2019-2020年高一下学期5月月考 数学 含解析
2019-2020学年江苏省扬州中学高一下学期5月月考数学试卷 (解析版)

2019-2020学年江苏省扬州中学高一第二学期5月月考数学试卷一、选择题(共12小题).1.直线x+y+2=0的倾斜角为()A.30°B.60°C.120°D.150°2.在△ABC中,a=4,b=4,A=30°,则B=()A.60°B.60°或120°C.30°D.30°或150°3.若方程x2+y2﹣2x﹣m=0表示圆,则m的范围是()A.(﹣∞,﹣1)B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1] 4.在△ABC中,若a cos B=b cos A,则△ABC的形状一定是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.已知x>1,则x+的最小值为()A.3B.4C.5D.66.两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离B.相交C.内切D.外切7.过点(﹣1,﹣3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0B.x﹣2y﹣5=0C.x﹣2y+7=0D.2x+y+5=0 8.已知角α+的终边与单位圆x2+y2=1交于P(x0,),则sin2α等于()A.B.C.D.9.设P点为圆C:(x﹣2)2+y2=5上任一点,动点Q(2a,a+2),则PQ长度的最小值为()A.B.C.D.10.设点A(﹣2,3),B(3,1),若直线ax+y+2=0与线段AB有交点,则a的取值范围是()A.B.C.D.11.如图,AD是某防汛抗洪大坝的坡面,大坝上有一高为20米的监测塔BD,若某科研小组在坝底A点测得∠BAD=15°,沿着坡面前进40米到达E点,测得∠BED=45°,则大坝的坡角(∠DAC)的余弦值为()A.B.C.D.12.Rt△ABC中,∠ABC=90°,AB=2,BC=4,△ABD中,∠ADB=120°,则CD 的取值范围()A.[2+2]B.(4,2+2]C.[2]D.[2]二、填空题(共4小题).13.求过点(2,3)且在x轴和y轴截距相等的直线的方程.14.已知直线y=k(x+4)与曲线有两个不同的交点,则k的取值范围是.15.在平面直角坐标系xOy中,若直线l:x+2y=0与圆C:(x﹣a)2+(y﹣b)2=5相切,且圆心C在直线l的上方,则ab最大值为.16.已知在△ABC中,AB=AC=,△ABC所在平面内存在点P使得PB2+PC2=3PA2=3,则△ABC面积的最大值为.三、解答题:本大题共6小题,计70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知直线l1:ax+3y+1=0,l2:x+(a﹣2)y﹣1=0.(Ⅰ)若l1⊥l2,求实数a的值;(Ⅱ)当l1∥l2时,求直线l1与l2之间的距离.18.已知圆C经过抛物线y=x2﹣4x+3与坐标轴的三个交点.(1)求圆C的方程;(2)设直线2x﹣y+2=0与圆C交于A,B两点,求|AB|.19.已知a,b,c分别为非等腰△ABC内角A,B,C的对边,.(1)证明:C=2B;(2)若b=3,,求△ABC的面积.20.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的C处恰有一可旋转光源满足甲水果生产的需要,该光源照射范围是∠ECF=,点E,F的直径AB上,且∠ABC=.(1)若CE=,求AE的长;(2)设∠ACE=α,求该空地产生最大经济价值时种植甲种水果的面积.21.已知圆C和y轴相切于点T(0,2),与x轴的正半轴交于M、N两点(M在N的左侧),且MN=3;(1)求圆C的方程;(2)过点M任作一条直线与圆O:x2+y2=4相交于点A、B,连接AN和BN,记AN 和BN的斜率为k1,k2,求证:k1+k2为定值.22.在平面直角坐标系xOy中,已知直线l:x﹣y+4=0和圆O:x2+y2=4,P是直线l上一点,过点P作圆C的两条切线,切点分别为M,N.(1)若PM⊥PN,求点P坐标;(2)若圆O上存在点A,B,使得∠APB=60°,求点P的横坐标的取值范围;(3)设线段MN的中点为Q,l与x轴的交点为T,求线段TQ长的最大值.参考答案一.选择题:本大题共12小题,每小题5分,计60分.每小题所给的A.B.C.D.四个结论中,只有一个是正确的,1.直线x+y+2=0的倾斜角为()A.30°B.60°C.120°D.150°【分析】由直线的方程可得直线的斜率,由倾斜角和斜率的关系可得答案.解:直线x+y+2=0可化为y=﹣x﹣,∴直线的斜率为﹣,∴α=150°故选:D.2.在△ABC中,a=4,b=4,A=30°,则B=()A.60°B.60°或120°C.30°D.30°或150°【分析】由A的度数求出sin A的值,再由a与b的值,利用正弦定理求出sin B的值,即可求出B的度数.解:∵a=4,b=4,A=30°,∴由正弦定理=得:sin B===,∴B>A,故选:B.3.若方程x2+y2﹣2x﹣m=0表示圆,则m的范围是()A.(﹣∞,﹣1)B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1]【分析】根据题意,由二元二次方程表示圆的条件可得(﹣2)2﹣4×(﹣m)>0,变形解可得m的取值范围,即可得答案.解:根据题意,若方程x2+y2﹣2x﹣m=0表示圆,则有(﹣2)2﹣4×(﹣m)>6,即4+4m>0,解可得m>﹣1,即m的取值范围为(﹣3,+∞),故选:C.4.在△ABC中,若a cos B=b cos A,则△ABC的形状一定是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形【分析】应用正弦定理和已知条件可得,进而得到sin(A﹣B)=0,故有A﹣B=0,得到△ABC为等腰三角形.解:∵在△ABC中,a cos B=b cos A,∴,又由正弦定理可得,∴,sin A cos B﹣cos A sin B=0,sin(A﹣B)=0.故选:D.5.已知x>1,则x+的最小值为()A.3B.4C.5D.6【分析】利用基本不等式即可得出.解:∵x>1,∴+8=5.当且仅当x=3时取等号.故选:C.6.两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离B.相交C.内切D.外切【分析】分别由两圆的方程找出两圆心坐标和两个半径R和r,然后利用两点间的距离公式求出两圆心的距离d,比较d与R﹣r及d与R+r的大小,即可得到两圆的位置关系.解:把x2+y2﹣8x+6y+9=8化为(x﹣4)2+(y+3)2=16,又x2+y2=9,所以两圆心的坐标分别为:(8,﹣3)和(0,0),两半径分别为R=4和r=3,因为4﹣2<5<4+3即R﹣r<d<R+r,所以两圆的位置关系是相交.故选:B.7.过点(﹣1,﹣3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0B.x﹣2y﹣5=0C.x﹣2y+7=0D.2x+y+5=0【分析】两直线垂直斜率乘积为﹣1,再根据已知条件从选项判断答案.解:设直线l为x﹣2y+3=0,求直线m.因为两直线垂直,斜率乘积为﹣1,故与直线l 垂直的斜率为﹣2,排除B、C选项,又点(﹣1,﹣3)在直线m上,所以答案为D选项.故选:D.8.已知角α+的终边与单位圆x2+y2=1交于P(x0,),则sin2α等于()A.B.C.D.【分析】由题意利用任意角的三角函数的定义,诱导公式、二倍角的余弦公式,求得sin2α的值.解:角α+的终边与单位圆x2+y2=1交于P(x4,),∴sin(α+)=,∴sin2α=﹣cos2(α+)=﹣1+8=﹣1+2×=﹣,故选:B.9.