【猿辅导几何模型】中考必会几何模型:相似模型

合集下载

中考数学四大常考相似模型

中考数学四大常考相似模型

.
模型解读 模型四 K 字型(一线三等角型) 1.特征:两个三角形的一条边在一条直线上,并且有 一个顶点重合.
2.结论: (1)
模型解读
一线三垂直型 已知:∠B=∠ACE=∠D=90° 结论:(1)△ABC∽△CDE (2)AB·DE=BC·CD (3)当 C 为 BD 中点时,△ABC∽△CDE∽△ACE
四大常考相似模型、 三大相似证明方法
目录导航
01 模型一:A字型 02 模型二:X字型 03 模型三:旋转型 04 模型四:K字型(一线三等角型) 05 三大相似证明方法
模型解读 模型一 A 字型 特征:有一个公共角. (1)
A 字型 已知:DE∥BC
模型训练 1.如图,在△ABC 中,点 D,E 分别在 AB,AC
5.如图,AB∥CD,AD,BC 相 交于点 E,过点 E 作 EF∥CD 交 BD 于点 F,AB∶CD=2∶ 3,那么 EF∶AB= 3∶5 .
模型解读 模型三 旋转型 特征:有一个公共顶点的一组角相等. (1)
旋转不相交型 已知:∠BAC=∠DAE(或∠BAD=∠CAE),∠B=∠D 结论:△ABC∽△ADE
序准确地把这一对相似三角形记下来.
当要证明的结论中的一条线段与其他线段之间的关系难以 确定时我们可以利用等线段代换,从而容易找到相应的关系. 【例 2】如图,在△ABC 中,在 AC 上截取 AD,在 CB 的延长线上截 取 BE,使 AD=BE,连接 DE,交 AB 于点 F,求证:DF·AC=BC·FE.
模型解读 (2)
一线三等角型 已知:∠B=∠ACE=∠D=α 结论:(1)△ABC∽△CDE (2) AB·DE=BC·CD (3)当 C 为 BD 中点时,△ABC∽△CDE∽△ACE

2023年中考数学常见几何模型(全国通用版):相似模型(解析版)

2023年中考数学常见几何模型(全国通用版):相似模型(解析版)

专题06相似模型-母子型(共角共边模型)和A (X )字型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到相似三角形的问题就信心更足了.本专题重点讲解相似三角形的六大基本模型.模型1.“母子”模型(共边角模型)【模型解读与图示】“母子”模型的图形(通常有一个公共顶点和另外一个不是公共的顶点,由于小三角形寓于大三角形中,恰似子依母怀),也是有一个“公共角”,再有一个角相等或夹这个公共角的两边对应成比例就可以判定这两个三角形相似.“双垂线”型是其特例。

