ∂∂=−∫∫i i 积分形式 1.如果回路静止则有:S C S Bd tE dl ∂∂=−∫∫i BE t∂∇×=−∂ 2.导体以速度v 在磁场中运动 : ()CC v B dl E dl ×=∫∫i i3.导体在时变场中运动:()CS S B d tC v B dl E dl ∂∂−×=+∫∫∫i i i表五:麦克斯韦方程组:。
工程电磁场

E m j Bm
Bm 0
Dm m
不再含有场量对时间t的偏导数,从而使时谐电磁场的分析得 以简化。
例4-2:写出与时谐电磁场对应的复矢量(有效值)或瞬时矢量,
H x jH 0 sin cos(x cos )e
jz sin
E
U e ln( b / a
U I ez ln( b / a ) 2
同轴电缆中的电磁能流
单位时间内流入内外导体间的横截面A的总能量为 b UI P S dA 2d UI A a 2 2 ln b / a 这表明: • 穿出任一横截面的能量相等,电源提供的能量全部被负载吸收。
时变电磁场中媒质分界面上的衔接条件的推导方式与前三章类同,归纳如下:
e n H 2 H 1 k e n E 2 E1 0
E2t E1t
B1n B2n
D2n D1n
e n B2 B1 0
tan 1 1 tan 2 2
时谐电磁场
4.2.1 时谐电磁场的复数表示
E(r, t ) ex Exm r cost x r e y Eym r cost y r ez Ezm r cost z r
(三要素) 是角频率,Exm、Eym、Ezm及x、y、z 分别是 电场强度在直角坐标系下的三个分量的振幅和初相位。 采用相量表示法,上式可表示为如下复矢量(相量),即
~ j
通常的磁导率
通常的介电常数
表征磁介质中的 磁化损耗
在高频时谐电磁场以上参数通常是频率的函数
当电介质同时存在电极化损耗和欧姆损耗时,其等效复介电 常数可写为 ~ e j 为了表征电介质中损耗的特性,通常采用损耗角的正切
电磁场基本方程

一、电磁场的源——电荷与电流1、电荷与电荷密度宏观上可以用“电荷密度”来描述带电体的电荷分布。
定义体电荷密度为30m C d d lim−→∆⋅=∆∆=VQV Q V ρ其中Q ∆是体积元V ∆内包含的总电荷量。
当电荷存在于一无限薄的薄层或者截面很小的细线上时,可用面电荷密度或线电荷密度来描述20m C d d lim−→∆⋅=∆∆=SQS Q S S ρ10m C d d lim −→∆⋅=∆∆=lQl Q l l ρ一个体积为V 、表面积为S 、线长为l 上包含的电荷总量可以分别对上述三式进行体、面、线积分得到,即∫∫∫=VV Q d ρ、∫∫=SS S Q d ρ、∫=ll lQ d ρ2、电流与电流密度任取一个面,穿过此面的电流定义为单位时间内穿过此面的电荷量,即As C d d lim10或−→∆⋅=∆∆=tQt Q I t 电流的正方向规定与正电荷的运动方向。
体电流密度是一个矢量,方向为正电荷的运动方向,大小等于垂直于运动方向上的单位面积上的电流。
电流密度的大小可表示为20m A lim−→∆⋅∆∆=SI J S 体电流密度矢量由体电荷密度和正电荷的运动速度确定,即vJ r r ⋅=ρ对于任意曲面,穿过此曲面的总电流为∫∫⋅=SSJ I r r d 同样,可以定义面电流密度为10m A lim −→∆⋅∆∆=l IJ l S vJ S S r r ⋅=ρ∫⋅=ls lJ I r r d 3、电流连续性方程(电荷守恒定律)在一个体电荷密度为ρ的带电体内任取一个封闭曲面S ,某瞬间从此封闭曲面流出的电流为i(t),则()∫∫∫∫∫−=−==⋅V S V t t Q t i S J d d d d d d ρr r 即电流连续性方程(电荷守恒定律)的积分形式。
若体积V 是静止的,则对时间的微分和体积分的次序可以交换,结合散度定理,有∫∫∫∫∫∫∫∫∂∂−=⋅=⋅∇V S V Vt S J V J d d d ρr r r于是,对于任意体积V ,都有tJ ∂∂−=⋅∇ρr 即电流连续性方程(电荷守恒定律)的微分形式。