设P点为圆C:(x﹣2)2+y2=5上任一点,动点Q(2a,a+2),则PQ长度的最小值为()A.B.C.D.【分析】根据题意,根据点Q的坐标可得点Q在直线x﹣2y+4=0上,分析圆C的圆心和半径,求出圆心(2,0)到直线x﹣2y﹣6=0的距离,由直线与圆的位置关系分析可得答案.解:根据题意,设点Q(x,y),则x=2a,y=a+2,有x=2y﹣4,即x﹣2y+4=0恒成立,故点Q在直线x﹣2y+4=0上,圆心(2,0)到直线x﹣2y+7=0的距离d==,故选:A.10.设点A(﹣2,3),B(3,1),若直线ax+y+2=0与线段AB有交点,则a的取值范围是()A.B.C.D.【分析】由题意利用直线的斜率公式,求得实数a的取值范围.解:∵点A(﹣2,3),B(3,1),若直线ax+y+2=3与线段AB有交点,而直线AB经过定点M(0,﹣2),且它的斜率为﹣a,即﹣a≥=1,或﹣a≤=﹣,故选:D.11.如图,AD是某防汛抗洪大坝的坡面,大坝上有一高为20米的监测塔BD,若某科研小组在坝底A点测得∠BAD=15°,沿着坡面前进40米到达E点,测得∠BED=45°,则大坝的坡角(∠DAC)的余弦值为()A.B.C.D.【分析】在△ABE中由正弦定理求得BE的值,在△BED中由正弦定理求得sin∠BDE,再利用诱导公式求出cos∠DAC的值.解:因为∠BAD=15°,∠BED=45°,所以∠ABE=30°;在△ABE中,由正弦定理得,在△BED中,由正弦定理得,又∠ACD=90°,所以sin∠BDE=sin(∠DAC+90°),故选:A.12.Rt△ABC中,∠ABC=90°,AB=2,BC=4,△ABD中,∠ADB=120°,则CD 的取值范围()A.[2+2]B.(4,2+2]C.[2]D.[2]【分析】以AB为底边作等腰三角形OAB,使得∠AOB=120°,以O为圆心,以OA 为半径作圆,则由圆的性质可知D的轨迹为劣弧,讨论O,C与AB的位置,根据圆的性质得出CD的最值即可.解:以AB为底边作等腰三角形OAB,使得∠AOB=120°,以O为圆心,以OA为半径作圆,则由圆的性质可知D的轨迹为劣弧(不含端点),∴OM=1,OA=2,即圆O的半径为2.∴OC==2,∴CD的最小值为2﹣8.此时OC==2,∴CD的最大值为2+2.故选:C.二、填空题:本大题共4小题,每小题5分,计20分.只要求写出最后结果,并将正确结果填写到答题卷相应位置.13.求过点(2,3)且在x轴和y轴截距相等的直线的方程x+y﹣5=0,或3x﹣2y=0.【分析】设直线在x轴为a,y轴截距为b,当a=b=0时,直线过点(2,3)和(0,0),其方程为,即3x﹣2y=0.当a=b≠0时,直线方程为,把点(2,3)代入,得,解得a=5,由此能求出直线方程.解:设直线在x轴为a,y轴截距为b,①当a=b=0时,直线过点(2,3)和(0,6),②当a=b≠0时,把点(2,3)代入,得,故答案为:x+y﹣5=0,或2x﹣2y=0.14.已知直线y=k(x+4)与曲线有两个不同的交点,则k的取值范围是[0,).【分析】结合图形,转化为半圆的切线的斜率可得.解:如图:y=k(x+4)是过定点P(﹣4,0),当直线与半圆切于A点时,k PA===,结合图象可得:直线y=k(x+4)与曲线有两个不同的交点时,k∈[8,),故答案为:[0,).15.在平面直角坐标系xOy中,若直线l:x+2y=0与圆C:(x﹣a)2+(y﹣b)2=5相切,且圆心C在直线l的上方,则ab最大值为.【分析】根据直线和圆相切求出a,b的关系式,结合基本不等式进行求解即可.解:∵直线和圆相切,∴,∴a+6b>0,从而a+2b=5,故ab的最大值为,故答案为:16.已知在△ABC中,AB=AC=,△ABC所在平面内存在点P使得PB2+PC2=3PA2=3,则△ABC面积的最大值为.【分析】以BC的中点为坐标原点,BC所在直线为x轴,建立直角坐标系,设B(﹣a,0),C(a,0),(a>0),则A(0,),设P(x,y),运用两点距离公式可得P在两圆上,由圆与圆的位置关系的等价条件,解不等式可得a的范围,再由三角形的面积公式,结合二次函数的最值求法,可得最大值.解:以BC的中点为坐标原点,BC所在直线为x轴,建立直角坐标系,则A(0,),(x+a)2+y4+(x﹣a)2+y2=3[x7+(y﹣)2]=3,即有点P既在(0,0)为圆心,半径为的圆上,可得|1﹣|≤≤1+,则△ABC的面积为S=•2a•=,故答案为:.三、解答题:本大题共6小题,计70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知直线l1:ax+3y+1=0,l2:x+(a﹣2)y﹣1=0.(Ⅰ)若l1⊥l2,求实数a的值;(Ⅱ)当l1∥l2时,求直线l1与l2之间的距离.【分析】(Ⅰ)由l1⊥l2,得a×1+3(a﹣2)=0,由此能求出实数a=.(Ⅱ)当l1∥l2时,,求出a=3,由此能求出直线l1与l2之间的距离.解:(Ⅰ)∵直线l1:ax+3y+1=2,l2:x+(a﹣2)y﹣1=8.若l1⊥l2,则a×1+3(a﹣6)=0,(Ⅱ)当l1∥l2时,,∴直线l1:3x+3y+2=0,l2:x+y﹣1=0,即l2:8x+3y﹣3=0∴直线l1与l2之间的距离:d==.18.已知圆C经过抛物线y=x2﹣4x+3与坐标轴的三个交点.(1)求圆C的方程;(2)设直线2x﹣y+2=0与圆C交于A,B两点,求|AB|.【分析】(1)求出抛物线y=x2﹣4x+3与坐标轴的交点坐标,确定圆心与半径,即可求圆C的方程;(2)利用点到直线的距离公式求出圆心到直线的距离,再由圆的半径,利用垂径定理及勾股定理即可求出|AB|的长.解:(1)抛物线y=x2﹣4x+3与坐标轴的交点分别是(1,0),(3,7),(0,3)…所求圆的圆心是直线y=x与x=2的交点(2,2),圆的半径是,(2)圆心C到直线2x﹣y+2=0的距离d=…|AB|=2=…19.已知a,b,c分别为非等腰△ABC内角A,B,C的对边,.(1)证明:C=2B;(2)若b=3,,求△ABC的面积.【分析】(1)先利用余弦定理完成边化角,然后得到关于角的等式,分析其中2B与C 的关系即可证明;(2)根据(1)的结论计算出cos B的值,然后即可计算出a的值,再根据面积公式求解三角形面积即可.解:(1)证明:由余弦定理得a2+c2﹣b2=2ac cos B,∴,由2B=π﹣C得A=B,不符合条件,(2)由(3)及正弦定理得:,∴.20.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的C处恰有一可旋转光源满足甲水果生产的需要,该光源照射范围是∠ECF=,点E,F的直径AB上,且∠ABC=.(1)若CE=,求AE的长;(2)设∠ACE=α,求该空地产生最大经济价值时种植甲种水果的面积.【分析】(1)利用余弦定理,即可求AE的长;(2)设∠ACE=α,求出CF,CE,利用S△CEF=,计算面积,求出最大值,即可求该空地产生最大经济价值时种植甲种水果的面积.解:(1)由题意,△ACE中,AC=4,∠A=,CE=,∴13=16+AE2﹣2×,(2)由题意,∠ACE=α∈[0,],∠AFC=π﹣∠A﹣∠ACF=﹣α.在△ACE中,由正弦定理得,∴CE=,S△CEF==,∴α=时,S△CEF取最大值为4,该空地产生最大经济价值.21.已知圆C和y轴相切于点T(0,2),与x轴的正半轴交于M、N两点(M在N的左侧),且MN=3;(1)求圆C的方程;(2)过点M任作一条直线与圆O:x2+y2=4相交于点A、B,连接AN和BN,记AN 和BN的斜率为k1,k2,求证:k1+k2为定值.【分析】(1)由题意设圆心的坐标为(m,2)(m>0),利用垂径定理列式求得m,即可求得圆C的方程;(2)当直线AB的斜率为0时,知k AN=k BN=0,即k1+k2=0为定值.