“母子”模型(斜射影)双垂直(射影定理)“母子型”的变形斜射影结论:△ABD ∽△ACB ,AB 2=AD ·AC .双垂直结论:①△ABD ∽△ACB ,AB 2=AD ·AC ;②△ADC ∽△ACB ,AC 2=AD ·AB ;③△CDB ∽△ACB ,CB 2=BD ·BA .1.(2022·贵州贵阳·中考真题)如图,在ABC 中,D 是AB 边上的点,B ACD ,:1:2AC AB ,则ADC 与ACB △的周长比是()A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ,则可得12AC AD CD AB AC BC ,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC,∵12AC AB ,∴12AC AD CD AB AC BC ,∴12AC AD CD AC AD CD AB AC BC AB AC BC ,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.2.(2022·陕西汉中·九年级期末)如图,CD 是等腰直角ABC 斜边AB 的中线,以点D 为顶点的EDF 绕点D 旋转,角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AE 交于点M ,DE 与BC 交于点N ,且45EDF .(1)如图1,若CE CF ,求证:DE DF ;(2)如图2,若CE CF ,求证:2CD CE CF ;(3)如图2,过D 作DG BC 于点G ,若2CD,CF DN的长.∵DG ⊥BC ,∠ACB =90°,∴∠DGN =∠ECN =90°,∠当CD =2,CF =2时,由CD 在Rt △DCG 中,CG DG ∵∠ECN =∠DGN ,∠ENC 3.(2022·浙江绍兴·九年级期末)如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果DEF 与ABC 互为母子三角形,则DE AB 的值可能为()A .2B .12C .2或12(2)已知:如图1,ABC 中,AD 是BAC 的角平分线,2,AB AD ADE B .求证:ABD △与ADE 互为母子三角形.(3)如图2,ABC 中,AD 是中线,过射线CA 上点E 作//EG BC ,交射线DA 于点G ,连结BE ,射线BE 与射线DA 交于点F ,若AGE 与ADC 互为母子三角形.求AG GF 的值.AG DG ,4.(2022.浙江中考模拟)如图,在 ABC中,∠ACB=90°,CD⊥AB.(1)图1中共有对相似三角形,写出来分别为(不需证明):(2)已知AB=5,AC=4,请你求出CD的长:(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q出B点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1)3, ABC∽ ACD, ABC∽ CBD, ACD∽ CBD;(2)125;(3)存在,(2740,32),(98,910)【分析】(1)根据两角对应相等的两三角形相似即可得到3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD.(2)先在△ABC中由勾股定理求出BC的长,再根据△ABC的面积不变得到12AB•CD=12AC•BC,即可求出CD的长.(3)由于∠B公共,所以以点B、P、Q为顶点的三角形与△ABC相似时,分两种情况进行讨论:①△PQB∽△ACB;②△QPB∽△ACB.【详解】解:(1)图1中共有3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD.证明:∵CD⊥AB,∴∠ADC=∠ACB=90°,又∵∠A=∠A,∴△ADC∽△ACB同理可证:△ABC∽△CBD,△ACD∽△CBD.故答案为:3;△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD.(2)如图2中,在△ABC中,∵∠ACB=90°,AB=5,AC=4,∴BC=3.∵△ABC 的面积=12AB•CD =12AC•BC ,∴CD =AC BC AB =125.(3)存在点P ,使以点B 、P 、Q 为顶点的三角形与△ABC 相似,理由如下:在△BOC 中,∵∠COB =90°,BC =3,OC =125,∴OB =95.分两种情况:①当∠BQP =90°时,如图2①,此时△PQB ∽△ACB,∴BP AB =BQ BC ,∴353t t ,解得t =98,即98BQ CP ,∴915388BP BC CP .在△BPQ中,由勾股定理,得32PQ ,∴点P 的坐标为273(,)402;②当∠BPQ =90°时,如图2②,此时△QPB ∽△ACB ,∴BP BQ BC AB ,∴335t t ,解得t =158,即15159,3888BQ cP BP BC CP ,过点P 作PE ⊥x 轴于点E .∵△QPB ∽△ACB ,∴PE BQ CO AB ,即1581255PE ,∴PE =910.在△BPE中,2740BE ,∴92795408OE OB BE ,∴点P 的坐标为99(,810,综上可得,点P 的坐标为(2740,32);(98,910).【点睛】本题属于相似形综合题,考查了相似三角形的判定与性质,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.模型2.“A ”字模型【模型解读与图示】“A ”字模型图形(通常只有一个公共顶点)的两个三角形有一个“公共角”(是对应角),再有一个角相等或夹这个公共角的两边对应成比例,就可以判定这两个三角形相似.1.(2022·湖南怀化·中考真题)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC =_____.【答案】8【分析】根据三角形中位线定理求得DE ∥BC ,12DE BC ,从而求得△ADE ∽△ABC ,然后利用相似三角形的性质求解.【详解】解:∵D 、E 分别是AB 、AC 的中点,则DE 为中位线,所以DE ∥BC ,12DE BC 所以△ADE ∽△ABC ∴21()4ADE ABCS DE S BC ∵S △ADE =2,∴S △ABC =8故答案为:8.【点睛】本题考查中位线及平行线性质,本题难度较低,主要考查学生对三角形中位线及平行线性质等知识点的掌握.2.(2022·浙江杭州·中考真题)如图,在 ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF ,已知四边形BFED 是平行四边形,DE 1BC 4.(1)若8AB ,求线段AD 的长.(2)若ADE 的面积为1,求平行四边形BFED的面积.【答案】(1)2(2)6【分析】(1)利用平行四边形对边平行证明ADE ABC △△∽,得到DE AD BC AB即可求出;(2)利用平行条件证明ADE EFC ∽ ,分别求出ADE EFC 与、ADE ABC 与的相似比,通过相似三角形的面积比等于相似比的平方分别求出EFC S V 、ABC S ,最后通过BFED ABC EFC ADE S S S S 求出.(1)∵四边形BFED 是平行四边形,∴∥DE BC ,∴ADE ABC △△∽,∴DE AD BC AB ,∵DE 1BC 4 ,∴AD 1AB 4,∴118244AD AB ;(2)∵四边形BFED 是平行四边形,∴∥DE BC ,EF AB ,DE =BF ,∴,AED ECF EAD CEF ,∴ADE EFC ∽ ∴2ADE EFC S DE S FC,∵DE 1BC 4,DE =BF ,∴43FC BC DE DE DE DE ,∴133DE DE FC DE ,∴221139ADE EFC S DE S FC ,∵ADE ABC △△∽,DE 1BC 4 ,∴2211416ADE ABC S DE S BC ,∵1ADE S △,∴9,16EFC ABC S S ,∴16916BFED ABC EFC ADE S S S S .【点睛】本题考查了相似三角形,熟练掌握相似三角形的面积比等于相似比的平方、灵活运用平行条件证明三角形相似并求出相似比是解题关键.3.(2022·浙江宁波·中考真题)(1)如图1,在ABC 中,D ,E ,F 分别为,,AB AC BC 上的点,,,DE BC BF CF AF ∥交DE 于点G ,求证:DG EG .(2)如图2,在(1)的条件下,连接,CD CG .若,6,3 CG DE CD AE ,求DE BC的值.(3)如图3,在ABCD 中,45, ADC AC 与BD 交于点O ,E 为AO 上一点,EG BD ∥交AD 于点G , EF EG 交BC 于点F .若40, EGF FG 平分,10 EFC FG ,求BF 的长.【答案】(1)证明见详解(2)13(3)5【分析】(1)利用∥DE BC ,证明,ADG ABF AEG ACF △△△△ ,利用相似比即可证明此问;(2)由(1)得DG EG ,CG DE ,得出DCE 是等腰三角形,利用三角形相似即可求出DE BC 的值;(3)遵循第(1)、(2)小问的思路,延长GE 交AB 于点M ,连接FM ,作MN BC ,垂足为N .构造出等腰三角形、含30°、45°角的特殊直角三角形,求出BN 、FN 的值,即可得出BF 的长.(1)解:∵DE BC ∥,∴,ADG ABF AEG ACF △△△△ ,∴, DG AG EG AG BF AF CF AF ,∴DG EG BF CF.∵BF CF ,∴DG EG .(2)解:由(1)得DG EG ,∵CG DE ,∴6CE CD .∵3AE ,∴9AC AE CE .∵DE BC ∥,∴ADE ABC .∴13DE AE BC AC .(3)解:如图,延长GE 交AB 于点M ,连接FM ,作MN BC ,垂足为N .在ABCD 中,,45 BO DO ABC ADC .∵EG BD ∥,∴由(1)得 ME GE ,∵ EF EG ,∴10 FM FG ,∴ EFM EFG .∵40 EGF ,∴40EMF ,∴50EFG .∵FG 平分EFC ,∴50 EFG CFG ,∴18030 BFM EFM EFG CFG .∴.在Rt FMN 中,sin 305,cos30 MN FM FN FM ∵45, MBN MN BN ,∴5 BN MN ,∴5 BF BN FN 【点睛】本题考查了相似三角形的性质及判定、等腰三角形的性质及判定、解特殊的直角三角形等知识,遵循构第(1)、(2)小问的思路,构造出等腰三角形和特殊的直角三角形是解决本题的关键.4.(2022·辽宁·中考真题)如图,在ABC 中,4AB AC BC ,D ,E ,F 分别为,,AC AB BC 的中点,连接,DE DF .(1)如图1,求证:52DF DE ;(2)如图2,将EDF 绕点D 顺时针旋转一定角度,得到PDQ ,当射线DP 交AB 于点G ,射线DQ 交BC 于点N 时,连接FE 并延长交射线DP 于点M ,判断FN 与EM 的数量关系,并说明理由;(3)如图3,在(2)的条件下,当DP AB 时,求DN 的长.【答案】(1)见解析(2)2FN ,理由见解析(3)103【分析】(1)连接AF ,可得AF BC ,根据直角三角形斜边上的中线等于斜边的一半可得12DF AC根据中位线定理可得122DE BC ,即可得证;(2)证明DNF DME ∽,根据(1)的结论即可得FN;(3)连接AF ,过点C 作CH AB 于H ,证明AGD AHC ∽,可得125GD HC ,勾股定理求得,GE AG ,根据3tan 4AG ADG GD ,EMG ADG ,可得3tan 4EG EMG MG ,进而求得MG ,根据MD MG GD求得MD ,根据(2)的结论2DN DM,即可求解.(1)证明:如图,连接AF ,∵4AB AC BC ,D ,E ,F 分别为,,AC AB BC 的中点,122DE BC ,AF BC , 12DF AC , DF ,(2)2FN,理由如下,连接AF ,如图,∵4AB AC BC ,D ,E ,F 分别为,,AC AB BC 的中点,1,2EF AC CD EF DC∥, 四边形CDEF 是平行四边形,DEF C ,∵12DF AC DC ,DFC C ,DEF DFC ,180180DEF DFC , DEM DFN ,∵将EDF 绕点D 顺时针旋转一定角度,得到PDQ , EDF PDQ ,FDN NDE EDM NDE ∵,FDN EDM ,DNF DME ∽,NF DF EM DE,FN ,(3)如图,连接AF ,过点C 作CH AB 于H ,Rt AFC △中,122FC BC ,4AF ,1122ABC S BC AF AB CH∵,5BC AF HC AB ,∵DP AB ,AGD AHC ∽,12GD AD HC AC,12GD HC Rt GED中,255GE Rt AGD中,355AG,3535tan 44AG ADG GD ,EF AD ∥∵,EMG ADG ,3tan 4EG EMGMG,4433515MG GE,1553MD MG GD,∵DNF DME ∽,DN DF DMDE103DN DM .【点睛】本题考查了勾股定理,直角三角形斜边上的中线等于斜边的一半,中位线的性质定理,相似三角形的性质与判定,求角的正确,掌握相似三角形的性质与判定是解题的关键.模型3.“X ”字模型(“8”模型)【模型解读与图示】“X ”字模型图形的两个三角形有“对顶角”,再有一个角相等或夹对顶角的两边对应成比例就可以判定这两个三角形相似.1.(2022·河北·中考真题)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?______(填“是”或“否”);(2)AE =______.【答案】是5【分析】(1)证明△ACG ≌△CFD ,推出∠CAG =∠FCD ,证明∠CEA =90°,即可得到结论;(2)利用勾股定理求得AB 的长,证明△AEC ∽△BED ,利用相似三角形的性质列式计算即可求解.【详解】解:(1)如图:AC =CF =2,CG =DF =1,∠ACG =∠CFD =90°,∴△ACG ≌△CFD ,∴∠CAG =∠FCD ,∵∠ACE +∠FCD =90°,∴∠ACE +∠CAG =90°,∴∠CEA =90°,∴AB 与CD 是垂直的,故答案为:是;(2)AB ∵AC ∥BD ,∴△AEC ∽△BED ,∴AC AE BD BE ,即23AE BE ,∴25AE BE ,∴AE =25BE【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.2.(2022·四川内江·中考真题)如图,在矩形ABCD 中,AB =6,BC =4,点M 、N 分别在AB 、AD 上,且MN ⊥MC ,点E 为CD 的中点,连接BE 交MC 于点F.(1)当F 为BE 的中点时,求证:AM =CE ;(2)若EF BF=2,求AN ND 的值;(3)若MN ∥BE ,求ANND 的值.【答案】(1)见解析(2)2737(3)27【分析】(1)根据矩形的性质,证明△BMF ≌△ECF ,得BM =CE ,再利用点E 为CD 的中点,即可证明结论;(2)利用△BMF ∽△ECF ,得12BM B EF CE F ,从而求出BM 的长,再利用△ANM ∽△BMC ,得AN AMBM BC,求出AN 的长,可得答案;(3)首先利用同角的余角相等得∠CBF =∠CMB ,则tan ∠CBF =tan ∠CMB ,得CE BCBC BM,可得BM 的长,由(2)同理可得答案.(1)证明:∵F 为BE 的中点,∴BF =EF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ∴∠BMF =∠ECF ,∵∠BFM =∠EFC ,∴△BMF ≌△ECF (AAS ),∴BM =CE ,∵点E 为CD 的中点,∴CE =12CD ,∵AB =CD ,∴12BM CE AB ,∴AM BM ,∴AM =CE ;(2)∵∠BMF =∠ECF ,∠BFM =∠EFC ,∴△BMF ∽△ECF ,∴12BM B EF CE F ,∵CE =3,∴BM =32,∴AM =92,∵CM ⊥MN ,∴∠CMN =90°,∴∠AMN +∠BMC =90°,∵∠AMN +∠ANM =90°,∴∠ANM =∠BMC ,∵∠A =∠MBC ,∴△ANM ∽△BMC ,∴AN AM BM BC,∴92342AN ,∴7162AN ,∴DN =AD ﹣AN =4﹣2716=3716,∴272716373716AN DN ;(3)∵MN ∥BE ,∴∠BFC =∠CMN ,∴∠FBC +∠BCM =90°,∵∠BCM +∠BMC =90°,∴∠CBF =∠CMB ,∴tan ∠CBF =tan ∠CMB ,∴CE BC BC BM ,∴344BM ,∴163BM ,∴162633AM AB BM ,由(2)同理得,AN AMBM BC,∴231643AN ,解得:AN =89,∴DN =AD ﹣AN =4﹣89=289,∴8292879AN ND .【点睛】本题是相似形综合题,主要考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,求出BM 的长是解决(2)和(3)的关键.3.(2022·广西贵港·中考真题)已知:点C ,D 均在直线l 的上方,AC 与BD 都是直线l 的垂线段,且BD 在AC 的右侧,2BD AC ,AD 与BC 相交于点O .(1)如图1,若连接CD ,则BCD △的形状为______,AOAD的值为______;(2)若将BD 沿直线l 平移,并以AD 为一边在直线l 的上方作等边ADE .①如图2,当AE 与AC 重合时,连接OE ,若32AC,求OE 的长;②如图3,当60ACB 时,连接EC 并延长交直线l 于点F ,连接OF .求证:OF AB.【答案】(1)等腰三角形,13(2)①OE ②见解析【分析】(1)过点C 作CH ⊥BD 于H ,可得四边形ABHC 是矩形,即可求得AC =BH ,进而可判断△BCD 的形状,AC 、BD 都垂直于l ,可得△AOC ∽△BOD ,根据三角形相似的性质即可求解.(2)①过点E 作EF AD 于点H ,AC ,BD 均是直线l 的垂线段,可得//AC BD ,根据等边三角形的性质可得30BAD ,再利用勾股定理即可求解.②连接CD ,根据//AC BD ,得60CBD ACB ,即BCD △是等边三角形,把ABD △旋转得90ECD ABD ,根据30°角所对的直角边等于斜边的一般得到13AF AO AB AD ,则可得AOF ADB △∽△,根据三角形相似的性质即可求证结论.(1)解:过点C 作CH ⊥BD 于H ,如图所示:∵AC ⊥l ,DB ⊥l ,CH ⊥BD ,∴∠CAB =∠ABD =∠CHB =90°,∴四边形ABHC 是矩形,∴AC =BH ,又∵BD =2AC ,∴AC=BH=DH ,且CH ⊥BD ,∴BCD △的形状为等腰三角形,∵AC 、BD 都垂直于l ,∴△AOC ∽△BOD ,122AO AC AC DO DB AC ,即2DO AO ,133AO AO AD AO DO A AO O,故答案为:等腰三角形,13.(2)①过点E 作EF AD 于点H ,如图所示:∵AC ,BD 均是直线l 的垂线段,∴//AC BD ,∵ADE 是等边三角形,且AE 与AC 重合,∴∠EAD =60°,∴60ADB EAD ,∴30BAD ,∴在Rt ADB 中,2AD BD , AB ,又∵2BD AC ,32AC,∴6,AD AB ∴132AH DH AD ,又Rt ADB ,∴EH又由(1)知13AO AD =,∴123AO AD ,则1OH ,∴在Rt EOH △中,由勾股定理得:OE ②连接CD ,如图3所示:∵//AC BD ,∴60CBD ACB ,∵BCD △是等腰三角形,∴BCD △是等边三角形,又∵ADE 是等边三角形,∴ABD △绕点D 顺时针旋转60 后与ECD 重合,∴90ECD ABD ,又∵60BCD ACB ,∴30ACF FCB FBC ,∴2FC FB AF ,∴13AF AO AB AD ,又OAF DAB ,∴AOF ADB △∽△,∴90AFO ABD ,∴OF AB .【点睛】本题考查了矩形的判定及性质、三角形相似的判定及性质、等边三角形的判定及性质、勾股定理的应用,熟练掌握三角形相似的判定及性质和勾股定理的应用,巧妙借助辅助线是解题的关键.4.(2022·江苏镇江·九年级期末)梅涅劳斯(Menelaus )是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC 的三边AB ,BC ,CA 或它们的延长线交于F 、D 、E 三点,那么一定有••1AF BD CEFB DC EA.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图(2),过点A 作AG BC ∥,交DF 的延长线于点G ,则有AF AG FB BD ,CE CDEA AG ,∴1AF BD CE AG BD CD FB DC EA BD DC AG.请用上述定理的证明方法解决以下问题:(1)如图(3),△ABC 三边CB ,AB ,AC 的延长线分别交直线l 于X ,Y ,Z 三点,证明:1BX CZ AYXC ZA YB.(2)如图(4),等边△ABC 的边长为2,点D 为BC 的中点,点F 在AB 上,且2BF AF ,CF 与AD 交于点E ,则AE 的长为________.(3)如图(5),△ABC 的面积为2,F 为AB 中点,延长BC 至D ,使CD BC ,连接FD 交AC 于E ,则四边形BCEF 的面积为________.代入∴YBX YAE YXB E ZCX ,;故可知△YBX ∽△YAE ,△ZCX ∽△课后专项训练:1.(2022•江苏中考模拟)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图(1),△CDE∽△CAB,且沿周界CDEC与CABC环绕的方向(同为逆时针方向)相同,因此△CDE 和△CAB互为顺相似;如图(2),△CDE∽△CBA,且沿周界CDEC与CBAC环绕的方向相反,因此△CDE 和△CBA互为逆相似.(1)根据以上材料填空:①如图(3),AB∥CD,则△AOB∽△COD,它们互为相似(填“顺”或“逆”,下同);②如图(4),Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则△ABC∽,它们互为相似;③如图(5),若∠DAB=∠EBC=90°,并且BD⊥CE于点F,则△ABD∽,它们互为相似;(2)如图(6),若△AOB∽△COD,指出图中另外的一对相似三角形并说明理由,同时指出它们互为顺相似还是互为逆相似;(3)如图(7),在Rt△ABC中,∠C=90°,AC=20,BC=15,点P在△ABC的斜边上,且AP=16,过点P画直线截△ABC,使截得的一个三角形与△ABC相似,则满足的截线共有条.【答案】(1)①逆;②△ACD或△CBD,逆;③△BCE,顺;(答案不唯一);(2)△AOC∽△BOD,理由见解析;△AOC和△BOD互为顺相似;(3)3.【分析】(1)①根据新定义直接判断,即可得出结论;②先判断出∠ADC=∠BDC=90°=∠ACB,进而分两种情况,判断出两三角形相似,最后根据新定义判断,即可得出结论;③先判断出∠ABD=∠C,进而得出△ABD∽△BCE,最后用新定义判断,即可得出结论;(2)先由△AOB∽△COD,判断出AO OBCO OD,∠AOB=∠COD,进而得出∠AOC=∠BOD,即可得出结论;(3)先求出BP=9,分三种情况,过点P作AB,AC,BC的垂线,利用相似三角形得出比例式,建立方程求解,即可得出结论.【详解】(1)①∵AB∥CD,∴△AOB∽△COD,∴△AOB和△COD互为逆相似,故答案为:逆;②∵CD⊥AB,∴∠ADC=∠BDC=90°=∠ACB,Ⅰ、∵∠A=∠A,∴△ABC∽△ACD,∴△ABC和△ACD互为逆相似;Ⅱ、∠B=∠B,∴△ABC∽△CBD,∴△ABC和△CBD互为逆相似;故答案为:△ACD或△CBD,逆;③∵BD⊥CE,∴∠BFC=90°,∴∠CBD+∠C=90°,∵∠EBC=90°,∴∠CBD+∠ABD=90°,∴∠ABD=∠C,∴△ABD∽△BCE,∴△ABD和△BCE互为顺相似;故答案为:△BCE,顺;(2)△AOC∽△BOD,△AOC和△BOD互为顺相似;理由:∵△AOB∽△COD,∴AOCO=OBOD,∠AOB=∠COD,∴∠AOB﹣∠BOC=∠COD﹣∠BOC,∴∠AOC=∠BOD,∵AO CO=OB OD,∴OA OB=OC OD,∴△AOC∽△BOD,∴△AOC和△BOD互为顺相似;(3)在Rt△ABC中,AC=20,BC=15,根据勾股定理得,AB25,∵AP=16,∴BP=AB﹣AP=9,如图1,①过点P 作PG ⊥BC 于G ,∴∠BGP =90°=∠ACB ,∵∠B =∠B ,∴△ABC ∽△PBG ,∴AB BC BP BG ,∴25159BG,∴BG =15925=275<BC ,∴点G 在线段BC (不包括端点)上,②过点P 作PG ''⊥AC 于G '',∴∠AG ''P =∠ACB ,∵∠A =∠A ,∴△ABC ∽△APG '',∴AB AC AP AG ,∴252016AG,∴AG ''=201625 =645<AC ,∴点G ''在线段AC (不包括端点)上,③过点P 作PG '⊥AB ,交直线BC 与G ',交直线AC 于H ,∵∠APG '=∠APH =90°=∠ACB ,∵∠A =∠A ,∴△ABC ∽△G 'BP ,∴AB BC BG BP ,∴25159BG ,∴BG '=25915=15=BC ,∴点G '和点H 都和点C 重合(注:为了说明问题,有意将点G '和点H 没画在点C 处),故答案为:3.【点睛】此题是相似形综合题,主要考查了相似三角形的判定和性质,新定义的理解和应用,理解新定义、熟练掌握相似三角形的判定和性质是解本题的关键.2.(2022·吉林·中考真题)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC hV ,12DBC S BC h △.∴ABC DBC S S .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ,则ABC DBC S hS h△△.证明:∵ABCS (2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM△△.证明:过点A 作AE BM ,垂足为E ,过点D 作DF BM ,垂足为F ,则90AEM DFM ,∴AE ∥.∴AEM △∽.∴AE AM DF DM.由【探究】(1)可知ABC DBC S S △△,∴ABC DBC S AM S DM△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBCS S △△的值为.【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h ,由此即可得证;(2)过点A 作AE BM ,垂足为E ,过点D 作DF BM ,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ,根据相似三角形的性质可得AE AM DF DM,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC 于点M ,过点D 作DN BC 于点N ,先根据相似三角形的判定证出AME DNE V V ,再根据相似三角形的性质可得73AM AE DN DE ,然后根据三角形的面积公式可得12ABC S BC AM ,12DBC S BC DN ,由此即可得出答案.(1)证明:12ABC S BC h ∵,12DBC BC h S ,ABC DBC S h S h .(2)证明:过点A 作AE BM ,垂足为E ,过点D 作DF BM ,垂足为F ,则90AEM DFM,AE DF ∥.AEM DFM .AE AM DF DM.由【探究】(1)可知ABC DBC S AE S DF V V ,ABC DBC S AM S DMV V .(3)解:过点A 作AM BC 于点M ,过点D 作DN BC 于点N ,则90AME DNE,AM DN P ,AME DNE V V ,AM AE DN DE,∵点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE , 1.5DE , 3.571.53AM DN ,又12ABC S BC AM ∵,12DBC S BC DN ,73ABC DBC S AM S DN V V ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.3.(2022·上海·九年级专题练习)如图,在Rt ABC 中,90ACB ,60BAC ,6AC ,AD 平分BAC ,交边BC 于点D ,过点D 作CA 的平行线,交边AB 于点E.(1)求线段DE 的长;(2)取线段AD 的中点M ,联结BM ,交线段DE 于点F ,延长线段BM 交边AC 于点G ,求EF DF的值.【答案】(1)4;(2)23【分析】(1)分别求出CD ,BC ,BD ,证明BDE BCA ∽,根据相似性质即可求解;(2)先证明DF AG ,再证明BEF BAG △∽△,根据相似三角形性质求解即可.【详解】解:(1)∵AD 平分BAC ,60BAC ,∴30DAC .在Rt ACD 中,90ACD ,30DAC ,6AC ,∴CD 在Rt ACB 中,90ACB ,60BAC ,6AC ,∴BC∴BD BC CD .∵//DE CA ,∴BDE BCA ∽∴23DE BD CA BC .∴4DE.(2)∵点M 是线段AD 的中点,∴DM AM .∵//DE CA ,∴DFM AGM △∽△∴DF DM AG AM .∴DF AG .∵//DE CA ,∴BEF BAG △∽△∴23EF BE BD AG BA BC ∴23EF DF .【点睛】本题考查了含30°角的直角三角形性质,相似的判定与性质,解题的关键是能根据题意确定相似三角形,并根据相似性质解题.4.(2022·上海市奉贤区古华中学九年级期中)已知:如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N,联结BD.(1)求证:△BND∽△CNM;(2)如果AD2=AB•AF,求证:CM•AB=DM•CN.【分析】(1)利用平行四边形的性质得AB=CD,AB∥CD,再证明四边形BECD为平行四边形得到BD∥CE,根据相似三角形的判定方法,由CM∥DB可判断△BND∽△CNM;(2)先利用AD2=AB•AF可证明△ADB∽△AFD,则∠1=∠F,再根据平行线的性质得∠F=∠4,∠2=∠3,所以∠3=∠4,加上∠NMC=∠CMD,于是可判断△MNC∽△MCD,所以MC:MD=CN:CD,然后利用CD=AB 和比例的性质即可得到结论.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,而BE=AB,∴BE=CD,而BE∥CD,∴四边形BECD为平行四边形,∴BD∥CE,∵CM∥DB,∴△BND∽△CNM;(2)∵AD2=AB•AF,∴AD:AB=AF:AD,而∠DAB=∠FAD,∴△ADB∽△AFD,∴∠1=∠F,∵CD∥AF,BD∥CE,∴∠F=∠4,∠2=∠3,∴∠3=∠4,而∠NMC=∠CMD,∴△MNC∽△MCD,∴MC:MD=CN:CD,∴MC•CD=MD•CN,而CD=AB,∴CM•AB=DM•CN.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在运用相似三角形的性质时主要利用相似比计算线段的长.也考查了平行四边形的判定与性质.5.(2022•安庆模拟)在四边形ABCD中,对角线AC、BD相交于点O.(1)如图①,若四边形ABCD为矩形,过点O作OE⊥BC,求证:OE=CD.(2)如图②,若AB∥CD,过点O作EF∥AB分别交BC、AD于点E、F.求证:=2.(3)如图③,若OC平分∠AOB,D、E分别为OA、OB上的点,DE交OC于点M,作MN∥OB交OA于一点N,若OD=8,OE=6,直接写出线段MN长度.【分析】(1)由OE⊥BC,DC⊥BC,可知EO∥CD,且OB=OD,可得结论;(2)由△DFO∽△DAB,得,同理,,,利用等式的性质将比例式相加,从而得出结论;(3)作DF∥OB交OC于点F,连接EF,可知△ODF是等腰三角形,得DO=DF=8,由△DMF∽△EMO,可得EM=,由△DMN∽△DOE,得,从而得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴O是AC中点,AB⊥BC,∵OE⊥BC,∴OE∥AB,∴E是BC中点,∴OE=;(2)证明:∵EF∥AB,∴△DFO∽△DAB,∴,同理,,,∴=,∴,即;(3)解:作DF∥OB交OC于点F,连接EF,∵OC平分∠AOB,∴∠AOC=∠BOC,∵DF∥OB,∴∠DFO=∠BOC=∠AOC,∴△ODF是等腰三角形,∴DO=DF=8,∵DF∥OE,∴△DMF∽△EMO,∴,∴EM=,∴,∵MN ∥OE ,∴△DMN ∽△DOE ,∴,∴,∴MN =.【点评】本题是相似形综合题,主要考查了矩形的性质,相似三角形的判定与性质,等腰三角形的性质,对比例式进行恒等变形是解题的关键.6.(2022•重庆中考模拟)问题提出:如图1,D 、E 分别在△ABC 的边AB 、AC 上,连接DE ,已知线段AD =a ,DB =b ,AE =c ,EC =d ,则S △ADE ,S △ABC 和a ,b ,c ,d之间会有怎样的数量关系呢?问题解决:探究一:(1)看到这个问题后,我们可以考虑先从特例入手,找出其中的规律.如图2,若DE ∥BC ,则∠ADE =∠B ,且∠A =∠A ,所以△ADE ∽△ABC ,可得比例式:a c a b c d而根据相似三角形面积之比等于相似比的平方.可得 22ADE ABC S a S a b .根据上述这两个式子,可以推出:22ADE ABC S a a a a c ac S a b a b a b c d a b c d a b .(2)如图3,若∠ADE =∠C ,上述结论还成立吗?若成立,请写出证明过程;着不成立,请说明理由.探究二:回到最初的问题,若图1中没有相似的条件,是否仍存在结论:ADE ABC S ac S a b c d ?方法回顾:两个三角形面积之比,不仅可以在相似的条件下求得,当两个三角形的底成高具有一定的关系时,也可以解决.如图4,D 在△ABC 的边上,做AH ⊥BC 于H ,可得:1212ABD ADC BD AH S BD S DC DC AH .借用这个结论,请你解决最初的问题.延伸探究:(1)如图5,D 、E 分别在△ABC 的边AB 、AC 反向延长线上,连接DE ,已知线段AD =a ,AB =b ,AE =c ,AC =d ,则ADE ABC S S .(2)如图6,E 在△ABC 的边AC 上,D 在AB 反向延长线上,连接DE ,已知线段AD =a ,AB =b ,AE =c ,AC =d ,ADE ABC S S .结论应用:如图7,在平行四边形ABCD 中,G 是BC 边上的中点,延长GA 到E ,连接DE 交BA 的延长线于F ,若AB =5,AG =4,AE =2,▱ABCD 的面积为30,则△AEF 的面积是.【答案】探究一:(2)见解析;延伸探究:(1)ac bd ;(2)ac bd ;结论应用:32【分析】问题解决:探究一(2):参照(1)中证明方法解答即可;探究二,过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,然后按照探究一中方法证明即可;延伸探究:(1)过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,然后按照探究一中方法证明即可;(2)过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,然后按照探究一中方法证明即可;结论应用:取AD 的中点M ,连接GM 并延长交DE 于点N ,连接DG ,可得15ADG S ,根据题意,进而得出152ADE S ,根据AM =DM ,MN AF ∥,可得FN =DN ,根据AE =2,AG =4,GN AF ∥,可得FN =2EF ,进而可得ED =5EF ,即可得出1352AEF ADE S S.【详解】解:问题解决:探究一:(2)成立,理由如下:∵∠ADE =∠C ,∠A =∠A ,∴ADE ACB ∽,∴a c c d a b,∴ 22()()ADE ABC S b a S c a c ac c d a b c d a d ;探究二:过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,∵,DM AC BN AC ,∴//DM BN ,∴AD DM a AB BN a b,121()()2ADE ABC AE DM S AE DM c a ac S AC BN c d a b a b c d AC BN;延伸探究:(1)过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N ,∵,DM AC BN AC ,∴//DM BN ,∴AD DM a AB BN b ,1212ADE ABC AE DM S AE DM c a ac S AC BN d b bd AC BN ;(2)过D 、B 点分别作,DM AC BN AC ,垂足分别为M 、N,∵,DM AC BN AC ,∴//DM BN ,∴AD DM a AB BN b ,1212ADE ABC AE DM S AE DM c a ac S AC BN d b bd AC BN ;结论应用:取AD 的中点M ,连接GM 并延长交DE 于点N ,连接DG ,∴AM =DM ,1152ADG ABCD S S 平行四边形,∵AE =2,AG =4,∴11522ADE ADG S S ,∵AM =DM ,MN AF ,∴FN =DN ,∵AE =2,AG =4,GN AF ∥,∴12EF AE FN AG ,即:FN =2EF ,∴ED =5EF ,∴1352AEF ADE S S .【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例等知识点,熟练运用相似三角形的性质是解题的关键.7.(2022·贵州铜仁·中考真题)如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,记COD △的面积为1S ,AOB 的面积为2S .(1)问题解决:如图①,若AB //CD ,求证:12 S OC OD S OA OB(2)探索推广:如图②,若AB 与CD 不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.(3)拓展应用:如图③,在OA 上取一点E ,使OE OC ,过点E 作EF CD ∥交OD 于点F ,点H 为AB 的中点,OH 交EF 于点G ,且2 OG GH ,若56OE OA ,求12S S值.【答案】(1)见解析;(2)(1)中的结论成立,理由见解析:(3)2554【分析】(1)如图所示,过点D 作AE ⊥AC 于E ,过点B 作BF ⊥AC 于F ,求出sin sin DE OD DOE BF OB BOF ∠,∠,然后根据三角形面积公式求解即可;(2)同(1)求解即可;(3)如图所示,过点A 作AM EF ∥交OB 于M ,取BM 中点N ,连接HN ,先证明△OEF ≌△OCD ,得到OD =OF ,证明△OEF ∽△OAM ,得到5==6OF OE OM OA ,设55OE OC m OF OD n ,,则66OA m OM n ,,证明△OGF ∽△OHN ,推出31522n ON OF ,32n BN MN ON OM ,则9OB ON BN n ,由(2)结论求解即可.【详解】解:(1)如图所示,过点D 作AE ⊥AC 于E ,过点B 作BF ⊥AC 于F ,∴sin sin DE OD DOE BF OB BOF ∠,∠,∴111===sin 22OCD S S OC DE OC OD DOE △∠,211==sin 22AOB S S OA BF OA OB BOF △∠,∵∠DOE =∠BOF ,∴sin sin DOE BOF ;∴121sin 2==1sin 2OC OD DOE S OC OD S OA OB OA OB BOF ∠∠;。