麦克斯韦方程组数学表达式

麦克斯韦方程组数学表达式麦克斯韦方程组是描述电磁场的基本方程,它由四个方程组成,分别为高斯定律、法拉第电磁感应定律、安培环路定理和法拉第电磁感应定律的积分形式。
这四个方程的数学表达式如下:1. 高斯定律(电场电荷密度定理):$$ablacdotmathbf{E}=frac{rho}{epsilon_0}$$其中,$ablacdotmathbf{E}$表示电场的散度,$rho$表示电荷密度,$epsilon_0$为真空介电常数。
2. 法拉第电磁感应定律(电动势定理):$$oint_Cmathbf{E}cdotdmathbf{l}=-frac{d}{dt}int_Smathbf{B}cdot dmathbf{A}$$ 其中,$C$表示一条封闭路径,$mathbf{E}$表示电场强度,$mathbf{B}$表示磁场强度,$S$表示该路径所围成的面积。
3. 安培环路定理(磁场电流密度定理):$$ablatimesmathbf{B}=mu_0mathbf{J}+mu_0epsilon_0frac{partialm athbf{E}}{partial t}$$其中,$ablatimesmathbf{B}$表示磁场的旋度,$mathbf{J}$表示电流密度,$mu_0$为真空磁导率,$epsilon_0$为真空介电常数。
4. 法拉第电磁感应定律的积分形式(法拉第电磁感应定律的通量定理):$$oint_Smathbf{E}cdotdmathbf{A}=-frac{d}{dt}int_Vmathbf{B}cdot dmathbf{V}$$ 其中,$S$表示一个封闭曲面,$mathbf{E}$表示电场强度,$mathbf{B}$表示磁场强度,$V$表示该曲面所围成的体积。
第2章--电磁场基本方程---2

l
a 2
2 a
故 E ˆ U
ln
b a
同轴线内最大电场强度EM发生于内导体表面处:
EM
U a ln
b a
c) EM最大值发生于
dEM da
U (a ln
b a
)2
(ln
b a
1)
0
得
ln b 1
b e
a
a
故
a b 1.8 0.662cm
e 2.718
15
电磁场
第二章 电磁场基本方程
例 3 设有二块无限大带电平行平面, 面上分别带有均匀 电荷, 上极板电荷密度是-ρs(C/m2), 下极板为+ρs(C/m2), 两 极板间距离为d(m), 如图3 - 3所示。试求平行板内、外各 点的电场强度。
解: 由高斯定理的微分形式 E , 得电荷密度为 0
0 E
用球坐标中的散度公式
A
1 r2
(r 2 Ar ) r
1
r sin
(sin A )
1
r sin
A
可得
0
(r>a)
o E0
15 2a3
(a2
r2)
(r<a)
21
电磁场
第二章 电磁场基本方程
2 .1 .4 比奥-萨伐定律, 磁通密度
H dl I
l ----安培环路定律
物理意义: 磁场强度H沿闭合路径的线积分等于该路径所
包围的电流I。
I: 传导电流的代数和。
可方便地计算一些具有对称特征的磁场分布。
因为S面是任意取的, 所以
( H ) ds J ds
s
S
H J 32
麦克斯韦方程组电磁场的基本定律

麦克斯韦方程组电磁场的基本定律麦克斯韦方程组被誉为电磁学的基石,它是电场和磁场之间相互作用的数学描述。
通过这组方程,我们可以了解电磁场的本质及其基本行为。
本文将详细介绍麦克斯韦方程组的四个方程以及它们的物理意义。
一、麦克斯韦方程组的引入麦克斯韦方程组由19世纪物理学家詹姆斯·克拉克·麦克斯韦于1864年首次提出。
他基于法拉第电磁感应定律和库仑定律,将电场和磁场统一起来,形成了这组方程。
麦克斯韦方程组包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