当直线AB的斜率不为0时,设直线AB:x=1+ty,联立圆O方程,得到韦达定理,求得k1+k2为定值.解:(1)∵圆C与y轴相切于点T(0,2),可设圆心的坐标为(m,2)(m>0),则圆C的半径为m,又|MN|=3,∴,解得m=,证明:(2)由(1)知M(5,0),N(4,0),当直线AB的斜率不为0时,设直线AB:x=1+ty,设A(x1,y5),B(x2,y2),则k1+k2=综上可知,k1+k4=0为定值.22.在平面直角坐标系xOy中,已知直线l:x﹣y+4=0和圆O:x2+y2=4,P是直线l上一点,过点P作圆C的两条切线,切点分别为M,N.(1)若PM⊥PN,求点P坐标;(2)若圆O上存在点A,B,使得∠APB=60°,求点P的横坐标的取值范围;(3)设线段MN的中点为Q,l与x轴的交点为T,求线段TQ长的最大值.【分析】(1)若PM⊥PN,则四边形PMON为正方形,可得P到圆心的距离为,由P在直线x﹣y+4=0上,设P(x,x+4),利用|OP|=2,解得x,可得(2)设P(x,x+4),若圆O上存在点A,B,使得∠APB=60°,过P作圆的切线PC,PD,可得∠CPD≥600,在直角三角形△CPO中,根据300≤∠CPO<900,sin ∠CPO<1,进而得出点P的横坐标的取值范围.(3)设P(x0,x0+4),则以OP为直径的圆的方程为,化简与x2+y2=4联立,可得MN所在直线方程:x0x+(x0+4)y=4,与x2+y2=4联立,化简可得Q的坐标,可得Q点的轨迹为:+=,圆心C,半径R.由题可知T(﹣4,0),可得|TQ|≤|TC|+R.解:(1)若PM⊥PN,则四边形PMON为正方形,则P到圆心的距离为,故|OP|=,解得x=﹣2,(2)设P(x,x+4),若圆O上存在点A,B,使得∠APB=60°,在直角三角形△CPO中,∵304≤∠CPO<900,∴sin∠CPO<4,∴2<≤6,解得﹣4≤x≤0,(3)设P(x3,x0+4),则以OP为直径的圆的方程为,可得MN所在直线方程:x0x+(x0+7)y=4,∴Q的坐标为(,),由题可知T(﹣4,0),∴|TC|==.∴线段TQ长的最大值为3.。
2019-2020学年高一5月月考数学试题 Word版含答案

姓名,年级:时间:高一阶段检测数学试卷一、选择题.(每小题4分,共52分,其中1-10为单选题,11-13为多选题)1.设集合{}1,2,3A =,{}220Bx x x m =-+=,若{3}A B ⋂=,则B =( )A .{}1,3-B .{}2,3-C .{}1,2,3--D .{}32.某地区中小学生人数比例和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法随机抽取2%的学生进行调查,其中被抽取的小学生有80人,则样本容量和该地区的高中生近视人数分别为( )A .100,50B .100,1250C .200,50D .200,12503.已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ–π4)= ( )A .43-B .43C .34D .34-4.设,,a b c 分别是ABC ∆中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( )A .平行B .重合C .垂直D .相交但不垂直5.如图,已知ABC ∆中,D 为AB 的中点,13AE AC =,若DE AB BC λμ=+,则λμ+=( )A .56-B .16-C .16D .566.设a ,b ,c 均为正数,且11232112log ,()log ,()log 22ab c b c a ===,则( ) A .b c a >> B .c b a >> C .b a c >> D .a c b >>7.直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为( )A .32B .23C .32-D .23-8.如图,已知A(4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是 ( )A .25B .33C .6D .2109.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( ) A .32 B .105C .155D .3310.已知锐角三角形ABC 的内角A ,B ,C 的对边分别为,,a b c ,且2sin a b A =,则cos sin A C +的取值范围是( ) A 。
2023-2024学年安徽省县中联盟高一(下)月考数学试卷(5月份)(含解析)

2023-2024学年安徽省县中联盟高一(下)月考数学试卷(5月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z 满足z =(z +2)⋅i (其中i 是虚数单位),则|z |=( )A. 1B. 2C. 2 2D. 22.函数y =tan(π4x−π2)的部分图象如图所示,则(OA +OB )⋅AB 的值为( )A. −4B. 4C. −8D. 83.已知某圆台体积为52π,其上下底面圆半径分别为2和5,则其母线长为( )A. 103 B.4 C.5 D. 2534.在△ABC 中,a =3,A =60°,B =75°,则△ABC 中最小的边长为( )A. 22 B. 62 C. 2 D. 65.已知向量a ,b 满足|a |=2,|b |=1,|a +2b |=2a ⋅b ,则向量a ,b 的夹角为( )A. 0 B. 2π3 C. 0或π3 D. 0或2π36.学校组织学生去工厂参加社会实践活动,任务是利用一块正方形的铁皮制作簸箕,方法如下:取正方形ABCD 边AB 的中点M ,沿MC 、MD 折叠,将MA 、MB 用胶水粘起来,使得点A 、B 重合于点E ,这样就做成了一个簸箕E−MCD ,如果这个簸箕的容量为576 3cm 3,则原正方形铁皮的边长是多少( )A. 12cmB. 24cmC. 12 3cmD. 24 3cm7.如图,△ABC是边长为2的正三角形,直线AD、BE、CF围成一个正三角形DEF,且DF=2FA,则AB⋅EF=( )A. −813B. 813C. −1213D. 12138.已知正方体ABCD−A1B1C1D1的体对角线BD1垂直于平面α,直线l与平面α所成角为60°,在正方体ABCD−A1B1C1D1绕体对角线BD1旋转的过程中,记BC与直线l所成的最小角为θ,则cosθ=( )A. 3−66B. 3+66C. 32−36D. 32+36二、多选题:本题共3小题,共18分。
2019-2020年高一(下)5月月考数学试卷 含解析