最全相似模型专题(中考数学必考)

最全相似模型专题(中考数学必考)

几何模型09——相似模型三角形相似是每一年中考必考的知识点,相似模型主要包括:“A”型和“X”型相似,母子模型相似(共边共角型),一线三等角,双垂直模型和旋转相似,中考命题者经常把这些模型放在圆,四边形,或函数图象当中,特别要留意母子模型相似的一种特殊情况:射影定理中的知二求四和一线三垂直(k型相似),下面对这些类型做如下总结:一、“A”型和“X”型相似例1.如图,在△ABC中,点D是AC上的点,且AD=2CD,过D作DE∥BC交AB于E,过D作DF∥AB交BC于F.(1)若BC=15,求线段DE的长.(2)若△ADE的面积为16,求△CDF的面积.变式1.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.变式2.如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.变式3.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.变式4.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.变式5.如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN 交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.变式6.如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;变式7.如图,在△ABC中,∠C=90°,点O在CB上,⊙O经过点C,且与AB相切于点D,与CB的另一个交点为E.(1)求证:DE∥OA;(2)若AB=10,tan∠DEO=2,求⊙O的半径.例2.如图,在Rt△ABC中,∠A=90°,AC=9,BC=15.(1)求BC边上的高AD的长度;(2)正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上,求正方形EFGH 的边长.(相似比等于高之比)例3.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C 两点.求证:PA•PB=PD•PC(割线定理);变式1.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.变式2.如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,且点E 是的中点,连接DE .(1)求证:△ABC 是等腰三角形.(2)若BC =10,CE =6,求线段AD 的长.变式3.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆O 分别交BC ,AC 于点D ,E ,连结EB ,OD ,DE .(1)求证:OD ⊥EB .(2)若DE =,AB =10,求AE 的长.例4.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,BD 与CE 交于点O ,连接DE . 求证:2OE CO OD BO ==变式1.如图,AB 、CD 相交于点O ,连接AC 、BD ,点E 、F 分别为AC 、BD 的中点,连接OE 、OF ,若∠A =∠D ,OA =OF =6,OD =9,求OE 的长.变式2.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(相交弦定理)(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.变式3.如图,在⊙O中,弦AB、CD相交于点P,且PD<PC.(1)求证:△P AD∽△PCB;(2)若P A=3,PB=8,CD=10,求PD.例5.如图,过△ABC的边AC的中点D作直线交AB于E,交BC的延长线于F.求证:=;(梅捏劳斯定理特殊情况)变式1.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE.DE 交AC于点F,试证明:AB•DF=BC•EF.变式2.如图,△ABC中,D为BC的中点,过D的直线交AC于E,交AB的延长线于F.求证:=.变式3.如图,△ABC中,D是BC边的中点,过点D的直线交AB于点E,交AC的延长线于点F,且BE=CF.求证:AE=AF.二、共边共角型相似例1.如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B.(1)求证:;(2)若AC=2,BC=4,设△ADC面积为S1,△ABD面积为S2,求证:S2=3S1.变式1.如图,在△ABC中,D为边AB上一点,∠ACD=∠B,若AC=6,BC=5,CD=4,求AD,AB的长.变式2.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.变式3.如图,在Rt△ABC中,∠C=90°,以AB上一点O为圆心,OA的长为半径作⊙O,交AC、AB分别于D,E两点,连接BD,且∠A=∠CBD.若CD=1,BC=2,求AD 的长度.例2.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.变式1.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F.(1)求证:PC2=PE•PF;(2)若菱形边长为8,PE=2,EF=6,求FB的长.例3.如图,CD是⊙O的切线,点C在直径AB的延长线上.(切割线模型)(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.变式1.如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C 在⊙O上,连接PC,满足PC2=P A•PB.若AB=3P A,求的值.例4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.(1)(射影定理)求证:AC2=AD•AB;BC2=BD•BA;CD2=AD•BD;(2)若AD=2,DB=8,求AC,BC,CD的长;(知二求四)(3)若AC=6,DB=9,求AD,CD,BC的长;(知二求四)(4)求证:AC•BC=AB•CD.(等面积法)变式1.如图,AB是⊙O的直径,点C是圆上一点,连接AC和BC,过点C作CD⊥AB于点D.若CD=4,BD=3,求⊙O的半径长.(直径所对的圆周角为直角)变式2.如图,在Rt△ABC中,∠BAC=90°,∠BAD=∠C,点D在BC边上,以AD为直径的⊙O交AB于点E,交AC于点F.已知:AB=6,AC=8,求AF的长.变式3.在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.例4.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.(射影定理知二求四)(3)若AB=5CE,求tan∠ACB的值.(射影定理知二求四)变式1.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求证:DF是⊙O的切线;(2)若AC=2DE,求tan∠ABD的值.三、双垂直例1.如图,在矩形ABCD中,点E在边BC上,AF⊥DE,垂足为F,AD=4,CE=2,DE =2,求DF的长.变式1.如图,点P是正方形ABCD边AD上一点,Q是边BC延长线上一点,若AB=12,P A=5,PQ⊥BP.求CQ的长.变式2.如图,△ABC中,BD、CE分别是AC、AB边上的高,若AE=5,AD=6,CD=2.求EB的长.变式3.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.四、一线三等角例1.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;例2.如图,E是正方形ABCD的边AB上的点,过点E作EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)若AB=6,AE=2,求线段CF的长.变式1.如图,将一个直角的顶点P放在矩形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与边BC相交于点E.且AD=8,DC=6,则=.五、旋转相似例1.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.变式1.如图,△ABC和△CEF中,AB=BC,CF=EF,∠CBA=∠CFE=90°,E在△ABC 内,∠CAE+∠CBE=90°,连接BF.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求EF的长.。