这四个方程共同描述了电磁场的生成、传播和相互作用。
二、麦克斯韦方程组的四个方程1. 高斯定律高斯定律描述了电场的产生和分布规律。
它表明电场线从正电荷出发,经过电场中的介质,最终到达负电荷。
高斯定律的数学形式为:∮S E·dA = ε0∫V ρdV其中,S表示任意闭合曲面,E表示电场强度,dA表示曲面元素的面积,ε0为真空中的介电常数,ρ为电荷密度,V表示包围电荷体积。
2. 高斯磁定律高斯磁定律描述了磁场的分布规律。
与高斯定律类似,高斯磁定律指出磁场线无法孤立存在,它们必然会形成闭合回路。
高斯磁定律的数学表达式为:∮S B·dA = 0其中,S表示闭合曲面,B表示磁场强度,dA表示曲面元素的面积。
3. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化产生的感应电场。
根据这个定律,当磁场的磁感线与一个闭合电路相交时,电路内将会产生感应电动势。
法拉第电磁感应定律可以用如下方程表示:∮C E·dl = -d(∫S B·dA)/dt其中,C表示闭合回路,E表示感应电场,dl表示沿闭合回路的微元弧长,S表示以闭合回路为边界的任意曲面。
4. 安培环路定律安培环路定律描述了磁场中的电流分布规律。
根据这个定律,一个闭合回路上的磁场的环路积分等于通过该回路的电流总和的倍数。
安培环路定律的数学形式为:∮C B·dl = μ0(∫S J·dA + ε0∫S E·dA/dt)其中,C表示闭合回路,B表示磁场强度,dl表示沿闭合回路的微元弧长,S表示以闭合回路为边界的任意曲面,J表示电流密度,μ0为真空中的磁导率。
电磁场基本方程

(高)
—— 麦克斯韦方程组的微分形式
在界面处,场不连续,微分关系不能用了, 在界面处,场不连续,微分关系不能用了, 要代之以界面关系: 要代之以界面关系: (1)′′ ′′ E1t = E2t n (2)′′ ′′ D1n − D2n = σ 0 t 1 r r r 2 ′′ H1t − H2t = ( j0S ×en ) ⋅ et (3)′′ σ0,j0S B = B (4)′′ ′′ 2n 1n (1)′— (4)′和(1)′′ (4)′′ 构成了完备的方程组, ′′— ′′ 构成了完备的方程组 ′ ′ ′′ 了完备的方程组, 在一定初始条件和边界条件下, 在一定初始条件和边界条件下,就可以求解电 磁场了。 磁场了。
二者形式上是对称的。公式中差了一个负号, 二者形式上是对称的。公式中差了一个负号, 这恰恰反映了能量转化和守恒的规律: 这恰恰反映了能量转化和守恒的规律:
例如图示情况: 例如图示情况:
r r ∂D E ↑ ,( ) ↑ ∂t
r E感 线
r r E与E感反向
r r ∂B H ↑, )↑ ( ∂t
磁场的增加以电场的削弱为代价(能量守恒) 磁场的增加以电场的削弱为代价(能量守恒)。
例题
麦氏方程组积分形式
方程组再现
(1) — (4)是积分形式的麦克斯韦方程组(Maxwell 是积分形式的麦克斯韦方程组 是积分形式的 equations)。 。 是由于没有 方程组形式上的不对称, 方程组形式上的不对称, 磁荷, 单独的磁荷 也没有相应于传导电流的“磁流”。 单独的磁荷, 也没有相应于传导电流的“磁流” 该方程组在宏观领域证明是完全正确的, 但在 该方程组在宏观领域证明是完全正确的, 微观领域并不完全适用。 微观领域并不完全适用。 那里需要考虑量子效应, 那里需要考虑量子效应, 量子电动力学。 从而建立更为普遍的量子电动力学 从而建立更为普遍的量子电动力学。 外还有洛仑兹力公式 除(1) — (4)外还有洛仑兹力公式: 外还有洛仑兹力公式:
电磁场理论

电磁场理论电磁场理论,是电磁学的一个重要分支,研究电荷的运动对周围空间所形成的电场和磁场的影响,以及电流产生的磁场对周围空间所形成的电场和磁场的影响。
电磁场理论的基本方程包括麦克斯韦方程组和洛伦兹力密度方程。