2019-2020年高一(下)5月月考数学试卷含解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)m为任意实数时,直线(m﹣1)x+(2m﹣1)y=m﹣5必过定点(9,﹣4).考点:恒过定点的直线.专题:直线与圆.分析:对于任意实数m,直线(m﹣1)x+(2m﹣1)y=m﹣5恒过定点,则与m的取值无关,则将方程转化为(x+2y﹣1)m+(x+y﹣5)=0.让m的系数和常数项为零即可.解答:解:方程(m﹣1)x+(2m﹣1)y=m﹣5可化为(x+2y﹣1)m+(x+y﹣5)=0∵对于任意实数m,当时,直线(m﹣1)x+(2m﹣1)y=m﹣5恒过定点由,得.故定点坐标是(9,﹣4).故答案为(9,﹣4).点评:本题通过恒过定点问题来考查学生方程转化的能力及直线系的理解.2.(5分)函数y=sin2x+2cosx(≤x≤)的最小值为﹣2.考点:复合三角函数的单调性.专题:计算题;三角函数的图像与性质.分析:先将y=sin2x+2cosx转化为y=﹣cos2x+2cosx+1,再配方,利用余弦函数的单调性求其最小值.解答:解:∵y=sin2x+2cosx=﹣cos2x+2cosx+1=﹣(cosx﹣1)2+2,∵≤x≤,∴﹣1≤cosx≤,﹣2≤cosx﹣1≤﹣,∴≤(cosx﹣1)2≤4,﹣4≤﹣(cosx﹣1)2≤﹣.∴﹣2≤2﹣(cosx﹣1)2≤.∴函数y=sin2x+2cosx(≤x≤)的最小值为﹣2.故答案为:﹣2.点评:本题考查余弦函数的单调性,考查转化思想与配方法的应用,属于中档题.3.(5分)已知数列的前n项和,第k项满足5<a k<8,则k的值为8.考点:等差数列的前n项和.专题:计算题.分析:根据数列的第n项与前n项和的关系可得a1=S1=﹣8,当n≥2 a n=S n﹣S n=2n﹣10,由5<2k﹣10﹣1<8求得正整数k的值.解答:解:∵数列的前n项和,∴a1=S1=1﹣9=﹣8.当n≥2 a n=S n﹣S n﹣1=n2﹣9n﹣[(n﹣1)2﹣9(n﹣1)]=2n﹣10,由5<a k<8 可得5<2k﹣10<8,解得<k<9,故正整数k=8,故答案为8.点评:本题主要考查数列的第n项与前n项和的关系,解一元一次不等式,属于基础题.4.(5分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=﹣1时,l1∥l2.考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由平行的条件可得:,解后注意验证.解答:解:由平行的条件可得:,由,解得:m=﹣1或m=3;而当m=3时,l1与l2重合,不满足题意,舍去,故m=﹣1.故答案为:﹣1.点评:本题考查直线平行的充要条件,其中平行的不要忘记去掉重合的情况,属基础题.5.(5分)若△ABC的内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列,c=2a,则cosB的值为.考点:余弦定理.专题:计算题.分析:由a,b,c,且a,b,c成等比数列且c=2a可得,b=,c=2a,结合余弦定理可求解答:解:∵a,b,c,且a,b,c成等比数列且c=2ab2=ac=2a2,b=,c=2a=故答案为:点评:本题主要考查了等比中项的定义的应用,余弦定理在解三角形中的应用,属于基础试题6.(5分)若函数f(x)=sinωx (ω>0)在区间[0,]上单调递增,在区间[,]上单调递减,则ω=.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:由题意可知函数在x=时确定最大值,就是,求出ω的值即可.解答:解:由题意可知函数在x=时确定最大值,就是,k∈Z,所以ω=6k+;只有k=0时,ω=满足选项.故答案为:.点评:本题是基础题,考查三角函数的性质,函数解析式的求法,也可以利用函数的奇偶性解答,常考题型.7.(5分)过点A(1,4)且在x、y轴上的截距相等的直线共有2条.考点:直线的截距式方程.专题:探究型;分类讨论.分析:分直线过原点和不过原点两种情况求出直线方程,则答案可求.解答:解:当直线过坐标原点时,方程为y=4x,符合题意;当直线不过原点时,设直线方程为x+y=a,代入A的坐标得a=1+4=5.直线方程为x+y=5.所以过点A(1,4)且在x、y轴上的截距相等的直线共有2条.故答案为2.点评:本题考查了直线的截距式方程,考查了分类讨论的数学思想方法,是基础题.8.(5分)已知以x,y为自变量的目标函数z=kx+y (k>0)的可行域如图阴影部分(含边界),且A(1,2),B(0,1),C(,0),D(,0),E(2,1),若使z取最大值时的最优解有无穷多个,则k=1.考点:简单线性规划的应用.专题:图表型.分析:由题设条件,目标函数z=kx+y,取得最大值的最优解有无数个知取得最优解必在边界上而不是在顶点上,目标函数最大值应在右上方边界AE上取到,即z=kx+y应与直线AE平行;进而计算可得答案.解答:解:由题意,最优解应在线段AE上取到,故z=kx+y应与直线AE平行∵k AE==﹣1,∴﹣k=﹣1,∴k=1,故答案为:1.点评:本题考查线性规划最优解的判定,属于该知识的逆用题型,知最优解的特征,判断出最优解的位置求参数.9.(5分)(2005•湖北)设等比数列{a n}的公比为q,前n项和为S n,若S n+1,S n,S n+2成等差数列,则q 的值为﹣2.考点:等差数列的性质;等比数列的性质.专题:压轴题;分类讨论.分析:首先由S n+1,S n,S n+2成等差数列,可得2S n=S n+1+S n+2,然后利用等比数列的求和公式分别表示S n+1,S n,S n+2,注意分q=1和q≠1两种情况讨论,解方程即可.解答:解:设等比数列{a n}的公比为q,前n项和为S n,且S n+1,S n,S n+2成等差数列,则2S n=S n+1+S n+2,若q=1,则S n=na1,式显然不成立,若q≠1,则为,故2q n=q n+1+q n+2,即q2+q﹣2=0,因此q=﹣2.故答案为﹣2.点评:涉及等比数列求和时,若公比为字母,则需要分类讨论.10.(5分)若三直线x+y+1=0,2x ﹣y+8=0和ax+3y ﹣5=0相互的交点数不超过2,则所有满足条件的a 组成的集合为 {,3,﹣6} .考点: 两条直线的交点坐标. 专题: 计算题;直线与圆.分析: 首先解出直线x+y+1=0与2x ﹣y+8=0的交点,代入ax+3y ﹣5=0求解a 的值;然后由ax+3y ﹣5=0分别和已知直线平行求解a 的值.解答:解:由,得,所以直线x+y+1=0与2x ﹣y+8=0的交点为(﹣3,2), 若直线ax+3y ﹣5=0过(﹣3,2),则﹣3a+6﹣5=0,解得;由ax+3y ﹣5=0过定点(0,), 若ax+3y ﹣5=0与x+y+1=0平行,得,a=3; 若ax+3y ﹣5=0与2x ﹣y+8=0平行,得,a=﹣6. 所以满足条件的a 组成的集合为{}.故答案为{}.点评: 本题考查了两条直线的交点坐标,考查了分类讨论的数学思想方法,是基础题.11.(5分)设S n =1+2+3+…+n ,n ∈N *,则函数的最大值为 .考点:等差数列的前n 项和;函数的最值及其几何意义. 专题: 计算题. 分析: 由题意求出S n 的表达式,将其代入代简后求其最值即可.解答:解:由题意S n =1+2+3+…+n=∴===≤=等号当且仅当时成立故答案为点评: 本题考查等差数列的前n 项公式以及利用基本不等式求最值,求解本题的关键是将所得的关系式转化为可以利用基本不等式求最值的形式,利用基本不等式求最值是最值的一个比较常用的技巧,其特征是看是否具备:一正,二定,三相等.12.(5分)直线l :x=my+n (n >0)过点A (4,4),若可行域的外接圆直径为,则实数n 的值是 2或6 .考点:简单线性规划的应用.专题:不等式的解法及应用.分析:令直线l:x=my+n(n>0)与x轴交于B点,则得可行域是三角形OAB,根据正弦定理可构造一个关于n的方程,解方程即可求出实数n的值解答:解:设直线l:x=my+n(n>0)与x轴交于B(n,0)点,∵直线x=my+n(n>0)经过点A(4,4 ),直线x﹣y=0也经过点A(4,4 ),∴直线x=my+n(n>0)经过一、二、四象限∴m<0∴可行域是三角形OAB,且∠AOB=60°∵可行域围成的三角形的外接圆的直径为,由正弦定理可得,=2R=∴AB=•sin∠60°=8=∴n=2或6故答案为:2或6.点评:本题考查的知识点是直线和圆的方程的应用,其中根据已知条件,结合正弦定理,构造关于n的方程,是解答本题关键.13.(5分)过点(1,3)作直线l,若l经过点(a,0)和(0,b),且a,b∈N*,则可作出的l的个数为2条.考点:直线的图象特征与倾斜角、斜率的关系.专题:探究型;直线与圆.分析:由l经过点(a,0)和(0,b)求出l的斜率,写出直线方程的点斜式,代入点(a,0)可得=1,求出满足该式的整数对a,b,则答案可求.