江西省南昌市第二中学中考数学必考几何模型:相似模型

江西省南昌市第二中学中考数学必考几何模型:相似模型

相似模型模型1:A、8模型已知∠1=∠2结论:△ADE∽△ABC模型分析如图,在相似三角形的判定中,我们通过做平行线,从而得出A型或8型相似.在做题使,我们也常常关注题目由平行线所产生的相似三角形.模型实例【例1】如图,在ABC中,中线AF、BD、CE相交于点O,求证:12 OF OE ODOA OC OB===.解答:证法一:如图①,连接DE.∵D、E是中点,∴12DEBC=.,DE//BC∴△EOD∽△COB(8模型)∴12OE DEOC BC==.同理:12OFOA=,12ODOB=.∴12 OF OE ODOA OC OB===.证法二:如图②,过F作FG//AC交BD于点G,∵F是中点,∴12 GF BFAD BC==.∵AD=CD,∴12GFAD=.∵FG//AD,∴△GOF∽△DOA(8模型)∴12OF GFOA AD==.同理12OEOC=,12ODOB=.∴12OF OE ODOA OC OB===.【例2】如图,点E、F分别在菱形ABCD的边AB、AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若AFDF=2,求HFBG的值.解答:∵四边形ABCD是菱形,∴AB=BC=CD=AD.设DF=a,则DF=AE=a,AF=EB=2a.∵HD//AB,∴△HFD∽△BF A∴12HD DF HFAB AF FB===,∴HD=1.5a,13FHBH=,∴FH=13BH∵HD//EB,∴△DGH∽△EGB,∴1.5324HG HD aGB EB a===,∴47BGHB=∴BG=47HB,∴1734127BHHFBG BH==跟踪练习:1.如图,D、E分别是△ABC的边AB、BC上的点,且DE//AC,AE、CD相交于点O,若S△DOE:S△COA=1:25.则S△BD E与S△CDE的比是____________.解答:∵DE//AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴15 DE AC=∵DE//AC,∴15BE DEBC AC==,∴14BEBC=,∴的比是1:4.2.如图所示,在ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有___________对.解:∵四边形ABCD是平行四边形,∴AD//BC,AB//CD∴(1)△ABD∽△CDB;(2)△ABE∽△FDE;(3)△AED∽△GEB;(4)△ABG∽△FCG∽△FDA,可以组成3对相似三角形.∴图形中一共有6对相似三角形.3.如图,在△ABC中,中线BD、CE相交于点O,连接AO并延长,交BC于点F,求证:F是BC 的中点.证明:连接DE交AF于点G,则DE//BC,DE=12BC,∴G为AF中点∴12EGBF=,12EG OE DEFC OC BC===,∴BF=FC,即点F是BC的中点4.在△ABC中,AD是角平分线,求证:AB AC BD CD=.方法一:过点C CE//AB交AD延长线于点E,∴∠1=∠3,∴△ABD∽△ECD,∴AB BD CE CD=∵∠1=∠2,∴∠2=∠3,AC=CE,∴AB BD AC CD=方法二:设ABC中BC边上的高为h,则,12ABDS BD h=,12ACDS CD h=过D分别作DEAB,于E,DFAC于F,则12ABDS AB DE=,12ACDS AC DF=11221122ABD ACDBD h AB DES SCD h AC DF ==,又∵1=2,∴DE=DF ,∴AB BD AC CD =5.如图,△ABC 为等腰直角三角形,D 是直角边BC 的中点,E 在AB 上,且AE :EB =2:1,求证:CE ⊥AD .证明:过点B 做BF//AC ,交CE 延长线于点F ,则∠CBF=90°,△AEC ∽△BEF ∵AE :EB=2:1,∴BF=12AC=12BC=CD ,又AC=CB ,∠ACD=∠CBF=90° ∴△ACD ≌△CBF ,∴∠1=∠2,∵∠1+∠3=90°,∴∠2+∠3-90° ∴∠4=90°,∴CE ⊥AD模型2 共边共角型已知:∠ 1=∠2 结论:△ACD ∽△ABCDAC B12模型分析上图中,不仅要熟悉模型,还要熟记模型的结论,有时候题目中会给出三角形边的乘积关系或者比例关系,我们要能快速判断题中的相似三角形,模型中由△ACD ∽△ABC 进而可以得到:AC 2=AD AB 模型实例例1 如图,D 是△ABC 的边BC 上一点,AB =4,AD =2,∠DAC =∠B ,如果△ABD 的面积为15.那么△ACD 的面积为 .CDB解答:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA.∵AB=4,AD=2,∴14ACDABCSS∆∆=,∴13ACDABDSS∆∆=,∵S△ABD=15,∴S△ACD=5例2如图,在Rt△ABC中,∠BAC=90o,AD⊥BC于D.(1)图中有多少对相似三角形?(2)求证:AB2=BD BC,AC2=CD CB,AD2=BD CD(3)求证:AB AC=BC ADD CBA解答(1)三对.分别是:△ABD∽△CBA;△ACD∽△BCA;△ABD∽△CAD(2)∵△ABD∽△CBA,∴AB BDBC AB=.∴AB2=BD BC,∵△ACD∽△BCA∴AC CDCB AC=.∴AC2=CD CB,∵△ABD∽△CAD,∴AD BDCD AD=,∴AD2=BC CD(3)1122ABCS AB AC BC AD==,∴AB AC=BC AD跟踪练习:1.如图所示,能判定△ABC∽△DAC的有.①∠B=∠DAC②∠BAC=∠ADC③AC2=DC BC④AD2=BD BCBDC【答案】①②③2.已知△AMN 是等边三角形,∠BAC =120o .求证: (1)AB 2=BM BC ; (2)AC 2=CN CB ; (3)MN 2=BM NC .CNM BA【答案】证明:∵∠BAC =120o,∴∠B +∠C =60o.∵△AMN 是等边三角形, ∴∠B +∠1=∠AMN =60o,∠C +∠2=∠ANM =60o.∴∠1=∠C ,∠2=∠B . (1)∵∠1=∠C ,∠B =∠B ,∴△BAM ∽△BCA .∴BM AB AB BC=.∴AB 2=BM BC (2)∵∠2=∠B ,∠C =∠C ,∴△CAN ∽△CBA .∴CN AC AC CB =.∴AC 2=CN CB (3)∵∠1=∠C ,∠2=∠B ,∴△BAM ∽△ACN .∴BM AMAN CN=. ∴BM CN =AN AM ∵AN =AM =MN ,∴AB 2=BM BC3.如图,AB 是半圆O 的直径,C 是半圆上一点,过C 作CD ⊥AB 于D ,AC=AD :DB =4:1.求CD 的长.OB【答案】连接BC ,设AD =4x ,则DB =x .∴AB =5x .∵AB 是半圆O 的直径,∴∠ACB =90o又∵CD ⊥AB .∴△ACD ∽△ABC .∴AC 2=AD AB ,即2(210)45x x =,解得:x =2(舍负).∴AD =42.∴CD =2222AC AD -=4.如图①,R t △ABC 中,∠ACB =90o ,CD ⊥AB ,我们可以利用△ABC ∽△ACD 证明AC 2=AD AB ,这个结论我们称之为射影定理,结论运用:如图②,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,过点C 作CF ⊥BE ,垂足为F ,连接OF . (1)试利用射影定理证明△BOF ∽△BED ; (2)若DE =2CE ,求OF 的长.图①DCBA【答案】(1)∵四边形ABCD 为正方形,∴OC ⊥BO ,∠BCD =90o .∴BC 2=BO BD . ∵CF ⊥BE ,∴BC 2=BF BE .∴BO BD =BF BE .即BO BFBE BD =,又∵∠OBF =∠EBD ,∴△BOF ∽△BED .(2)∵BC =CD =6,而DE =2CE ,∴DE =4,CE =2.在Rt △BCE 中,BE 2226+=210 在Rt △OBC 中,OB =2322BC =BOF ∽△BED , ∴OF BODE BE =,即324210OF =,∴65OF =.模型3 一线三等角型已知,如图①②③中:∠B =∠ACE =∠D 结论:△ABC ∽△CDE模型分析如图①,∵∠ACE+∠DCE=∠B+∠A,又∵∠B=∠ACE,∴∠DCE=∠A.∴△ABC∽△CDE.图②③同理可证△ABC∽△CDE.在一线三等角的模型中,难点在于当已知三个相等的角的时候,容易忽略隐含的其他相等的角,此模型中的三垂直相似应用较多,当看见该模型的时候,应立刻能看出相应的相似三角形.模型实例例1 如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60o,BP=1,CD=23.则△ABC的边长为.60oDP CA解答∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60o.∵∠APC=∠B+∠BAP,即∠APD+∠DPC=∠B+∠BAP,又∵∠APD=∠B=60o,∴∠DPC=∠BAP.又∵∠B=∠C,∴△PCD∽△ABP.∴DC PC BP AB=.设AB=x,则PC=x-1,2131xx-=,解得x=3.例2 如图,∠A=∠B=90o,AB=7,AD=2,BC=3,在边AB上取一点P,使得△P AD与△PBC相似,则这样的P点共有个.PCBDA解答设AP =x ,则有PB =AB -AP =7-x ,当△PDA ∽△CPB 时,DA PB AP BC =,即273xx -=, 解得:1x =或6x =,当△PDA ∽△PCB 时,AD AP BC PB =,即237xx=-, 解得:145x =,则这样的的点P 共有3个.练习:1.如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上一动点(不与B 、C 点重合),∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)设BD x =,AE y =,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.ED BA1.解答: 0(1)901ABC BAC AB AC ∆∠===中,,,045.ABC ACB ∴∠=∠=045ADE ∠=,0135BDA CDE ∴∠+∠=,0135BDA BAD ∠+∠=又,.BAD CDE ∴∠=∠.ABD DCE ∴∆∆22222,.,...1) 1.1ABD DCE AB BDCD CE BD x CD BC BD x x CE CE x AE AC CE x x y x ∆∆∴==∴=-==∴=-∴=-=--=+=-+()即(3)当△ADE 是等腰三角形时,第一种可能是AD =DE.,.1.1.,2ABD DCE ABD DCE CD AB BD BD CE AE AC CE ∆∆∴∆≅∆∴==∴=-=∴=-=-又当△ADE 是等腰三角形时,第二种可能是ED =EA . 0045,90.ADE DEA ∠=∴∠=此时有即△ADE 为等腰直角三角形.11.22AE DE AC ∴=== 当AD =EA 时,点D 与点B 重合,不合题意,所以舍去.12.2AE 因此的长为或2.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B 、C 重合),∠ADE =∠B =a ,DE 交AC 于点E ,且4cos 5α=.下列结论: ①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等; ③△DCE 为直角三角形时,BD 等于8或252; ④0 6.4≤CE <其中正确的结论是 .(把你认为正确的序号都填上)2.解答:1,.,..AB AC B C ADE B ADE C ADE ACD =∴∠=∠∠=∠∴∠=∠∴∆∆()又故①正确.4210,,cos .542cos 21016.56,10..,().AB AC ADE B a a BC AB B BD DC AB DC ABD DCE BAD CDE B C AB DC ABD DCE ASA =====∴==⨯⨯==∴=∴=∆∆∠=∠⎧⎪∠=∠⎨⎪=⎩∴∆≅∆()在和中故②正确.(3)当∠AED =900时,由可知:△ADE ∽△ACD . ∴ ∠ADC =∠AED . ∵ ∠AED =900, ∴ ∠ADC =900. 即 AD ⊥BC. ∵ AB =AC , ∴ BD =CD .4cos 108.5ADE B a a AB BD ∴∠=∠====且,,当∠CDE =900时,易得△CDE ∽△BAD .PA BDC O004cos 108.59090.4cos ,10,54cos .525.2ADE B a a AB BD CDE BAD B a a AB AB B BD BD ∴∠=∠====∠=∴∠=∠===∴∠==∴=且,,,且故③正确.(4)易证△CDE ∽△BAD ,由②可知BC=16,22,,.10.1616646410.(8)6410.0 6.4BD y CE x AB BD DC CE y y xy y x y x x ==∴=∴=--+=--=-∴≤设整理得:即<故④正确,故答案为:①②③④.3.如图,已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,折叠与边BC 交于O ,连接AP 、OP 、OA . (1)求证:△OCP ∽△PDA ;(2)若△OCP 与△PDA 的面积比为1∶4,求边AB 的长. 3.解答1,,,90.,,,.90.90,,,.214,1.22,2,ABCDAD BC DC AB DAB B C DAP AB PO BO PAO BAO APO B APOAPD CPO POCD C APD POCOCP PDAOCP PDAOC OP CPPD PA DAPD OC PA OP D∴==∠=∠=∠=∠===∠=∠∠=∠∴∠=∴∠=-∠=∠∠=∠∠=∠∴∆∆∆∆:∴====∴==()四边形是矩形由折叠可得:()与的面积比为2222.848.,,8.,90,4,,8,(8)4.5.210.A CPADCP BCOP x OB x CO xRt PCDC CP OP x CO xx xxAB AP OP==∴=====-∆∠====-∴=-+=∴===,,设则在中解得:模型4 倒数型条件:AF∥DE∥BC结论:111AF BC DE+=模型分析∵AF∥DE∥BC,∴△BDE∽△BAF,△ADE∽ABC∴DE BDAF AB=,DE ADBC AB=.∴1DE DE BD AD ABAF BC AB AB AB+=+==AB CD EF即1DE DEAF BC += ∴111AF BC DE+=(两边同时除以DE ) 仔细观察,会发现模型中含有两个A 型相似模型,它的结论是由两个A 型相似的结论相加而得到的,该模型的练习有助于提高综合能力水平.模型实例如图,AF ∥BC ,AC 、BF 相交于E ,过E 作ED ∥AF 交AB 于D . 求证:111ABFABCABES S S ∆∆∆+=.证明: 分别过点C 、E 、F 作直线AB 的垂线,垂足分别是K 、H 、G则111AF BC DE+=(模型结论). ,.,,.111.111.111.111222111.ABF ABC ABEDEH BCK AF DE BC k FG EH CKAFG AF kFG DE kEH BC kCK kFG kCK kEH FG CK EHAB FG AB CK AB EH S S S ∆∆∆∆∆∴===∴===∴+=∴+=∴+=∆∴+=∽∽设 跟踪练习1. 如图,在△ABC 中,CD ⊥AB 于点D ,正方形EFGH 的四个顶点都在△ABC 的边上.求证:111.AB CD EF+= 答案:1、证明:ABCDEFE图1CGHAB方法一:如图①∵ 四边形EFGH 是正方形, ∴ EF ⊥AB ∵ CD ⊥AB , ∴ EF ∥CD , ∴ △AEF ∽△ACD . ∴EF AECD AC=① ∵ EH ∥AB , ∴ △CEH ∽△CAB ∴EH CEAB AC=∵ EH =EF , ∴EF CEAB AC=② ①+②得,1,EF EF AE CECD AB AC AC+=+= ∴111.AB CD EF+= 方法二:如图②,构造模型4过点C 作AB 的平行线交AH 的延长线于点K ,依题意有,CK ∥EH ∥AB ,∴ 111.AB CK EH+= ∵,,EH AE EFEH EF CK AC CD=== ∴ CK =CD . ∴111.AB CD EF+=EE图2E2.正方形ABCD 中,以AB 为边作等边三角形ABE ,连接DE 交AC 于F ,交AB 于G ,连接BF .求证:(1) AF +BF =EF ; (2) 111.AF BF GF+=答案:(1)如图①,在EF 上截取FH =AF . ∵ ∠EAB =600,∠BAD =900,AE =AD , ∴ ∠1=∠2=150. ∠3=∠2+∠4=600.∴ △AFH 为等边三角形. ∴ ∠EAH =∠BAF .∴ △EAH ≌△BAF . ∴ EH =BF .∴ AF +BF =FH +EH =EF .(2),如图②,过点G 作GK ∥BF 交AC 于点K . 由①可得∠BFC =600, ∴ AH ∥GK ∥BF . ∴ 由模型4,得111.AH BF GK+= ∵ AH =AF ,GK =GF , ∴ 111.AF BF GF+=模型5 与圆有关的简单相似POCDBACCDC图3图2图1DPAOABD BEB模型分析图①中,由同弧所对的圆周角相等,易得△P AC ∽△PDB .图②中,由圆的内接四边形的一个外角等于它的内对角,易得△ABD ∽△AEC . 图③中,已知AB 切⊙O 于点A ,如下图,过A 作直径AE ,连接DE ,则有∠EAD +∠E =900.又∠BAD +∠EAD =900,∠BAD =∠E =∠C . 从而△BAD ∽△BCA .模型实例如图,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. 求证:P A ﹒PB =PD ﹒PC .答案:证明:作直线OP 交⊙O 于C 、D 两点,连接BC 、AD .∵ ∠B =∠D ,∠C =∠A , ∴ △PBC ∽△PDA . ∴.PB PCPD PADC∴ P A ﹒PB =PD ﹒PC =(r +d )(r -d )= r 2-d 2 证明: 连接AD 、B C .∵四边形ADCB 内接于⊙O , ∴∠1=∠2. 又∵∠P =∠P , ∴△P AD ∽△PCB . ∴PA PDPC PB=. ∴PA PB PD PC ⋅=⋅.练习1.如图,P 是⊙O 内的一点,AB 是过点P 的一条弦,设圆的半径为r ,OP d =.求证:22PA PB r d ⋅=-.答案证明:作直线OP 交⊙O 于C 、D 两点,连接BC 、A D . ∵∠A =∠D ,∠C =∠A , ∴△PBC ∽△PD A . ∴PB PCPD PA=. ∴()()22PA PB PC PD r d r d r d ⋅=⋅=+-=-2.如图,已知AB 为⊙O 的直径,C 、D 是半圆的三等分点,延长AC 、BD 交于点E . (1)求∠E 的度数;(2)点M 为BE 上一点,且满足2EM EB CE ⋅=,连接CM ,求证:CM 是⊙O 的切线.ABBA答案 解:(1)连接OC 、O D . ∵C 、D 是半圆的三等分点, ∴AC CD DB ==. ∵AB 为⊙O 的直径,∴∠AOC =∠COD =∠DOB =60°. ∴OA =OC =OD =OB ,∴△AOC 、△DOB 为等边三角形. ∴∠EAB =∠EBA =60°. ∴∠E =60°. (2)连接BC , ∵2EM EB CE ⋅=,∴EM CE CE EB.∵∠E=∠E,∴△CEM∽△BE C.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ECB=90°,∴∠EMC=∠ECB=90°.∵C、D是半圆三等分点,∴∠AOC=∠DOB=60°,∴OC∥BE.∴∠OCM=∠EMC=90°.∴OC⊥CM.∴CM为⊙O的切线.模型6 相似和旋转如图①,已知DE∥BC,将△ADE绕点A旋转一定的角度,连接BD、CE,得到如图②.结论:△ABD∽△ACE.BCPAEACBEDA模型分析∵DE ∥BC , ∴AD AEAB AC=, 如图②,∠DAE =∠BAC , ∴∠BAD =∠CAE ∴△ABD ∽△ACE .该模型难度较大,常出现在压轴题中,以直角三角形为背景出题,对学生的综合能力要求较高,考察知识点有相似、旋转、勾股定理、三角函数等,是优等生必须掌握的—种题型.模型实例如图,在Rt △ABC 中,∠BAC =60°,点P 在△ABC 内,且PA =PB =5,PC =2. 求ABCS.解答:如图,作△ABQ ,使得∠QAB =∠P AC ,∠ABQ =∠ACP , 则△ABQ ∽△ACP .∴AQ AB AP AC =,即AQ APAB AC=. 又∠QAP =∠BAC =60°,∴△AQP ∽△ACB∴∠APQ=∠ACB =90°.∴AQ =2AP =23PQ 3=3. ∴△APQ 与△APC 的相似比为2AQAP=. ∴24BQ CP ==. ∴22225BP BQ PQ ==+. ∴∠BQP =90°.过A 点作AM ∥PQ ,延长BQ 交AM 于点M . ∴AM =PQ ,MQ =AP .∴()()222222883AB AM QM BQ PQ AP BQ =++=++=+ 故21367373sin 6032ABCS AB AC +=⋅︒==. 练习1.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CA E +∠ CBE =90°,连接BF . (1)求证:△CAE ∽△CBF ; (2)若BE =1,AE =2,求CE 的长.EABFC解:(1)∵△ABC 和△CEF 均为等腰直角三角形.∴AC CEBC CF= ∴∠ACB =∠ECF =45°. ∴∠ACE =∠BCF . ∴△CAE ∽△CBF . ∴∠ACB =∠ECF =45°. ∴∠ACE =∠BCF . ∴△CAE ∽△CBF . (2)∵△CAE ∽△CBF ,∴∠CAE =∠CBF ,AE ACBF BC==又∵AE ACBF BC==,AE =2.∴2BFBF 又∵∠CAE +∠CBE =90°. ∴∠CBF +∠CBE =90°. ∴∠EBF =90°.∴2222213EF BE BF =+=+=.∴EF = ∵2226CE EF ==,∴CE2.已知,在△ABC 中,∠BAC =60°.(1)如图①.若AB =AC ,点P 在△ABC 内,且∠APC =150°,P A =3,PC =4,把△APC 绕着点A 顺时针旋转,使点C 旋转到点B 处,得到△ADB ,连接DP . ①依题意补全图1; ②直接写出PB 的长;(2)如图②,若AB =AC ,点P 在△ABC 外,且P A =3,PB =5,PC =4,求∠APC 的度数;(3)如图③,若AB =2AC ,点P 在△ABC 内,且P A PB =5,∠APC =120°,请直接写出ABCP图②图①PCBA图③PCBAPC 的长.解:(1)如图,由旋转有,AD =AP ,BD =PC ,∠DAB =∠P AC , ∴∠DAP =∠BAC =60°.∴△ADP 为等边三角形.∴DP =P A =3,∠ADP =60°. ∴∠ADB =∠APC =150°,∴∠BDP =90°,在Rt △BDP 中,BD =4,DP =3. 根据勾股定理得:PB =5.DQABCP(2)把△APC 绕点A 顺时针旋转,使点C 与点B 重合,得到△ADB ,连接PD , ∴△APC ≌△AD B .∴AD =AP =3,DB =PC =4,∠P AC =∠DAB ,∠APC =∠2. ∴∠DAP =∠BAC , ∵∠BAC =60°, ∴∠DAP =60°, ∴△DAP 是等边三角形. ∴PD =3,∠1=60°,∴222222345PD DB PB +=+==. ∴∠PDB =90°. ∴∠2=30°. ∴∠APC =30°.(3)作△ABQ ,使得∠QAB =∠P AC ,∠ABQ =∠ACP ,则△ABQ ∽△ACP , ∴∠AQB =∠APC =120°. ∵AB =2AC ,∴△ABQ 与△ACP 的相似比为2. ∴AQ =2AP =3BQ =2CP ,∠QAP =∠QAB +∠BAP =∠P AC +∠BAP =∠BAC =60°. 取AQ 中点D ,连接PD , ∵AQ =2AP ,∴AD =AP .∴△APD 是等边三角形.∴DP =DQ .∴∠DPQ=∠DQP=30°.∴∠APQ=90°.∴PQ=3.∴∠BQP=∠AQB-∠AQP=120°-30°=90°.根据勾股定理得,224BQ PB PQ=-.∴122PC BQ==.。