麦克斯韦方程组是电磁场理论的基础,它包含了四个基本方程:1. 高斯定律:电场的通量与被包围电荷量之比等于电场强度在该点的值。
$$\abla \\cdot \\mathbf{E}=\\frac{\\rho}{\\varepsilon_{0}}$$2. 麦克斯韦—法拉第定律:磁场感应强度的闭合线圈输出电动势等于穿过该线圈的时间变化磁通量。
$$\abla \\times \\mathbf{E}=-\\frac{\\partial \\mathbf{B}}{\\partial t}$$3. 法拉第定律:导体中的电流与其上产生的磁场强度成正比。
$$\abla \\cdot \\mathbf{B}=0$$4. 安培定律:电流的旋度等于该点磁场的旋度与电场强度之和。
$$\abla \\times \\mathbf{B}=\\mu_{0} \\mathbf{J}+\\mu_{0}\\varepsilon_{0} \\frac{\\partial \\mathbf{E}}{\\partial t}$$其中,$\\rho$ 为电荷密度,$\\mathbf{E}$ 为电场强度,$\\mathbf{B}$ 为磁场感应强度,$\\mu_0$ 为真空中的磁导率,$\\varepsilon_0$ 为真空中的介电常数,$\\mathbf{J}$ 为电流密度。
洛伦兹力密度方程是磁场产生力的关系式,它描述了电磁场对电荷的作用力,即洛伦兹力:$$\\mathbf{f}=q\\left(\\mathbf{E}+\\mathbf{v} \\times\\mathbf{B}\\right)$$其中,$\\mathbf{v}$ 为电荷的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 高斯定理,电通量密度
除电场强度E外,描述电场的另一个基本量是电通量 密度D,又称为电位移矢量。在简单媒质中,电通量 密度由下式定义:
D ECm
ε是媒质的介电常数 点电荷q有, 电通量为
,在
Dr
真q空中ε=ε0
r
,则对真空中的
ÑS
D dS
q r
r
q
第二章 电磁场基本方程
通量仅取决于点电荷量q,而与所取球面的半径无关。
库仑定律表达为
F
r
qq r
N
式中,q1和q2的单位是库仑(C),r的单位是米(m),ε0
是真空的介电常数:
.
F m
第二章 电磁场基本方程
设某点试验电荷q所受到的电场力为F,则该点的电场强
度为
E F V m q
由库仑定律知,在离点电荷q距离为r处的电场强度为
E
r
q r
第二章 电磁场基本方程
第二章 电磁场基本方程
本章重点及知识点
➢恒定电流的电场的基本特性 ➢磁感应强度与磁场强度 ➢恒定磁场的基本方程 ➢磁介质中的场方程 ➢自感与互感的计算 ➢磁场能量与能量密度
第二章 电磁场基本方程
本章内容安排
2.1 静态电磁场基本定律和基本场矢量 2.2 法拉第电磁感应定律和全电流定律 2.3 麦克斯韦方程组 2.4 电磁场的边界条件 2.5 坡印廷定理和坡印廷矢量 2.6 唯一性定理
T
磁通量密度为B的磁场对电流元Idl的作用力为
F Idl B
运动速度为v的电荷Q表示,
Idl = JAdl
= v Adlv
= Qv
第二章 电磁场基本方程
其中A为细导线截面积,得
F Qv B
对于点电荷q,上式变成
F qv B
通常将上式作为B的定义公式。点电荷q在静电场中所 受的电场力为qE,因此,当点电荷q以速度v在静止电 荷和电流附近时,它所受的总力为
称之为安培环路定律。Ñl H dl I
表明: ➢磁场强度H沿闭合路径的线积分等于该路径所包围的 电流I ➢计算一些具有对称特征的磁场分布
因为S面是任意取的s (, H所)以dS必S有J dS
H J
第二章 电磁场基本方程
2.1.5 两个补充的基本方程 1 基本方程一 静电场中E沿任何闭合路径的线积分恒为零:
F q(E v B)