解答:解:由题意可得直线L的表达式为y=(x﹣1)+3因为直线l经过(a,0),可得+3=b 变形得=1,因为a,b都属于正整数,所以只有a=2,b=6和a=4,b=4符合要求所以直线l只有两条,即y=﹣3(x﹣1)+3和y=﹣(x﹣1)+3.故答案为2.点评:本题考查了直线的图象特征与直线的倾斜角和斜率的关系,训练了代入法,关键是确定整数解,是基础题.14.(5分)若a,b,c∈R,且满足,则a的取值范围是[1,5].考点:函数与方程的综合运用.专题:应用题.分析:根据条件,利用基本不等式,可将问题转化为关于a的不等式,解之,即可得到a的取值范围.解答:解:∵a2﹣bc﹣2a+10=0,∴bc=a2﹣2a+10∵b2+bc+c2﹣12a﹣15=0.∴b2+bc+c2=12a+15.∵b2+bc+c2≥bc+2bc=3bc∴12a+15≥3(a2﹣2a+10)∴a2﹣6a+5≤0∴1≤a≤5∴a的取值范围是[1,5]故答案为:[1,5]点评:本题以等式为载体,考查基本不等式的运用,考查学生分析解决问题的能力,利用基本不等式,将问题转化为关于a的不等式是解题的关键.二、解答题(共6小题,满分90分)15.(14分)已知函数,x∈R.(1)求f(x)的最小正周期和最小值;(2)已知,,,求f(β)的值.考三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单调性.点:计算题.专题:分(1)由辅助角公式对已知函数化简可得,,结合正弦析:函数的性质可求周期、函数的最大值(2)由已知利用和角与差角的余弦公式展开可求得cosαcosβ=0,结合已知角α,β的范围可求β,代入可求f(β)的值.解解:(1)∵答:=sinxcos=∴,∴T=2π,f(x)max=2(2)∵∴cosαcosβ=0∵,∴点本题主要考查了辅助角公式在三角函数的化简中的应用,正弦函数的性质的应用,两角和与差的余弦公评: 式的应用. 16.(14分)如图,要测量河对岸两点A 、B 之间的距离,选取相距km 的C 、D 两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,求AB 之间的距离.考点: 解三角形的实际应用. 专题: 计算题;应用题.分析: 先在△ACD 中求出∠CAD 、∠ADC 的值,从而可得到AC=CD=,然后在△BCD 中利用正弦定理可求出BC 的长度,最后在△ABC 中利用余弦定理求出AB 的长度即可.解答: 解:在△ACD 中,∠ACD=120°,∠CAD=∠ADC=30°∴AC=CD=km在△BCD 中,∠BCD=45°∠BDC=75°∠CBD=60°∵=∴BC==,在△ABC 中,由余弦定理得: AB 2=2+()2﹣2×cos75°=3+2+﹣=5∴AB=km答:A 、B 之间距离为km .点评: 本题主要考查正弦定理和余弦定理在解三角形中的综合运用.解三角形在高考中是必考内容,而且属于较简单的题目,一定要做到满分.17.(15分)过点P (2,1)的直线l 与x 轴正半轴交于点A ,与y 轴正半轴交于点B . (1)求u=|OA|+|OB|的最小值,并写出取最小值时直线l 的方程; (2)求v=|PA|•|PB|的最小值,并写出取最小值时直线l 的方程.考点:直线和圆的方程的应用. 专题:直线与圆. 分析: (1)设出直线方程的截距式,用含有一个字母的代数式表示出u ,然后利用基本不等式求最小值; (2)由两点间的距离公式求出|PA|,|PB|,代入v=|PA|•|PB|后取平方,然后利用基本不等式求最值. 解答:解:(1)设点A (a ,0),B (0,b ),则直线l : ∵P (2,1)在直线l 上,∴,∴,∵a ,b >0,∴a >2.==.当且仅当a ﹣2=(a >2),即a=2+时等号成立.此时b=1+. ∴,此时l :,即; (2)由(1)知,,∵,∴.当且仅当,即a=3时等号成立,此时b=3.∴u min =4,此时l :,即x+y=3.点评: 本题考查了直线方程的应用,训练了利用基本不等式求最值,解答的关键在于利用基本不等式求最值的条件,是中档题. 18.(15分)某工厂生产甲、乙两种产品,这两种产品每千克的产值分别为600元和400元,已知每生产1千克甲产品需要A 种原料4千克,B 种原料2千克;每生产1千克乙产品需要A 种原料2千克,B 种原料3千克.但该厂现有A 种原料100千克,B 种原料120千克.问如何安排生产可以取得最大产值,并求出最大产值.考点: 简单线性规划. 专题: 应用题.分析: 先设生产甲、乙两种产品分别为x 千克,y 千克,其利产值为z 元,列出约束条件,再根据约束条件画出可行域,设z=600x+400y ,再利用z 的几何意义求最值,只需求出直线z=600x+400y 过可行域内的点时,从而得到z 值即可.解答: 解析:设生产甲、乙两种产品分别为x 千克,y 千克,其利产值为z 元,根据题意,可得约束条件为…(3分)作出可行域如图:….(5分) 目标函数z=600x+400y ,作直线l 0:3x+2y=0,再作一组平行于l 0的直线l :3x+2y=z ,当直线l 经过P 点时z=600x+400y 取得最大值,….(9分)由,解得交点P ( 7.5,35)….(12分)所以有z 最大=600×7.5+400×35=18500(元)…(13分)所以生产甲产品7.5千克,乙产品35千克时,总产值最大,为18500元.…(14分)点评: 本题是一道方案设计题型,考查了列一元一次不等式组解实际问题的运用及一元一次不等式组的解法的运用,解答时找到题意中的不相等关系是建立不等式组的关键.19.(16分)已知二次函数f (x )满足f (﹣1)=0,且x ≤f (x )≤(x 2+1)对一切实数x 恒成立. (1)求f (1);(2)求f (x )的解析表达式; (3)证明:+…+>2.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)利用不等式的求f(1)的值.(2)利用待定系数法求函数的解析式.(3)利用放缩法证明不等式.解答:解:(1)因为x≤f(x)≤(x2+1)对一切实数x恒成立.所以当x=1时,有1≤f(1)≤(1+1)=1,所以f(1)=1.(2)设二次函数f(x)=ax2+bx+c,a≠0,因为f(1)=1,f(﹣1)=0,所以a+c=b=.因为f(x)≥x对一切实数x恒成立,即ax2+(b﹣1)x+c≥0,所以必有,解得a>0,ac,所以c>0.因为,当且仅当a=c=取等号,所以.(3)因为,所以+…+>.故不等式+…+>2成立.点评:本题主要考查二次函数的图象和性质以及利用放缩法证明不等式,综合性较强.20.(16分)(2011•朝阳区一模)有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.(Ⅰ)证明d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),并求p1+p2的值;(Ⅱ)当d1=1,d2=3时,将数列d m分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为(c m)4(c m>0),求数列的前n项和S n.(Ⅲ)设N是不超过20的正整数,当n>N时,对于(Ⅱ)中的S n,求使得不等式成立的所有N的值.考点:等差数列的性质;数列与不等式的综合.专题:综合题;压轴题.