2024年中考数学几何模型归纳(全国通用):全等与相似模型之十字模型(教师版)

2024年中考数学几何模型归纳(全国通用):全等与相似模型之十字模型(教师版)

专题18全等与相似模型之十字模型几何学是数学的一个重要分支,研究的是形状、大小和相对位置等几何对象的性质和变换。

在初中几何学中,十字模型就是综合了上述知识的一个重要模型。

本专题就十字模型相关的考点作梳理,帮助学生更好地理解和掌握。

模型1.正方形的十字架模型(全等模型)“十字形”模型,基本特征是在正方形中构成了一个互相重直的“十字形”,由此产生了两组相等的锐角及一组全等的三角形。

1)如图1,在正方形ABCD中,若E、F分别是BC、CD上的点,AE⊥BF;则AE=BF。

2)如图2,在正方形ABCD中,若E、F、G分别是BC、CD、AB上的点,AE⊥GF;则AE=GF。

3)如图3,在正方形ABCD中,若E、F、G、H分别是BC、CD、AB、AD上的点,EH⊥GF;则HE=GF。

模型巧记:正方形内十字架模型,垂直一定相等,相等不一定垂直.例1.(22·23下·广东·课时练习)如图,将一边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点DE ,若折痕为PQ,则PQ的长为()E,使5A.13B.14【答案】A在正方形ABCD中,AD∥BCA .1个B .2【答案】C 【分析】利用正方形的性质找条件证明到90ECD CDF ,则AH DF ,在Rt CGD △中,由直角三角形斜边上的中线等于斜边的一半得到∴,∴同理可得:ADH DCF △≌△∴1122HG CD AD ,即2HG ∵12HG HD CD ,∴DGH 若AG DG ,则ADG △是等边三角形,则则12CF DF ,而12CF BC模型2.矩形的十字架模型(相似模型)矩形的十字架模型:矩形相对两边上的任意两点联结的线段是互相垂直的,此时这两条线段的的比等于矩形的两边之比。

通过平移线段构造基本图形,再借助相似三角形和平行四边的性质求得线段间的比例关系。

如图1,在矩形ABCD中,若E是AB上的点,且DE⊥AC,则DE BCAC AB.如图2,在矩形ABCD中,若E、F分别是AB、CD上的点,且EF⊥AC,则EF BCAC AB.如图3,在矩形ABCD 中,若E 、F 、M 、N 分别是AB 、CD 、AD 、BC 上的点,且EF ⊥MN ,则EF BC MN AB .【答案】2103【分析】先证明BDF DMG △△∽再利用全等三角形的性质,即可得到答案.【详解】解:如图,连接BD 与∴90MDF DFB ,∴MDB 又∵MN BD ,∴DMG MDG 又∵90BFD DGM ,∴BDF △∵22AB 且45ABF ,∴BE 又∵4BC ,∴BF BC CF BC ∴2222622BD BF DF ∴2101063DF DG MG BF ,∴DMG BNG △≌△,∴MG NG ,(1)如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点证:EF ADGH AB;(2)如图2,在满足(1)的条件下,点M,N分别在边BC,CD上,若EFGH值;(3)如图3四边形ABCD中,∠ABC=90°,AB=AD=10,AM⊥DN,点M,N分别在边∵四边形ABCD 是矩形,∴∥DC ,AD ∥BC .∴四边形AEFP 、四边形BHGQ 都是平行四边形,∴AP =EF ,GH =BQ .又∵GH ⊥EF ,∴AP ⊥BQ ,∴∠QAT +∠AQT =90°.∵四边形ABCD 是矩形,∴∠DAB =∠D =90°,∴∠DAP +∠DPA =90°,∽△QAB ,∴AP AD BQ AB ,∴EF AD GH AB;模型3.三角形的十字架模型(全等+相似模型)1)等边三角形中的斜十字模型(全等+相似):如图1,已知等边△ABC,BD=EC(或CD=AE),则AD=BE,且AD和BE夹角为60°,△ABC。