第二章 电磁场基本方程
2.1.4 安培环路定律,磁场强度 对于无限长的载流直导线,若以ρ为半径绕其一周积 分B,可得:
蜒l B dl
l
I
d
I
Ñl B dl I
在简单媒质中,H由下式定义:
H B Am
第二章 电磁场基本方程
H为磁场强度,μ是媒质磁导率。在真空中μ=μ0 ,则
第二章 电磁场基本方程
2.1 静态电磁场基本定律和基本场矢量
2.1.1 库仑定律和电场强度
F
r
K
qq r
其中,K是比例常数,r是两
点电荷间的距离,r为从q1指 向 q2 的 单 位 矢 量 。 若 q1 和 q2 同号,该力是斥力,异号时
为吸力。 两点电荷间的作用力
第二章 电磁场基本方程
比例常数K与力,电荷及距离所用单位有关。在SI制中,
ÑS J
dS
dQ dt
第二章 电磁场基本方程
➢ 微分形式
J v
t
3 微分形式的电流连续性方程
( H ) J
H J v t
(
H
)
J
D t
H J D t
第二章 电磁场基本方程
4 位移电流密度即J d
Jd
D t
应用斯托克斯定理,便得到其积分形式:
➢闭合的磁力线穿进封闭面多少条,也必然要穿出同 样多的条数
➢结果使穿过封闭面的磁通量恒等于零
第二章 电磁场基本方程
2.2 法拉第电磁感应定律和全电流定律
2.2.1 法拉第电磁感应定律 1 定律内容 导线回路所交链的磁通量随时间改变时,回路中将感 应一电动势,而且感应电动势正比于磁通的时间变化 率。楞次定律指出了感应电动势的极性,即它在回路 中引起的感应电流的方向是使它所产生的磁场阻碍磁 通的变化。 2 定律数学表达式 d m
dt
第二章 电磁场基本方程
3 定律积分形式
Ñl E
dl
d dt
S
B
dS
说明:
B
S t dS Ñl (v B) dl
➢右边第一项是磁场随时间变化在回路中“感生”的
电动势
➢第二项是导体回路以速度v对磁场作相对运动所引
起的“动生”电动势。
第二章 电磁场基本方程
4 定律微分形式
E B t
Q V vdV
上式对不V 同 D的dVV都V应vd成V立,则两边被积函数必定相等,
于是,
D v
第二章 电磁场基本方程
2.1.3 比奥-萨伐定律,磁通量密度来自两个载流回路间的作用力
蜒 F
Idl (I 'dl ' r)
l l'
r
r是电流元 I′dl′至Idl的距
离,μ0是真空的磁导率:
根据立体角概念可知, ➢当所取封闭面非球面时, 穿过它的电通量将与穿过 一个球面的相同,仍为q ➢如果在封闭面内的电荷不止一个,则利用叠加原理, 穿出封闭面的电通量总和等于此面所包围的总电量 1 高斯定理积分形式
ÑS D dS Q
第二章 电磁场基本方程
2 高斯定理微分形式 若 封 闭 面 所 包 围 的 体 积 内 的 电 荷 是 以 体 密 度 ρv 分 布 的,则所包围的总电量为
意义: ➢随时间变化的磁场将激发电场,称该电场为感应电 场,不同于由电荷产生的库仑电场 ➢库仑电场是无旋场即保守场 ➢而感应电场是旋涡场,其旋涡源就是磁通的变化
第二章 电磁场基本方程
2.2.2 位移电流和全电流定律
1 微分形式基本方程
E B t
H J
D v B
2 电荷守恒定律
➢积分形式
Η m
F Ñl Idl B
蜒 B
4
l
I
'dl ' r r
0
4
I 'dl ' r l' r
第二章 电磁场基本方程
矢量B可看作是电流回路 l′作用于单位电流元(Idl=1 A·m)的磁场力,表征电流回路l′在其周围建立的磁场特 性,称为磁通量密度或磁感应强度。
N Am
V s m
Wb m
利用斯托克斯定理得Ñl E dl
E 0
说明: ➢静电场是无旋场即保守场 ➢静电场的保守性质符合能量守恒定律,与重力场 性质相似 ➢物体在重力场中有一定的位能
第二章 电磁场基本方程
2 基本方程二
静磁场的特性则正好相反,
ÑS B dS 0
说明:
B
➢自然界中并不存在任何单独的磁荷,磁力线总是闭 合的