分析:(Ⅰ)先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可;(Ⅱ)由d1=1,d2=3,代入d m中,确定出d m的通项,根据题意的分组规律,得到第m组中有2m ﹣1个奇数,所以得到第1组到第m组共有从1加到2m﹣1个奇数,利用等差数列的前n项和公式表示出之和,从而表示出前m2个奇数的和,又前m组中所有数之和为(c m)4(c m>0),即可得到c m=m,代入中确定出数列的通项公式,根据通项公式列举出数列的前n项和S n,记作①,两边乘以2得到另一个关系式,记作②,②﹣①即可得到前n项和S n的通项公式;(Ⅲ)由(Ⅱ)得到d n和S n的通项公式代入已知的不等式中,右边的式子移项到左边,合并化简后左边设成一个函数f(n),然后分别把n=1,2,3,4,5代入发现其值小于0,当n≥6时,其值大于0即原不等式成立,又N不超过20,所以得到满足题意的所有正整数N从5开始到20的连续的正整数.解答:解:(Ⅰ)由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=[1+(n﹣1)d2]﹣[1+(n﹣1)d1]=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n﹣d n ).﹣1又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.(4分)(Ⅱ)当d1=1,d2=3时,d m=2m﹣1(m∈N*).数列d m分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),.按分组规律,第m组中有2m﹣1个奇数,所以第1组到第m组共有1+3+5+…+(2m﹣1)=m2个奇数.注意到前k个奇数的和为1+3+5+…+(2k﹣1)=k2,所以前m2个奇数的和为(m2)2=m4.即前m组中所有数之和为m4,所以(c m)4=m4.因为c m>0,所以c m=m,从而.所以S n=1•2+3•22+5•23+7•24+…+(2n﹣3)•2n﹣1+(2n﹣1)•2n.2S n=1•22+3•23+5•24+…+(2n﹣3)•2n+(2n﹣1)•2n+1.①故2S n=2+2•22+2•23+2•24+…+2•2n﹣(2n﹣1)•2n+1=2(2+22+23+…+2n)﹣2﹣(2n﹣1)•2n+1==(3﹣2n)2n+1﹣6.②②﹣①得:S n=(2n﹣3)2n+1+6.(9分)(Ⅲ)由(Ⅱ)得d n=2n﹣1(n∈N*),S n=(2n﹣3)2n+1+6(n∈N*).故不等式,即(2n﹣3)2n+1>50(2n﹣1).考虑函数f(n)=(2n﹣3)2n+1﹣50(2n﹣1)=(2n﹣3)(2n+1﹣50)﹣100.当n=1,2,3,4,5时,都有f(n)<0,即(2n﹣3)2n+1<50(2n﹣1).而f(6)=9(128﹣50)﹣100=602>0,注意到当n≥6时,f(n)单调递增,故有f(n)>0.因此当n≥6时,(2n﹣3)2n+1>50(2n﹣1)成立,即成立.所以,满足条件的所有正整数N=5,6,7,…,20.(14分)点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,会利用错位相减的方法求数列的通项公式,考查了利用函数的思想解决实际问题的能力,是一道中档题.。
2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(含答案)

2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(六)一、选择题.1.(5分)已知集合2{|log 1}A x x =<,集合{|||2}B x N x =∈<,则(A B = )A .{|01}x x <<B .{|02}x x <C .{|22}x x -<<D .{0,1}2.(5分)已知i 为虚数单位,则复数3(1)(1)(i i --= )A .2iB .2i -C .2D .2-3.(5分)已知平面向量a ,b 的夹角为30︒,||1a =,1()2a a b -=-,则||(b = )AB .2C .3D .44.(5分)已知实数x ,y 满足约束条件()1221x y x y y +⎧⎪-⎨⎪⎩,则yx 的最大值为( )A .2B .32C .1D .235.(5分)在区间(0,3)上随机地取一个数k ,则事件“直线y kx =与双曲线22:1C x y -=有两个不同的交点“发生的概率为( ) A .13B .12C .23D .16.(5分)已知3(21)()x x a -+展开式中各项系数之和为27,则其展开式中2x 项的系数为( )A .24B .18C .12D .47.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,若sin A =,a =,c a >,则角C 的大小为( )A .3πB .2πC .23πD .34π8.(5分)在下面四个三棱柱中,A ,B 为三棱柱的两个顶点,E ,F ,G 为所在棱的中点,则在这四个三棱柱中,直线AB 与平面EFG 不平行的是( )A .B .C .D .9.(5分)已知椭圆2222:1(0)x y C a b a b +=>>与抛物线2:2(0)E y px p =>有公共焦点F ,椭圆C 与抛物线E 交于A ,B 两点,且A ,B ,F 三点共线,则椭圆C 的离心率为( )A 21B .22C .3D .51-10.(5分)已知数列{}n a 满足:对*n N ∀∈,1log (2)n n a n +=+,设n T 为数列{}n a 的前n 项之积,则下列说法错误的是( ) A .12a a >B .17a a >C .63T =D .76T T <11.(5分)数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2cos212sin αα=-”所用的几何图形。
2024学年成都市双流区高三下学期5月月考数学试题文试题

2024学年成都市双流区高三下学期5月月考数学试题文试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则U C A =( )A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}- 2.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( ) A .211- B .525- C .25 D .251-3.()()()cos 0,0f x A x A ωϕω=+>>的图象如图所示,()()sin g x A x ωϕ=--,若将()y f x =的图象向左平移()0a a >个单位长度后所得图象与()y g x =的图象重合,则a 可取的值的是( )A .112πB .512πC .712πD .11π124.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21eD .31e5.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )A .22B .23C .4D .266.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .1B .43C .3D .4 7.2-31i i=+( ) A .15-22i B .15--22i C .15+22i D .15-+22i 8.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( ) A . B .C .D .9.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题;③“2019a >”是“2020a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题.其中真命题的序号为( )A .③④B .①②C .①③D .②④ 10.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .11.已知函数31()sin ln 1x f x x x x +⎛⎫=++ ⎪-⎝⎭,若(21)(0)f a f ->,则a 的取值范围为( ) A .1,2⎛⎫+∞ ⎪⎝⎭ B .()0,1 C .1,12⎛⎫ ⎪⎝⎭ D .10,2⎛⎫ ⎪⎝⎭12.复数1i i +=( )A .2i -B .12iC .0D .2i二、填空题:本题共4小题,每小题5分,共20分。