中考必会几何模型:相似模型

中考必会几何模型:相似模型

相似模型模型1:A、8模型已知∠1=∠2结论:△ADE∽△ABC模型分析如图,在相似三角形的判定中,我们通过做平行线,从而得出A型或8型相似.在做题使,我们也常常关注题目由平行线所产生的相似三角形.模型实例【例1】如图,在ABC中,中线AF、BD、CE相交于点O,求证:12 OF OE ODOA OC OB===.解答:证法一:如图①,连接DE.∵D、E是中点,∴12DEBC=.,DE//BC∴△EOD∽△COB(8模型)∴12OE DEOC BC==.同理:12OFOA=,12ODOB=.∴12 OF OE ODOA OC OB===.证法二:如图②,过F作FG//AC交BD于点G,∵F是中点,∴12GF BFAD BC==.∵AD=CD,∴12GFAD=.∵FG//AD,∴△GOF∽△DOA(8模型)∴12OF GFOA AD==.同理12OEOC=,12ODOB=.∴12OF OE ODOA OC OB===.【例2】如图,点E、F分别在菱形ABCD的边AB、AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若AFDF=2,求HFBG的值.解答:∵四边形ABCD是菱形,∴AB=BC=CD=AD.设DF=a,则DF=AE=a,AF=EB=2a.∵HD//AB,∴△HFD∽△BF A∴12HD DF HFAB AF FB===,∴HD=1.5a,13FHBH=,∴FH=13BH∵HD//EB,∴△DGH∽△EGB,∴1.5324HG HD aGB EB a===,∴47BGHB=∴BG=47HB,∴1734127BHHFBG BH==跟踪练习:1.如图,D、E分别是△ABC的边AB、BC上的点,且DE//AC,AE、CD相交于点O,若S△DOE:S△COA=1:25.则S△BD E与S△CDE的比是____________.解答:∵DE//AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴15 DE AC=∵DE//AC,∴15BE DEBC AC==,∴14BEBC=,∴的比是1:4.2.如图所示,在ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有___________对.解:∵四边形ABCD是平行四边形,∴AD//BC,AB//CD∴(1)△ABD∽△CDB;(2)△ABE∽△FDE;(3)△AED∽△GEB;(4)△ABG∽△FCG∽△FDA,可以组成3对相似三角形.∴图形中一共有6对相似三角形.3.如图,在△ABC中,中线BD、CE相交于点O,连接AO并延长,交BC于点F,求证:F是BC的中点.证明:连接DE交AF于点G,则DE//BC,DE=12BC,∴G为AF中点∴12EGBF=,12EG OE DEFC OC BC===,∴BF=FC,即点F是BC的中点4.在△ABC中,AD是角平分线,求证:AB AC BD CD=.方法一:过点C CE//AB交AD延长线于点E,∴∠1=∠3,∴△ABD∽△ECD,∴AB BDCE CD=∵∠1=∠2,∴∠2=∠3,AC=CE,∴AB BDAC CD=方法二:设ABC中BC边上的高为h,则,12ABDS BD h=,12ACDS CD h=过D分别作DEAB,于E,DFAC于F,则12ABDS AB DE=,12ACDS AC DF=11221122ABDACDBD h AB DESS CD h AC DF==,又∵1=2,∴DE=DF,∴AB BDAC CD=5.如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1,求证:CE⊥AD.证明:过点B做BF//AC,交CE延长线于点F,则∠CBF=90°,△AEC∽△BEF∵AE :EB=2:1,∴BF=12AC=12BC=CD ,又AC=CB ,∠ACD=∠CBF=90° ∴△ACD ≌△CBF ,∴∠1=∠2,∵∠1+∠3=90°,∴∠2+∠3-90°∴∠4=90°,∴CE ⊥AD模型2 共边共角型已知:∠ 1=∠2 结论:△ACD ∽△ABCDAC B12模型分析上图中,不仅要熟悉模型,还要熟记模型的结论,有时候题目中会给出三角形边的乘积关系或者比例关系,我们要能快速判断题中的相似三角形,模型中由△ACD ∽△ABC 进而可以得到:AC 2=AD AB 模型实例例1 如图,D 是△ABC 的边BC 上一点,AB =4,AD =2,∠DAC =∠B ,如果△ABD 的面积为15.那么△ACD 的面积为 .AC DB解答:∵∠DAC =∠B ,∠C =∠C ,∴△ACD ∽△BCA .∵AB =4,AD =2, ∴14ACD ABC S S ∆∆=,∴13ACD ABD S S ∆∆=,∵S △ABD =15,∴S △ACD =5 例2如图,在Rt △ABC 中,∠BAC =90o ,AD ⊥BC 于D . (1)图中有多少对相似三角形?(2)求证:AB 2=BD BC ,AC 2=CD CB ,AD 2=BD CD (3)求证:AB AC =BC ADDC BA解答(1)三对.分别是:△ABD ∽△CBA ;△ACD ∽△BCA ;△ABD ∽△CAD (2)∵△ABD ∽△CBA ,∴AB BD BC AB=.∴AB 2=BD BC ,∵△ACD ∽△BCA ∴AC CD CB AC =.∴AC 2=CD CB ,∵△ABD ∽△CAD ,∴AD BD CD AD =,∴AD 2=BC CD (3)1122ABCSAB AC BC AD ==,∴AB AC =BC AD跟踪练习:1.如图所示,能判定△ABC ∽△DAC 的有 . ①∠B =∠DAC ②∠BAC =∠ADC③AC 2=DC BC④AD 2=BD BCB DC A【答案】①②③2.已知△AMN 是等边三角形,∠BAC =120o .求证:(1)AB 2=BM BC ;(2)AC 2=CN CB ;(3)MN 2=BM NC .CNM BA【答案】证明:∵∠BAC =120o,∴∠B +∠C =60o.∵△AMN 是等边三角形,∴∠B +∠1=∠AMN =60o ,∠C +∠2=∠ANM =60o.∴∠1=∠C ,∠2=∠B . (1)∵∠1=∠C ,∠B =∠B ,∴△BAM ∽△BCA .∴BM AB AB BC=.∴AB 2=BM BC (2)∵∠2=∠B ,∠C =∠C ,∴△CAN ∽△CBA .∴CN AC AC CB =.∴AC 2=CN CB (3)∵∠1=∠C ,∠2=∠B ,∴△BAM ∽△ACN .∴BM AMAN CN=. ∴BM CN =AN AM ∵AN =AM =MN ,∴AB 2=BM BC3.如图,AB 是半圆O 的直径,C 是半圆上一点,过C 作CD ⊥AB 于D ,AC =210,AD :DB =4:1.求CD 的长.OCB【答案】连接BC ,设AD =4x ,则DB =x .∴AB =5x .∵AB 是半圆O 的直径,∴∠ACB =90o又∵CD ⊥AB .∴△ACD ∽△ABC .∴AC 2=AD AB ,即2(210)45x x =,解得:x =2(舍负).∴AD =42.∴CD =2222AC AD -=4.如图①,R t △ABC 中,∠ACB =90o ,CD ⊥AB ,我们可以利用△ABC ∽△ACD 证明AC 2=AD AB ,这个结论我们称之为射影定理,结论运用:如图②,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,过点C 作CF ⊥BE ,垂足为F ,连接OF .(1)试利用射影定理证明△BOF ∽△BED ; (2)若DE =2CE ,求OF 的长.图①DCBA【答案】(1)∵四边形ABCD 为正方形,∴OC ⊥BO ,∠BCD =90o .∴BC 2=BO BD . ∵CF ⊥BE ,∴BC 2=BF BE .∴BO BD =BF BE .即BO BFBE BD =,又∵∠OBF =∠EBD ,∴△BOF ∽△BED .(2)∵BC =CD =6,而DE =2CE ,∴DE =4,CE =2.在Rt △BCE 中,BE 2226+=210 在Rt △OBC 中,OB 232BC =BOF ∽△BED , ∴OF BODE BE =,即324210OF =∴65OF .模型3 一线三等角型已知,如图①②③中:∠B =∠ACE =∠D结论:△ABC ∽△CDE模型分析如图①,∵∠ACE+∠DCE=∠B+∠A,又∵∠B=∠ACE,∴∠DCE=∠A.∴△ABC∽△CDE.图②③同理可证△ABC∽△CDE.在一线三等角的模型中,难点在于当已知三个相等的角的时候,容易忽略隐含的其他相等的角,此模型中的三垂直相似应用较多,当看见该模型的时候,应立刻能看出相应的相似三角形.模型实例例1 如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60o,BP=1,CD=23.则△ABC的边长为.60oDP CA解答∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60o.∵∠APC=∠B+∠BAP,即∠APD+∠DPC=∠B+∠BAP,又∵∠APD=∠B=60o,∴∠DPC=∠BAP.又∵∠B=∠C,∴△PCD∽△ABP.∴DC PC BP AB=.设AB=x,则PC=x-1,2131xx-=,解得x=3.例2 如图,∠A=∠B=90o,AB=7,AD=2,BC=3,在边AB上取一点P,使得△P AD与△PBC 相似,则这样的P点共有个.P C BDA 解答设AP =x ,则有PB =AB -AP =7-x ,当△PDA ∽△CPB 时,DA PB AP BC =,即273xx -=, 解得:1x =或6x =,当△PDA ∽△PCB 时,AD AP BC PB =,即237xx=-, 解得:145x =,则这样的的点P 共有3个.练习:1.如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上一动点(不与B 、C 点重合),∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)设BD x =,AE y =,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.ED CBA1.解答: 0(1)901ABC BAC AB AC ∆∠===中,,,045.ABC ACB ∴∠=∠=045ADE ∠=,0135BDA CDE ∴∠+∠=,0135BDA BAD ∠+∠=又,.BAD CDE ∴∠=∠.ABD DCE ∴∆∆22222,.,...1) 1.1ABD DCE AB BD CD CE BD x CD BC BD x x CE CE x AE AC CE x x y x ∆∆∴==∴=-==∴=-∴=-=--=-+=+()即(3)当△ADE 是等腰三角形时,第一种可能是AD =DE .,.1.2 1.,2 2.ABD DCE ABD DCE CD AB BD BD CE AE AC CE ∆∆∴∆≅∆∴==∴=-=∴=-=-又当△ADE 是等腰三角形时,第二种可能是ED =EA . 0045,90.ADE DEA ∠=∴∠=此时有即△ADE 为等腰直角三角形.11.22AE DE AC ∴=== 当AD =EA 时,点D 与点B 重合,不合题意,所以舍去. 122.2AE -因此的长为或2.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B 、C 重合),∠ADE =∠B =a ,DE 交AC 于点E ,且4cos 5α=.下列结论: ①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等; ③△DCE 为直角三角形时,BD 等于8或252; ④0 6.4≤CE <其中正确的结论是 .(把你认为正确的序号都填上) 2.解答:1,.,..AB AC B C ADE B ADE C ADE ACD =∴∠=∠∠=∠∴∠=∠∴∆∆()又 故①正确.4210,,cos .542cos 21016.56,10..,().AB AC ADE B a a BC AB B BD DC AB DC ABD DCE BAD CDE B C AB DC ABD DCE ASA =====∴==⨯⨯==∴=∴=∆∆∠=∠⎧⎪∠=∠⎨⎪=⎩∴∆≅∆()在和中故②正确.(3)当∠AED =900时,由可知:△ADE ∽△ACD . ∴ ∠ADC =∠AED . ∵ ∠AED =900, ∴ ∠ADC =900. 即 AD ⊥BC. ∵ AB =AC , ∴ BD =CD .4cos 108.5ADE B a a AB BD ∴∠=∠====且,,当∠CDE =900时,易得△CDE ∽△BAD .004cos 108.59090.4cos ,10,54cos .525.2ADE B a a AB BD CDE BAD B a a AB AB B BD BD ∴∠=∠====∠=∴∠=∠===∴∠==∴=且,,,且故③正确.(4)易证△CDE ∽△BAD ,由②可知BC=16,22,,.10.1616646410.(8)6410.0 6.4BD y CE x AB BD DC CE y y xy y x y x x ==∴=∴=--+=--=-∴≤设整理得:即<故④正确,故答案为:①②③④.P A BD C O3.如图,已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,折叠与边BC 交于O ,连接AP 、OP 、OA . (1)求证:△OCP ∽△PDA ; (2)若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.3.解答0001,,,90.,,,.90.90,,,.214,1.22,2,ABCD AD BC DC AB DAB B C D AP AB PO BO PAO BAO APO B APO APD CPO POC D C APD POC OCP PDA OCP PDA OC OP CPPD PA DAPD OC PA OP D ∴==∠=∠=∠=∠===∠=∠∠=∠∴∠=∴∠=-∠=∠∠=∠∠=∠∴∆∆∆∆:∴===∴==()四边形是矩形由折叠可得:()与的面积比为02222.848.,,8.,90,4,,8,(8)4.5.210.A CP AD CP BC OP x OB x CO x Rt PCDC CP OP x CO x x x x AB AP OP ==∴=====-∆∠====-∴=-+=∴===,,设则在中解得:模型4 倒数型条件:AF ∥DE ∥BC 结论:111AF BC DE+=模型分析∵AF ∥DE ∥BC ,∴△BDE ∽△BAF ,△ADE ∽ABCABCDEFB∴DE BD AF AB =,DE ADBC AB=. ∴1DE DE BD AD AB AF BC AB AB AB +=+== 即1DE DE AF BC += ∴111AF BC DE+=(两边同时除以DE ) 仔细观察,会发现模型中含有两个A 型相似模型,它的结论是由两个A 型相似的结论相加而得到的,该模型的练习有助于提高综合能力水平.模型实例如图,AF ∥BC ,AC 、BF 相交于E ,过E 作ED ∥AF 交AB 于D . 求证:111ABFABCABES S S ∆∆∆+=.证明: 分别过点C 、E 、F 作直线AB 的垂线,垂足分别是K 、H 、G则111AF BC DE+=(模型结论). ,.,,.111.111.111.111222111.ABF ABC ABEDEH BCK AF DE BC k FG EH CKAFG AF kFG DE kEH BC kCK kFG kCK kEH FG CK EHAB FG AB CK AB EH S S S ∆∆∆∆∆∴===∴===∴+=∴+=∴+=∆∴+=∽∽设跟踪练习1. 如图,在△ABC 中,CD ⊥AB 于点D ,正方形EFGH 的四个顶点都在△ABC 的边上.求证:111.AB CD EF+= 答案:1、证明: 方法一:如图①ABCDEFE图1CGHABGFD CA EG F4321H DEA∵ 四边形EFGH 是正方形, ∴ EF ⊥AB ∵ CD ⊥AB , ∴ EF ∥CD ,∴ △AEF ∽△ACD . ∴EF AECD AC =① ∵ EH ∥AB ,∴ △CEH ∽△CAB∴EH CEAB AC =∵ EH =EF ,∴EF CEAB AC=② ①+②得,1,EF EF AE CECD AB AC AC+=+= ∴111.AB CD EF+= 方法二:如图②,构造模型4过点C 作AB 的平行线交AH 的延长线于点K , 依题意有,CK ∥EH ∥AB ,∴ 111.AB CK EH+= ∵,,EH AE EFEH EF CK AC CD === ∴ CK =CD .∴111.AB CD EF+=2.正方形ABCD 中,以AB 为边作等边三角形ABE ,连接DE 交AC 于F ,交AB 于G ,连接BF .求证:(1) AF +BF =EF ; (2)111.AF BF GF+=答案:(1)如图①,在EF 上截取FH =AF . ∵ ∠EAB =600,∠BAD =900,AE =AD , ∴ ∠1=∠2=150. ∠3=∠2+∠4=600. ∴ △AFH 为等边三角形. ∴ ∠EAH =∠BAF . ∴ △EAH ≌△BAF . ∴ EH =BF .∴ AF +BF =FH +EH =EF.G F图2123KH CA EPOCDB A(2),如图②,过点G 作GK ∥BF 交AC 于点K . 由①可得∠BFC =600, ∴ AH ∥GK ∥BF .∴ 由模型4,得111.AH BF GK+= ∵ AH =AF ,GK =GF ,∴ 111.AF BF GF+=模型5 与圆有关的简单相似CCDC图3图2图1DPAOABD BEB模型分析图①中,由同弧所对的圆周角相等,易得△P AC ∽△PDB .图②中,由圆的内接四边形的一个外角等于它的内对角,易得△ABD ∽△AEC . 图③中,已知AB 切⊙O 于点A ,如下图,过A 作直径AE ,连接DE ,则有∠EAD +∠E =900. 又∠BAD +∠EAD =900,∠BAD =∠E =∠C . 从而△BAD ∽△BCA .模型实例如图,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. 求证:P A ﹒PB =PD ﹒PC .答案:证明:作直线OP 交⊙O 于C 、D 两点,连接BC 、AD .∵ ∠B =∠D ,∠C =∠A ,∴ △PBC ∽△PDA .∴.PB PCPD PA= ∴ P A ﹒PB =PD ﹒PC =(r +d )(r -d )= r 2-d 2DC连接AD 、B C .∵四边形ADCB 内接于⊙O , ∴∠1=∠2. 又∵∠P =∠P , ∴△P AD ∽△PCB . ∴PA PD PC PB=. ∴PA PB PD PC ⋅=⋅.练习1.如图,P 是⊙O 内的一点,AB 是过点P 的一条弦,设圆的半径为r ,OP d =.求证:22PA PB r d ⋅=-.答案证明:作直线OP 交⊙O 于C 、D 两点,连接BC 、A D . ∵∠A =∠D ,∠C =∠A , ∴△PBC ∽△PD A . ∴PB PCPD PA=. ∴()()22PA PB PC PD r d r d r d ⋅=⋅=+-=-2.如图,已知AB 为⊙O 的直径,C 、D 是半圆的三等分点,延长AC 、BD 交于点E . (1)求∠E 的度数;(2)点M 为BE 上一点,且满足2EM EB CE ⋅=,连接CM ,求证:CM 是⊙O 的切线.BA答案ABMDE CO(1)连接OC 、O D .∵C 、D 是半圆的三等分点, ∴AC CD DB ==.∵AB 为⊙O 的直径,∴∠AOC =∠COD =∠DOB =60°. ∴OA =OC =OD =OB ,∴△AOC 、△DOB 为等边三角形. ∴∠EAB =∠EBA =60°. ∴∠E =60°. (2)连接BC ,∵2EM EB CE ⋅=, ∴EM CE CE EB =. ∵∠E =∠E ,∴△CEM ∽△BE C . ∵AB 为⊙O 的直径, ∴∠ACB =90°. ∴∠ECB =90°,∴∠EMC =∠ECB =90°. ∵C 、D 是半圆三等分点, ∴∠AOC =∠DOB =60°, ∴OC ∥BE .∴∠OCM =∠EMC =90°. ∴OC ⊥CM .∴CM 为⊙O 的切线.模型6 相似和旋转如图①,已知DE ∥BC ,将△ADE 绕点A 旋转一定的角度,连接BD 、CE ,得到如图②. 结论:△ABD ∽△ACE .绕点A 旋转△ADEEDCBACBEDA模型分析BCPA∵DE ∥BC ,∴AD AEAB AC=, 如图②,∠DAE =∠BAC , ∴∠BAD =∠CAE ∴△ABD ∽△ACE .该模型难度较大,常出现在压轴题中,以直角三角形为背景出题,对学生的综合能力要求较高,考察知识点有相似、旋转、勾股定理、三角函数等,是优等生必须掌握的—种题型.模型实例如图,在Rt △ABC 中,∠BAC =60°,点P 在△ABC 内,且3PA =,PB =5,PC =2. 求ABCS.解答:如图,作△ABQ ,使得∠QAB =∠P AC ,∠ABQ =∠ACP , 则△ABQ ∽△ACP .∴AQ AB AP AC =,即AQ APAB AC =. 又∠QAP =∠BAC =60°, ∴△AQP ∽△ACB∴∠APQ=∠ACB =90°.∴AQ =2AP =23,PQ =3AP =3. ∴△APQ 与△APC 的相似比为2AQAP=. ∴24BQ CP ==. ∴22225BP BQ PQ ==+.∴∠BQP =90°.过A 点作AM ∥PQ ,延长BQ 交AM 于点M . ∴AM =PQ ,MQ =AP .∴()()222222883AB AM QM BQ PQ AP BQ =++=++=+ 故21367373sin 6032ABCSAB AC AB +=⋅︒===+. 练习1.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CA E +∠ CBE =90°,连接BF .(1)求证:△CAE ∽△CBF ;(2)若BE =1,AE =2,求CE 的长.解:(1)∵△ABC 和△CEF 均为等腰直角三角形.∴AC CEBC CF== ∴∠ACB =∠ECF =45°. ∴∠ACE =∠BCF . ∴△CAE ∽△CBF . ∴∠ACB =∠ECF =45°. ∴∠ACE =∠BCF . ∴△CAE ∽△CBF .(2)∵△CAE ∽△CBF , ∴∠CAE =∠CBF,AE ACBF BC=又∵AE ACBF BC=,AE =2.∴2BF=BF又∵∠CAE +∠CBE =90°. ∴∠CBF +∠CBE =90°. ∴∠EBF =90°.∴2222213EF BE BF =+=+=.∴EF ∵2226CE EF ==,∴CE =2.已知,在△ABC 中,∠BAC =60°.(1)如图①.若AB =AC ,点P 在△ABC 内,且∠APC =150°,P A =3,PC =4,把△APC 绕着点A 顺时针旋转,使点C 旋转到点B 处,得到△ADB ,连接DP . ①依题意补全图1; ②直接写出PB 的长;(2)如图②,若AB =AC ,点P 在△ABC 外,且P A =3,PB =5,PC =4,求∠APC 的度数;(3)如图③,若AB =2AC ,点P 在△ABC 内,且P APB =5,∠APC =120°,请直接写出PC 的长.EBFCA B C P 图②图①PC B A 图③PCBADQAB CP解:(1)如图,由旋转有,AD =AP ,BD =PC ,∠DAB =∠P AC , ∴∠DAP =∠BAC =60°.∴△ADP 为等边三角形.∴DP =P A =3,∠ADP =60°. ∴∠ADB =∠APC =150°, ∴∠BDP =90°,在Rt △BDP 中,BD =4,DP =3. 根据勾股定理得:PB =5.(2)把△APC 绕点A 顺时针旋转,使点C 与点B 重合,得到△ADB ,连接PD , ∴△APC ≌△AD B .∴AD =AP =3,DB =PC =4,∠P AC =∠DAB ,∠APC =∠2. ∴∠DAP =∠BAC , ∵∠BAC =60°, ∴∠DAP =60°,∴△DAP 是等边三角形. ∴PD =3,∠1=60°,∴222222345PD DB PB +=+==. ∴∠PDB =90°. ∴∠2=30°. ∴∠APC =30°.(3)作△ABQ ,使得∠QAB =∠P AC ,∠ABQ =∠ACP ,则△ABQ ∽△ACP ,∴∠AQB =∠APC =120°. ∵AB =2AC ,∴△ABQ 与△ACP 的相似比为2. ∴AQ =2AP =23,BQ =2CP ,∠QAP =∠QAB +∠BAP =∠P AC +∠BAP =∠BAC =60°. 取AQ 中点D ,连接PD , ∵AQ =2AP ,∴AD =AP .∴△APD 是等边三角形.∴DP =DQ . ∴∠DPQ =∠DQP =30°.∴∠APQ =90°. ∴PQ =3.∴∠BQP =∠AQB -∠AQP =120°-30°=90°.根据勾股定理得,224BQ PB PQ-=.∴122PC BQ==.赠送—高中数学知识点第一章空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

中考复习相似基本模型之A型、X型(共20张PPT)

中考复习相似基本模型之A型、X型(共20张PPT)

三.例题解析
变式2.如图,Rt△ABC中,∠ACB=90°,∠ABC= 60°,BC=2cm,D为BC的中点,若动点E以1cm/s 的速度从A点出发,沿着A→B→A的方向运动,设E 点的运动时间为t秒(0≤t<6),连接DE,当△BDE是 直角三角形时,求t的值.
三.例题解析
变式2.如图,Rt△ABC中,∠ACB=90°,∠ABC= 60°,BC=2cm,D为BC的中点,若动点E以1cm/s 的速度从A点出发,沿着A→B→A的方向运动,设E 点的运动时间为t秒(0≤t<6),连接DE,当△BDE是 直角三角形时,求t的值. 解析:本题也是一个动点问题,但要看清 整个运动路径,是从点A出发,向B运动, 是一个往返运动,另外,由∥ A=60°, BC=2cm,AB=4cm,6s运动停止,则 从A到B返回运动到AB中点结束.
三.例题解析
例3.如图,已知△ABC中,CE⊥AB于E,BF⊥AC于F ,求证:△AEF∽△ACB.
三.例题解析
变式1.如图,△ABC中,点D、E分别在边AB、AC 上,连接DE并延长交BC的延长线于点F,连接DC、 BE.若∠BDE+∠BCE=180°.
(1)写出图中所有的相似三角形.(注意:不得Biblioteka 加 字母和线);三.例题解析
变式2. 如图,已知∠C=90°,四边形CDEF是正方形, AC=15,BC=10,AF与ED交于点G.则EG的长 为______

(2)求证:△DCF∽△BEF.
三.例题解析
变式1.如图,△ABC中,点D、E分别在边AB、AC 上,连接DE并延长交BC的延长线于点F,连接DC、 BE.若∠BDE+∠BCE=180°.
(1)写出图中所有的相似三角形.(注意:不得添加 字母和线);