2020年浙江省温州市龙港第二中学高一数学理月考试题含解析

2020年浙江省温州市龙港第二中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,其中表示a,b,c三个数中的最小值,则的最大值为( )A. 6B. 7C. 8D. 9参考答案:D略2. 设A={x|1<x<2},B={x|x-a<0}若A B,则a的取值范围是()A、a≤1B、a≥2C、a≥1D、a≤2参考答案:B3. 设是奇函数,且当时,,则当时,等于()A. B. C. D.参考答案:C略4. 一组数据由小到大依次为。
已知这组数据的中位数为6,若要使其标准差最小,则的值分别为()A.3,9 B.4,8C.5,7 D.6,6参考答案:5. 已知向量a=(1, 2),b=(x, -6),若a//b,则x的值为(A)-3 (B)3 (C)12 (D)-12参考答案:A略6. 是第二象限角,为其终边上一点,且cos=x,则sin的值为()A. B. C. D.-参考答案:A略7. 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.B.C.D.参考答案:B8. 函数,若f[f(﹣1)]=1,则a的值是()A.2 B.﹣2 C.D.﹣参考答案:【考点】分段函数的应用;函数的值.【分析】由已知中函数,将x=﹣1代入,构造关于a的方程,解得答案.【解答】解:∵函数,∴f(﹣1)=2,∴f[f(﹣1)]= = =1,解得:a=﹣2,故选:B【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.9. 设(1-x)15=a0+ a1x+ a2x2+…+ a15x15求: (1) a1+ a2+ a3+ a4+ …+ a15(2) a1+ a3+ a5+ …+ a15参考答案:(1) -1 (2) -214试题分析:(1)利用赋值法,令可得,再令即可求得;(2)利用赋值法,令,,所得的两式做差计算可得. 试题解析:(1)题中的等式中,令可得:,即,令可得:,据此可得:.(2)题中的等式中,令可得:,①令可得:,②①-②可得:,则:.点睛:求解这类问题要注意:①区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;②根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为0,1,-1.10. 满足{1,3}∪A={1,3,5}的所有集合A的个数()A.1个B.2个C.3个D.4个参考答案:D【考点】并集及其运算.【分析】由题意得1,3和5可能是集合B的元素,把集合B所有的情况写出来.【解答】解:∵{1,3}∪A={1,3,5},∴1和2和3可能是集合B的元素,则集合B可能是:{5},{1,5},{3,5},{1,5,3}共4个.故选D.二、填空题:本大题共7小题,每小题4分,共28分11. 函数y =+的最大值是,最小值是。
常德市临澧县第一中学2019-2020学年高一下学期第一次月考数学试题含解析

【答案】函数 在区间 上的最大值为2,最小值为-1
【解析】
试题分析:(1)将函数利用倍角公式和辅助角公式化简为 ,再利用周期 可得最小正周期,由 找出 对应范围,利用正弦函数图像可得值域;(2) 先利用 求出 ,再由角的关系 展开后代入可得值。
试题解析:(1)
所以
又 所以
由函数图像知 。
【详解】解:∵ sin(2x )=sin[2(x )],
∴只需将函数 sin[2(x )]的图象向右平移 个单位即可得到函数y=sin2x的图象.
故选B.
【点睛】本题主要考查诱导公式和三角函数的平移,三角函数平移时一定要遵循左加右减上加下减的原则.
7。已知 ,则 ( )
A。 B. C. D.
【答案】D
(2)求 的值.
【答案】(1) ;(2) .
【解析】
试题分析:(1)由正切函数的二倍角公式及同角三角函数之间的关系,集合 可得结果;(2)先利用同角三角函数之间的关系求得 ,在根据两角和的正弦公式可得
试题解析:(1) , , ,及 .
(2) , ,
, ,
.
21。 (
已知函数 .
(I)求函数 的最小正周期及在区间 上的最大值和最小值;
【详解】(1)因为 ,所以 ;
(2)
.
【点睛】本题考查利用同角三角函数的关系化简求值,注意“1”的巧妙用处,属于基础题.
19。已知函数 的最小正周期为 。
(1)求 的单调增区间和对称轴;
(2)若 ,求 的最大值和最小值。
【答案】(1) ;(2) .
【解析】
【分析】
(1)由周期公式求出 可得函数解析式,再根据余弦型函数的单调性及对称性即可求解; (2)由(1)所得结果判断函数在 上的单调性即可求得最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高一下学期5月月考数学含解析考生注意:1、试卷所有答案都必须写在答题卷上。
2、答题卷与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。
3、考试时间为120分钟,试卷满分为150分。
一、选择题:(本大题共有10 题,每题5分,共50分)1. 下列语句中,是赋值语句的为()A. m+n=3B. 3=iC. i=i²+1D. i=j=3解:根据题意,A:左侧为代数式,故不是赋值语句B:左侧为数字,故不是赋值语句C:赋值语句,把i2+1的值赋给i.D:为用用两个等号连接的式子,故不是赋值语句故选C.2. 已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是()A.M>NB. M<NC. M=ND. 无法确定解:由M-N=a1a2-a1-a2+1=(a1-1)(a2-1)>0,故M>N,故选B.3. 甲、乙两名同学在5次体育测试中的成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是X甲,X乙,则下列结论正确的是()A.X甲<X乙;乙比甲成绩稳定B.X甲>X乙;甲比乙成绩稳定C.X甲<X乙;甲比乙成绩稳定D.X甲>X乙;乙比甲成绩稳定解:由茎叶图可知,甲的成绩分别为:72,77,78,86,92,平均成绩为:81;乙的成绩分别为:78,82,88,91,95,平均成绩为:86.8,则易知X甲<X乙;从茎叶图上可以看出乙的成绩比较集中,分数分布呈单峰,乙比甲成绩稳定.故选A.4. 将两个数a=5,b=12交换为a=12,b=5,下面语句正确的一组是()A. B. C. D.解:先把b的值赋给中间变量c,这样c=12,再把a的值赋给变量b,这样b=5,把c的值赋给变量a,这样a=12.故选:D5. 将参加夏令营的500名学生编号为:001,002,…,500. 采用系统抽样的方法抽取一个容量为50的样本,且样本中含有一个号码为003的学生,这500名学生分住在三个营区,从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,三个营区被抽中的人数分别为()A. 20,15,15B. 20,16,14C. 12,14,16D. 21,15,14解:系统抽样的分段间隔为=10,在随机抽样中,首次抽到003号,以后每隔10个号抽到一个人,则分别是003、013、023、033构成以3为首项,10为公差的等差数列,故可分别求出在001到200中有20人,在201至355号中共有16人,则356到500中有14人.