2021届中考数学精品冲刺复习 中考中常考的相似模型

2021届中考数学精品冲刺复习 中考中常考的相似模型
2021届中考数学精品冲刺复习 中考中常考的相似模型
模型一 8字型相似 图解模型:
8 字型
斜 8 字型
DE∥BC △ADE∽△ABC
∠B=∠D 或∠C=∠E △ADE∽△ABC
模型分析:一般根据已知条件通过推理证明,可以得到一个相等的 角,再根据图中一组相等的对顶角(隐含条件)来证明相似.
若已知相似,但未确定对应顶点,求边角关系,则需 要分情况进行讨论对应关系.
10.如图,D 是 AC 上一点,BE∥AC,BE=AD,AE 分别交 BD, BC 于点 F,G,∠1=∠2.若 DF=8,FG=4,则 GE= 12 .
1.如图,线段 AB,CD 相交于点 E,连接 AC,BD,添加下列条件 不能使△ACE∽△DBE 的是( D )
A.∠C=∠B C.DAEE=BCEE
B.∠A=∠D D.ABEE=BADC
2.(2020 平顶山一模)如图,在平行四边形 ABCD 中,点 E 在 DC 上, DE∶EC=2∶1,连接 AE 交 BD 于点 F,则△DEF 与△BAF 的周长之比 为( D )
A.1 B.32 C.2 D.52
8.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于点 D,AC<BC, 则下列结论中错误的是( B )
A.CD2=AD·DB C.AD·BC=AC·CD
B.AC·DB=BC·AD D.BC2=BD·AB
9.如图,在△ABC 中,AB=6,BC=5,AC=4,AP 是∠BAC 的 平分线,AP 的垂直平分线 EF 与 AP 相交于点 E,与 BC 的延长线相交于 点 F,连接 AF,则 AF 的长为 6 .
4.如图,平行四边形 ABCD 中,AE=12EB,AF=13FD,连接 EF 交 AC 于点 G,则 AG∶GC= 1∶6 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考必考几何模型(猿辅导)最新讲义相似模型模型1:A、8模型已知∠1=∠2结论:△ADE∽△ABC模型分析如图,在相似三角形的判定中,我们通过做平行线,从而得出A型或8型相似.在做题使,我们也常常关注题目由平行线所产生的相似三角形.模型实例【例1】如图,在ABC中,中线AF、BD、CE相交于点O,求证:12 OF OE ODOA OC OB===.解答:证法一:如图①,连接DE.∵D、E是中点,∴12DEBC=.,DE//BC∴△EOD∽△COB(8模型)∴12OE DEOC BC==.同理:12OFOA=,12ODOB=.∴12 OF OE ODOA OC OB===.证法二:如图②,过F作FG//AC交BD于点G,∵F是中点,∴12 GF BFAD BC==.∵AD=CD,∴12GFAD=.∵FG//AD,∴△GOF∽△DOA(8模型)∴12OF GFOA AD==.同理12OEOC=,12ODOB=.∴12OF OE ODOA OC OB===.【例2】如图,点E、F分别在菱形ABCD的边AB、AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若AFDF=2,求HFBG的值.解答:∵四边形ABCD是菱形,∴AB=BC=CD=AD.设DF=a,则DF=AE=a,AF=EB=2a.∵HD//AB,∴△HFD∽△BF A∴12HD DF HFAB AF FB===,∴HD=1.5a,13FHBH=,∴FH=13BH∵HD//EB,∴△DGH∽△EGB,∴1.5324HG HD aGB EB a===,∴47BGHB=∴BG=47HB,∴1734127BHHFBG BH==跟踪练习:1.如图,D、E分别是△ABC的边AB、BC上的点,且DE//AC,AE、CD相交于点O,若S△DOE:S△COA=1:25.则S△BD E与S△CDE的比是____________.解答:∵DE//AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴15 DE AC=∵DE//AC,∴15BE DEBC AC==,∴14BEBC=,∴的比是1:4.2.如图所示,在ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有___________对.解:∵四边形ABCD是平行四边形,∴AD//BC,AB//CD∴(1)△ABD∽△CDB;(2)△ABE∽△FDE;(3)△AED∽△GEB;(4)△ABG∽△FCG∽△FDA,可以组成3对相似三角形.∴图形中一共有6对相似三角形.3.如图,在△ABC中,中线BD、CE相交于点O,连接AO并延长,交BC于点F,求证:F是BC的中点.证明:连接DE交AF于点G,则DE//BC,DE=12BC,∴G为AF中点∴12EGBF=,12EG OE DEFC OC BC===,∴BF=FC,即点F是BC的中点4.在△ABC中,AD是角平分线,求证:AB AC BD CD=.方法一:过点C CE//AB 交AD 延长线于点E ,∴∠1=∠3,∴△ABD ∽△ECD,∴AB BDCE CD=∵∠1=∠2,∴∠2=∠3,AC=CE,∴AB BDAC CD=方法二:设ABC 中BC 边上的高为h ,则,12ABD S BD h =V g ,12ACD S CD h =V g 过D 分别作DEAB ,于E ,DFAC 于F ,则12ABDS AB DE =V g ,12ACD S AC DF =V g 11221122ABDACDBD h AB DES S CD h AC DF ==V V g g g g ,又∵1=2,∴DE=DF ,∴AB BDAC CD =5.如图,△ABC 为等腰直角三角形,D 是直角边BC 的中点,E 在AB 上,且AE :EB =2:1,求证:CE ⊥AD .证明:过点B 做BF//AC ,交CE 延长线于点F ,则∠CBF=90°,△AEC ∽△BEF∵AE :EB=2:1,∴BF=12AC=12BC=CD ,又AC=CB ,∠ACD=∠CBF=90° ∴△ACD ≌△CBF ,∴∠1=∠2,∵∠1+∠3=90°,∴∠2+∠3-90°∴∠4=90°,∴CE ⊥AD模型2 共边共角型已知:∠ 1=∠2 结论:△ACD ∽△ABCDAC B12模型分析上图中,不仅要熟悉模型,还要熟记模型的结论,有时候题目中会给出三角形边的乘积关系或者比例关系,我们要能快速判断题中的相似三角形,模型中由△ACD ∽△ABC 进而可以得到:AC 2=AD g AB 模型实例例1 如图,D 是△ABC 的边BC 上一点,AB =4,AD =2,∠DAC =∠B ,如果△ABD 的面积为15.那么△ACD 的面积为 .AC DB解答:∵∠DAC =∠B ,∠C =∠C ,∴△ACD ∽△BCA .∵AB =4,AD =2, ∴14ACD ABC S S ∆∆=,∴13ACD ABD S S ∆∆=,∵S △ABD =15,∴S △ACD =5 例2如图,在Rt △ABC 中,∠BAC =90o ,AD ⊥BC 于D . (1)图中有多少对相似三角形?(2)求证:AB 2=BD g BC ,AC 2=CD g CB ,AD 2=BD g CD (3)求证:AB g AC =BC g ADDC BA解答(1)三对.分别是:△ABD ∽△CBA ;△ACD ∽△BCA ;△ABD ∽△CAD (2)∵△ABD ∽△CBA ,∴AB BD BC AB=.∴AB 2=BD g BC ,∵△ACD ∽△BCA ∴AC CD CB AC =.∴AC 2=CD g CB ,∵△ABD ∽△CAD ,∴AD BD CD AD =,∴AD 2=BC g CD (3)1122ABC S AB AC BC AD ==V g g ,∴AB g AC =BC g AD跟踪练习:1.如图所示,能判定△ABC ∽△DAC 的有 . ①∠B =∠DAC ②∠BAC =∠ADC③AC 2=DC g BC④AD 2=BD g BCB DC A【答案】①②③2.已知△AMN 是等边三角形,∠BAC =120o .求证:(1)AB 2=BM g BC ;(2)AC 2=CN g CB ;(3)MN 2=BM g NC .CNM BA【答案】证明:∵∠BAC =120o,∴∠B +∠C =60o.∵△AMN 是等边三角形,∴∠B +∠1=∠AMN =60o ,∠C +∠2=∠ANM =60o.∴∠1=∠C ,∠2=∠B . (1)∵∠1=∠C ,∠B =∠B ,∴△BAM ∽△BCA .∴BM AB AB BC=.∴AB 2=BM g BC (2)∵∠2=∠B ,∠C =∠C ,∴△CAN ∽△CBA .∴CN AC AC CB =.∴AC 2=CN g CB (3)∵∠1=∠C ,∠2=∠B ,∴△BAM ∽△ACN .∴BM AMAN CN=. ∴BM g CN =AN g AM ∵AN =AM =MN ,∴AB 2=BM g BC3.如图,AB 是半圆O 的直径,C 是半圆上一点,过C 作CD ⊥AB 于D ,AC =210,AD :DB =4:1.求CD 的长.OCB【答案】连接BC ,设AD =4x ,则DB =x .∴AB =5x .∵AB 是半圆O 的直径,∴∠ACB =90o又∵CD ⊥AB .∴△ACD ∽△ABC .∴AC 2=AD g AB ,即2(210)45x x =g ,解得:x =2(舍负).∴AD =42.∴CD =2222AC AD -=4.如图①,R t △ABC 中,∠ACB =90o ,CD ⊥AB ,我们可以利用△ABC ∽△ACD 证明AC 2=AD g AB ,这个结论我们称之为射影定理,结论运用:如图②,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,过点C 作CF ⊥BE ,垂足为F ,连接OF .(1)试利用射影定理证明△BOF ∽△BED ; (2)若DE =2CE ,求OF 的长.图①DCBA【答案】(1)∵四边形ABCD 为正方形,∴OC ⊥BO ,∠BCD =90o .∴BC 2=BO g BD . ∵CF ⊥BE ,∴BC 2=BF g BE .∴BO g BD =BF g BE .即BO BFBE BD =,又∵∠OBF =∠EBD ,∴△BOF ∽△BED .(2)∵BC =CD =6,而DE =2CE ,∴DE =4,CE =2.在Rt △BCE 中,BE 2226+=210 在Rt △OBC 中,OB 232BC =BOF ∽△BED , ∴OF BODE BE =,即324210OF =∴65OF .模型3 一线三等角型已知,如图①②③中:∠B =∠ACE =∠D结论:△ABC ∽△CDE模型分析如图①,∵∠ACE+∠DCE=∠B+∠A,又∵∠B=∠ACE,∴∠DCE=∠A.∴△ABC∽△CDE.图②③同理可证△ABC∽△CDE.在一线三等角的模型中,难点在于当已知三个相等的角的时候,容易忽略隐含的其他相等的角,此模型中的三垂直相似应用较多,当看见该模型的时候,应立刻能看出相应的相似三角形.模型实例例1 如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60o,BP=1,CD=23.则△ABC的边长为.60oDP CA解答∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60o.∵∠APC=∠B+∠BAP,即∠APD+∠DPC=∠B+∠BAP,又∵∠APD=∠B=60o,∴∠DPC=∠BAP.又∵∠B=∠C,∴△PCD∽△ABP.∴DC PC BP AB=.设AB=x,则PC=x-1,2131xx-=,解得x=3.例2 如图,∠A=∠B=90o,AB=7,AD=2,BC=3,在边AB上取一点P,使得△P AD与△PBC 相似,则这样的P点共有个.P C BDA 解答设AP =x ,则有PB =AB -AP =7-x ,当△PDA ∽△CPB 时,DA PB AP BC =,即273xx -=, 解得:1x =或6x =,当△PDA ∽△PCB 时,AD AP BC PB =,即237xx=-, 解得:145x =,则这样的的点P 共有3个.练习:1.如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上一动点(不与B 、C 点重合),∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)设BD x =,AE y =,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.ED CBA1.解答:0(1)901ABC BAC AB AC ∆∠===Q 中,,,045.ABC ACB ∴∠=∠=045ADE ∠=Q ,0135BDA CDE ∴∠+∠=,0135BDA BAD ∠+∠=Q 又,.BAD CDE ∴∠=∠.ABD DCE ∴∆∆:22222,.,...1) 1.1ABD DCE AB BD CD CE BD x CD BC BD x x CE CE x AE AC CE x x y x ∆∆∴==∴=-==∴=-∴=-=--=-+=+Q :Q ()即(3)当△ADE 是等腰三角形时,第一种可能是AD =DE .,.1.2 1.,2 2.ABD DCE ABD DCE CD AB BD BD CE AE AC CE ∆∆∴∆≅∆∴==∴=-=∴=-=-Q :Q 又当△ADE 是等腰三角形时,第二种可能是ED =EA . 0045,90.ADE DEA ∠=∴∠=Q 此时有即△ADE 为等腰直角三角形.11.22AE DE AC ∴=== 当AD =EA 时,点D 与点B 重合,不合题意,所以舍去. 122.2AE -因此的长为或2.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B 、C 重合),∠ADE =∠B =a ,DE 交AC 于点E ,且4cos 5α=.下列结论: ①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等; ③△DCE 为直角三角形时,BD 等于8或252; ④0 6.4≤CE <其中正确的结论是 .(把你认为正确的序号都填上) 2.解答:1,.,..AB AC B C ADE B ADE C ADE ACD =∴∠=∠∠=∠∴∠=∠∴∆∆Q Q :()又 故①正确.4210,,cos .542cos 21016.56,10..,().AB AC ADE B a a BC AB B BD DC AB DC ABD DCE BAD CDE B C AB DC ABD DCE ASA =====∴==⨯⨯==∴=∴=∆∆∠=∠⎧⎪∠=∠⎨⎪=⎩∴∆≅∆Q ()在和中故②正确.(3)当∠AED =900时,由可知:△ADE ∽△ACD . ∴ ∠ADC =∠AED . ∵ ∠AED =900, ∴ ∠ADC =900. 即 AD ⊥BC. ∵ AB =AC , ∴ BD =CD .4cos 108.5ADE B a a AB BD ∴∠=∠====且,,当∠CDE =900时,易得△CDE ∽△BAD .004cos 108.59090.4cos ,10,54cos .525.2ADE B a a AB BD CDE BAD B a a AB AB B BD BD ∴∠=∠====∠=∴∠=∠===∴∠==∴=Q Q 且,,,且故③正确.(4)易证△CDE ∽△BAD ,由②可知BC=16,22,,.10.1616646410.(8)6410.0 6.4BD y CE x AB BD DC CE y y xy y x y x x ==∴=∴=--+=--=-∴≤设整理得:即<故④正确,故答案为:①②③④.P A BD C O3.如图,已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,折叠与边BC 交于O ,连接AP 、OP 、OA . (1)求证:△OCP ∽△PDA ; (2)若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.3.解答0001,,,90.,,,.90.90,,,.214,1.22,2,ABCD AD BC DC AB DAB B C D AP AB PO BO PAO BAO APO B APO APD CPO POC D C APD POC OCP PDA OCP PDA OC OP CPPD PA DAPD OC PA OP D ∴==∠=∠=∠=∠===∠=∠∠=∠∴∠=∴∠=-∠=∠∠=∠∠=∠∴∆∆∆∆:∴===∴==Q Q :Q ()四边形是矩形由折叠可得:()与的面积比为02222.848.,,8.,90,4,,8,(8)4.5.210.A CP AD CP BC OP x OB x CO x Rt PCDC CP OP x CO x x x x AB AP OP ==∴=====-∆∠====-∴=-+=∴===Q Q ,,设则在中解得:模型4 倒数型条件:AF ∥DE ∥BC 结论:111AF BC DE+=模型分析∵AF ∥DE ∥BC ,∴△BDE ∽△BAF ,△ADE ∽ABCABCDEFB∴DE BD AF AB =,DE ADBC AB=. ∴1DE DE BD AD AB AF BC AB AB AB +=+== 即1DE DE AF BC += ∴111AF BC DE+=(两边同时除以DE ) 仔细观察,会发现模型中含有两个A 型相似模型,它的结论是由两个A 型相似的结论相加而得到的,该模型的练习有助于提高综合能力水平.模型实例如图,AF ∥BC ,AC 、BF 相交于E ,过E 作ED ∥AF 交AB 于D . 求证:111ABFABCABES S S ∆∆∆+=.证明: 分别过点C 、E 、F 作直线AB 的垂线,垂足分别是K 、H 、G则111AF BC DE+=(模型结论). ,.,,.111.111.111.111222111.ABF ABC ABEDEH BCK AF DE BC k FG EH CKAFG AF kFG DE kEH BC kCK kFG kCK kEH FG CK EHAB FG AB CK AB EH S S S ∆∆∆∆∆∴===∴===∴+=∴+=∴+=∆∴+=g Q g g ∽∽设跟踪练习1. 如图,在△ABC 中,CD ⊥AB 于点D ,正方形EFGH 的四个顶点都在△ABC 的边上.求证:111.AB CD EF+= 答案:1、证明: 方法一:如图①ABCDEFE图1CGHABGFD CA EG F4321H DEA∵ 四边形EFGH 是正方形, ∴ EF ⊥AB ∵ CD ⊥AB , ∴ EF ∥CD ,∴ △AEF ∽△ACD . ∴EF AECD AC =① ∵ EH ∥AB ,∴ △CEH ∽△CAB∴EH CEAB AC =∵ EH =EF ,∴EF CEAB AC=② ①+②得,1,EF EF AE CECD AB AC AC+=+= ∴111.AB CD EF+= 方法二:如图②,构造模型4过点C 作AB 的平行线交AH 的延长线于点K , 依题意有,CK ∥EH ∥AB ,∴ 111.AB CK EH+= ∵,,EH AE EFEH EF CK AC CD === ∴ CK =CD .∴111.AB CD EF+=2.正方形ABCD 中,以AB 为边作等边三角形ABE ,连接DE 交AC 于F ,交AB 于G ,连接BF .求证:(1) AF +BF =EF ; (2)111.AF BF GF+=答案:(1)如图①,在EF 上截取FH =AF . ∵ ∠EAB =600,∠BAD =900,AE =AD , ∴ ∠1=∠2=150. ∠3=∠2+∠4=600. ∴ △AFH 为等边三角形. ∴ ∠EAH =∠BAF . ∴ △EAH ≌△BAF . ∴ EH =BF .∴ AF +BF =FH +EH =EF .G F图2123KH CA EPOCDB A(2),如图②,过点G 作GK ∥BF 交AC 于点K . 由①可得∠BFC =600, ∴ AH ∥GK ∥BF .∴ 由模型4,得111.AH BF GK+= ∵ AH =AF ,GK =GF ,∴ 111.AF BF GF+=模型5 与圆有关的简单相似CCDC图3图2图1DPAOABD BEB模型分析图①中,由同弧所对的圆周角相等,易得△P AC ∽△PDB .图②中,由圆的内接四边形的一个外角等于它的内对角,易得△ABD ∽△AEC . 图③中,已知AB 切⊙O 于点A ,如下图,过A 作直径AE ,连接DE ,则有∠EAD +∠E =900. 又∠BAD +∠EAD =900,∠BAD =∠E =∠C . 从而△BAD ∽△BCA .模型实例如图,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. 求证:P A ﹒PB =PD ﹒PC .答案:证明:作直线OP 交⊙O 于C 、D 两点,连接BC 、AD .∵ ∠B =∠D ,∠C =∠A ,∴ △PBC ∽△PDA .∴.PB PCPD PA= ∴ P A ﹒PB =PD ﹒PC =(r +d )(r -d )= r 2-d 2DC连接AD 、B C .∵四边形ADCB 内接于⊙O , ∴∠1=∠2. 又∵∠P =∠P , ∴△P AD ∽△PCB . ∴PA PD PC PB=. ∴PA PB PD PC ⋅=⋅.练习1.如图,P 是⊙O 内的一点,AB 是过点P 的一条弦,设圆的半径为r ,OP d =.求证:22PA PB r d ⋅=-.答案证明:作直线OP 交⊙O 于C 、D 两点,连接BC 、A D . ∵∠A =∠D ,∠C =∠A , ∴△PBC ∽△PD A . ∴PB PCPD PA=. ∴()()22PA PB PC PD r d r d r d ⋅=⋅=+-=-2.如图,已知AB 为⊙O 的直径,C 、D 是半圆的三等分点,延长AC 、BD 交于点E . (1)求∠E 的度数;(2)点M 为BE 上一点,且满足2EM EB CE ⋅=,连接CM ,求证:CM 是⊙O 的切线.BA答案ABMDE CO(1)连接OC 、O D .∵C 、D 是半圆的三等分点, ∴»»»AC CD DB ==. ∵AB 为⊙O 的直径,∴∠AOC =∠COD =∠DOB =60°. ∴OA =OC =OD =OB ,∴△AOC 、△DOB 为等边三角形. ∴∠EAB =∠EBA =60°. ∴∠E =60°. (2)连接BC ,∵2EM EB CE ⋅=, ∴EM CE CE EB =. ∵∠E =∠E ,∴△CEM ∽△BE C . ∵AB 为⊙O 的直径, ∴∠ACB =90°. ∴∠ECB =90°,∴∠EMC =∠ECB =90°. ∵C 、D 是半圆三等分点, ∴∠AOC =∠DOB =60°, ∴OC ∥BE .∴∠OCM =∠EMC =90°. ∴OC ⊥CM .∴CM 为⊙O 的切线.模型6 相似和旋转如图①,已知DE ∥BC ,将△ADE 绕点A 旋转一定的角度,连接BD 、CE ,得到如图②. 结论:△ABD ∽△ACE .绕点A 旋转△ADEEDCBACBEDA模型分析BCPA∵DE ∥BC ,∴AD AEAB AC=, 如图②,∠DAE =∠BAC , ∴∠BAD =∠CAE ∴△ABD ∽△ACE .该模型难度较大,常出现在压轴题中,以直角三角形为背景出题,对学生的综合能力要求较高,考察知识点有相似、旋转、勾股定理、三角函数等,是优等生必须掌握的—种题型.模型实例如图,在Rt △ABC 中,∠BAC =60°,点P 在△ABC 内,且3PA =,PB =5,PC =2. 求ABC S V .解答:如图,作△ABQ ,使得∠QAB =∠P AC ,∠ABQ =∠ACP , 则△ABQ ∽△ACP .∴AQ AB AP AC =,即AQ APAB AC =. 又∠QAP =∠BAC =60°, ∴△AQP ∽△ACB∴∠APQ=∠ACB =90°.∴AQ =2AP =23,PQ =3AP =3. ∴△APQ 与△APC 的相似比为2AQAP=. ∴24BQ CP ==. ∴22225BP BQ PQ ==+.∴∠BQP =90°.过A 点作AM ∥PQ ,延长BQ 交AM 于点M . ∴AM =PQ ,MQ =AP .∴()()222222883AB AM QM BQ PQ AP BQ =++=++=+ 故21367373sin 6032ABC S AB AC AB +=⋅︒===+V . 练习1.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CA E +∠ CBE =90°,连接BF .(1)求证:△CAE ∽△CBF ;(2)若BE =1,AE =2,求CE 的长.解:(1)∵△ABC 和△CEF 均为等腰直角三角形.∴AC CEBC CF== ∴∠ACB =∠ECF =45°. ∴∠ACE =∠BCF . ∴△CAE ∽△CBF . ∴∠ACB =∠ECF =45°. ∴∠ACE =∠BCF . ∴△CAE ∽△CBF .(2)∵△CAE ∽△CBF , ∴∠CAE =∠CBF,AE ACBF BC=又∵AE ACBF BC=,AE =2.∴2BF=BF又∵∠CAE +∠CBE =90°. ∴∠CBF +∠CBE =90°. ∴∠EBF =90°.∴2222213EF BE BF =+=+=.∴EF ∵2226CE EF ==,∴CE =2.已知,在△ABC 中,∠BAC =60°.(1)如图①.若AB =AC ,点P 在△ABC 内,且∠APC =150°,P A =3,PC =4,把△APC 绕着点A 顺时针旋转,使点C 旋转到点B 处,得到△ADB ,连接DP . ①依题意补全图1; ②直接写出PB 的长;(2)如图②,若AB =AC ,点P 在△ABC 外,且P A =3,PB =5,PC =4,求∠APC 的度数;(3)如图③,若AB =2AC ,点P 在△ABC 内,且P APB =5,∠APC =120°,请直接写出PC 的长.EBFCA B C P 图②图①PC B A 图③PCBADQAB CP解:(1)如图,由旋转有,AD =AP ,BD =PC ,∠DAB =∠P AC , ∴∠DAP =∠BAC =60°.∴△ADP 为等边三角形.∴DP =P A =3,∠ADP =60°. ∴∠ADB =∠APC =150°, ∴∠BDP =90°,在Rt △BDP 中,BD =4,DP =3. 根据勾股定理得:PB =5.(2)把△APC 绕点A 顺时针旋转,使点C 与点B 重合,得到△ADB ,连接PD , ∴△APC ≌△AD B .∴AD =AP =3,DB =PC =4,∠P AC =∠DAB ,∠APC =∠2. ∴∠DAP =∠BAC , ∵∠BAC =60°, ∴∠DAP =60°,∴△DAP 是等边三角形. ∴PD =3,∠1=60°,∴222222345PD DB PB +=+==. ∴∠PDB =90°. ∴∠2=30°. ∴∠APC =30°.(3)作△ABQ ,使得∠QAB =∠P AC ,∠ABQ =∠ACP ,则△ABQ ∽△ACP ,∴∠AQB =∠APC =120°. ∵AB =2AC ,∴△ABQ 与△ACP 的相似比为2. ∴AQ =2AP =23,BQ =2CP ,∠QAP =∠QAB +∠BAP =∠P AC +∠BAP =∠BAC =60°. 取AQ 中点D ,连接PD , ∵AQ =2AP ,∴AD =AP .∴△APD 是等边三角形.∴DP =DQ . ∴∠DPQ =∠DQP =30°.∴∠APQ =90°. ∴PQ =3.∴∠BQP =∠AQB -∠AQP =120°-30°=90°.根据勾股定理得,224BQ PB PQ-=.∴122PC BQ==.赠送—高中数学知识点第一章空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

相关文档
最新文档