故选:B.6. 如图给出的是计算+++…+的值的一个框图,其中菱形判断框内应填入的条件是()A. i>10B. i<10C. i>11D. i<11解:∵S=+++…+,并由流程图中S=S+循环的初值为1,终值为10,步长为1,所以经过10次循环就能算出S=+++…+的值,故i≤10,应不满足条件,继续循环所以i>10,应满足条件,退出循环判断框中为:“i>10?”.故选A.7.设a、b是正实数,给定不等式:①>;②a>|a-b|-b;③a2+b2>4ab-3b2;④ab+>2,解析由题知a+b=x+y,cd=xy,x>0,y>0,则(a+b)2cd=(x+y)2xy≥(2xy)2xy=4,当且仅当x=y时取等号.答案 D9. 在△ABC中,三边a、b、c成等比数列,角B所对的边为b,则cos2B+2cosB的最小值为()A. B.-1 C. D.1解:∵a、b、c,成等比数列,∴b2=ac,∴cosB==≥=.∴cos2B+2cosB=2cos2B+2cosB-1=2(cosB+)2-,∴当cosB=时,cos2B+2cosB取最小值2-=.故选C.10. 给出数列,,,,,,…,,,…,,…,在这个数列中,第50个值等于1的项的序号是()A.4900B.4901C.5000D.5001解:值等于1的项只有,,,…所以第50个值等于1的应该是那么它前面一定有这么多个项:分子分母和为2的有1个:分子分母和为3的有2个:,分子分母和为4的有3个:,,…分子分母和为99的有98个:,,…,分子分母和为100的有49个:,,…,,…,.所以它前面共有(1+2+3+4+…+98)+49=4900所以它是第4901项.故选B.二、填空题:(本大题共有5 题,每题5分,共25分)当x≥0,时(x-1)(x-1)=9,解得:x=4答案:-4或414. 在△ABC中,角A、B、C所对的边分别为a、b、C、若(b-c)cosA=acosC,则cosA=解:由正弦定理,知由(b-c)cosA=acosC可得(sinB-sinC)cosA=sinAcosC,∴sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∴cosA=.故答案为:15. 设a+b=2,b>0,则+ 的最小值为解:∵a+b=2,∴=1,∴+=++,∵b>0,|a|>0,∴+≥1(当且仅当b2=4a2时取等号),∴+≥+1,故当a<0时,+的最小值为.故答案为:.3212-+)( 17. 某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.(1)求第五、六组的频数,补全频率分布直方图;(2)若每组数据用该组区间中点值作为代表(例如区间[70,80)的中点值是75),试估计该校高一学生历史成绩的平均分;(3)估计该校高一学生历史成绩在70~100分范围内的人数.解:(1)设第五、六组的频数分别为x ,y由题设得,第四组的频数是0.024×10×50=12则x 2=12y ,又x+y=50-(0.012+0.016+0.03+0.024)×10×50即x+y=9∴x=6,y=3补全频率分布直方图(2)该校高一学生历史成绩的平均分=10(45×0.012+55×0.016+65×0.03+75×0.024+85×0.012+95×0.006)=67.6(3)该校高一学生历史成绩在70~100分范围内的人数:500×(0.024+0.012+0.006)×10=21018. 根据如图所示的程序框图,将输出的x ,y 依次记为x 1,x 2,…,x xx ,y 1,y 2…y xx ,(1)求出数列{x n },{y n }(n ≤xx )的通项公式;(2)求数列{x n +y n }(n ≤xx )的前n 项的和S n . cos BD BC B =20. 某森林出现火灾,火势正以每分钟100 m 2的速度顺风蔓延,消防站接到警报立即派消防员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火50 m 2,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1 m 2森林损失费为60元,问应该派多少消防员前去救火,才能使总损失最少?解:设派x名消防员前去救火,用t分钟将火扑灭,总损失为y元,则t==,y=灭火材料、劳务津贴+车辆、器械、装备费+森林损失费=125tx+100x+60(500+100t)=125x•+100x+30000+y=1250•+100(x-2+2)+30000+=31450+100(x-2)+≥31450+2=36450,当且仅当100(x-2)=,即x=27时,y有最小值36450.答:应该派27名消防员前去救火,才能使总损失最少,最少损失为36450元.21. 各项为正数的数列{a n}满足=4S n−2a n−1(n∈N*),其中S n为{a n}前n项和.(1)求a1,a2的值;(2)求数列{a n}的通项公式;(3)是否存在正整数m、n,使得向量=(2a n+2,m)与向量=(−a n+5,3+a n)垂直?说明理由.解:(1)当n=1时,=4S1−2a1−1,化简得(a1−1)2=0,解之得a1=1当n=2时,=4S2−2a2−1=4(a1+a2)-2a2-1将a1=1代入化简,得a22−2a2−3=0,解之得a2=3或-1(舍负)综上,a1、a2的值分别为a1=1、a2=3;(2)由=4S n−2a n−1…①,=4S n+1−2a n+1−1…②②-①,得−=4a n+1−2a n+1+2a n=2(a n+1+a n)移项,提公因式得(a n+1+a n)(a n+1-a n-2)=0∵数列{a n}的各项为正数,∴a n+1+a n>0,可得a n+1-a n-2=0因此,a n+1-a n=2,得数列{a n}构成以1为首项,公差d=2的等差数列∴数列{a n}的通项公式为a n=1+2(n-1)=2n-1;(3)∵向量=(2a n+2,m)与向量=(-a n+5,3+a n)∴结合(2)求出的通项公式,得=(2(2n+3),m),=(-(2n+9),2n+2)若向量⊥,则•=-2(2n+3)(2n+9)+m(2n+2)=0化简得m=4(n+1)+16+∵m、n是正整数,∴当且仅当n+1=7,即n=6时,m=45,可使⊥符合题意综上所述,存在正整数m=45、n=6,能使向量=(2a n+2,m)与向量=(-a n+5,3+a n)垂直.2019-2020年高一下学期期中考试历史一、选择题(共25小题,没小题2分,共50分)1.在农村常可见到这样的现象:一些年届七旬的老翁,要向三岁稚童称“叔”。
永定俗谓:“白头哥,坐地叔”(即对平辈的白头老翁仅呼“哥”,而对尚在襁褓中的叔辈,即使上年纪的老者也要唤其为叔)。
这一现象反映了宗法观念A.强调血缘纽带 B.利于凝聚宗族C.以嫡长子继承制为特点 D.重视尊卑等级2.《吕氏春秋•爱类》云:“神农之教曰:‘士有当年而不耕者,则天下或受其饥矣;女有当年而不织者,则天下或受其寒矣。
’故身亲耕,妻亲织,所以见致民利也。
”神农氏此语表明A.男耕女织的重要性 B.重农抑商的必要性C.小农经济的脆弱性 D.古代农业的落后3.西汉名臣晁错在《论贵粟疏》中言:“商贾大者积贮倍息,小者坐列贩卖……故其男不耕耘,女不蚕织,衣必文采,食必粱肉,亡农夫之苦,有阡陌之得。
”该言论反映了A.商人的逐利投机行为 B.男耕女织方式的瓦解C.商人富裕祥和的生活 D.作者的重农抑商思想4.东汉历史学家班固在《汉书•张安世传》中记载:“(张)安世尊为公侯,食邑万户,然身衣弋绨(黑色),夫人自纺绩,家童七百人,皆有手技作事,内治产业,累织纤微,是以能殖其货,富于大将军(霍)光。