椭圆及其标准方程(第2课时)
椭圆的标准方程(第二课时)课件-2024-2025学年高二上学期数学人教A版选择性必修第一册

5
,求另一个端点的轨迹方程.
解:依题意得,AC AB
3 4
2
5 2 10
2
故C点的轨迹为以A 4, 2 为圆心,以 10为半径的圆,
P
M
O
D
相关点法:
因为点P(x0,y0)在圆x2+y2=4上,所以
x02+y02=4
2
即
4
+ 2 = 1
①
所以点M的轨迹是椭圆.
利用已知方程上的点来表
示所求点,结合已知方程整
理化简得所求轨迹方程,这
种方法叫做相关点法.
x
题型讲解——轨迹方程
1.△ABC的顶点B,C的坐标分别为(0,0),(4,0), AB边上的中
2.动点M x , y 与定点F 4, 0 的距离和M到定直线l:x 的距离是常数 ,求动点
4
5
M的轨迹
解:设d是点M到直线l:x
就是集合
MF
4
P M |
d
5
x 4 y2
2
由此得
25
的距离,根据题意,动点M的轨迹
4
25
x
4
4
,化简得9 x 2 25 y 2 225
5
x2 y2
即
1
25 9
题型讲解——轨迹方程
例4:动圆M与圆C1 : x 1 y 36相内切,与圆C 2 :: x 1 y 2 4相外切,
椭圆的定义及标准方程第二课时

宝应县范水高级中学备课纸学科:数学 执教者:卢浩 执教班级:高二(4)(5) 日期: 年 月 日 教学内容: 椭圆标准方程(二)教学目的要求;1.掌握椭圆的定义、方程及标准方程的推导;2.掌握焦点、焦点位置与方程关系、焦距;教学重点;椭圆的标准方程及定义教学难点:椭圆标准方程的推导教学方法:学导式学法指导:1、渗透数形结合思想;2.、提高学生解题能力。
3、与学生展开讨论,从而使学生自己发现规律教具准备:投影片教学过程一、基础题: 1已知椭圆方程为1112022=+y x ,那么它的焦距是( ) A.6 B.3 C.331 D.312、1,6==c a ,焦点在y 轴上的椭圆的标准方程是 .3、已知椭圆的两个焦点坐标是F 1(-2,0),F 2(2,0),并且经过点P (23,25-), 则椭圆标准方程是______.二、例题讲授:例1、 求适合下列条件的椭圆的标准方程:(1)焦点在x 轴上,且经过点(2,0)和点(0,1).(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.(3)已知椭圆经点33(1,),(3,2,求椭圆方程。
练习:(1) 两个焦点坐标分别是(-3,0),(3,0),且经过点(5,0)的椭圆方程为___________;(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26的椭圆的标准方程为______________________。
例2 如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ˊ,求线段PP ˊ的中点M 的轨迹例3、P 是椭圆1162522=+y x 上一点,F 1、F 2是焦点,若∠F 1PF 2=60°, 求△PF 1F 2的面积.例4、求过点A (-1,-2)且与椭圆19622=+y x 的两个焦点相同的椭圆标准方程练习1、 方程22212x y m m +=-表示椭圆的充要条件是_______________。
《椭圆及其标准方程》人教版高中数学选修2-1PPT课件(第2课时)

PF1 PF2 16(2 3),
S
F1PF2
1 2
PF1
PF2 sin30 8 4
3.
巩固练习
例3:已知△ABC的一边BC长为8,周长为20,求顶点A的轨迹方程. 解:以BC边所在直线为x轴,BC中点为原点,建立如右图所示的直角坐标系,则B、C两点的坐标分
别为(-4,0)、(4,0).
|PA|,由于圆P与圆C相内切, ∴|PC|=r-|PA|, 即|PA|+|PC|=r=6. 因此,动点P到两定点A(0,2)、C(0,-2)的距离之和为6, ∴P的轨迹是以A、C为焦点的椭圆,且2a=6,2c=4,即a=3,c=2,∴b2=5.
∴所求动圆圆心P的轨迹方程为 x2 y2 1. 59
巩固练习
例3.如图,已知点A(-5,0),B(5,0).直线AM,BM交于点M,且它们的斜率之积是- 4/9,求 点M的轨迹方程.
y M
直译法
A
O
B
x
巩固练习
练习:已知x轴上一定点A 1, 0, Q为椭圆 x2 y2 1
4 上任一点, 求AQ的中点M的轨迹方程.
[解]设中点M的坐标为x, y,点Q的坐标为x0, y0 ,
人教版高中数学选修2-1
第2章 圆锥曲线与方程
2.2.1椭圆及其标准方程第二课时
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-1
讲解人:XXX 时间:2020.6.1
课前导入
定义
图形 方程 焦点 a,b,c之间的关系
椭圆的标准方程
|MF1|+|MF2|=2a (2a>2c>0)
《椭圆及其标准方程》第二课时教学设计

教学篇•方法展示一、教学背景1.教材分析《椭圆及其标准方程》是继学习“圆及其标准方程”之后运用“曲线与方程”的思想解决二次曲线问题的又一实例。
从知识体系上讲,本节课是对用坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础。
从教材安排上讲,椭圆是三种圆锥曲线当中最重要的一种,教材中以椭圆为例,求椭圆方程,利用方程讨论几何性质,以及探究轨迹方程和符合椭圆标准方程的动点的轨迹的方法。
从方法上说为我们后面研究双曲线、抛物线提供了基本模式和理论基础,起着承上启下的重要作用。
2.学情分析在学习本节课前,学生已经学习了“曲线和方程”和“椭圆及其标准方程”,对用坐标法研究几何问题已经有了一些了解,基本能运用求曲线方程的一般方法求曲线的方程,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何的时间还不长,学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免有些困难,比如:自我检测2学生想不到把1a2和1b2分别看作整体,例1动点A 的运动轨迹不是椭圆,而要叙述为动点A在椭圆上运动,还有会把轨迹和轨迹方程这两个概念混淆。
二、教学目标1.知识目标:求椭圆的标准方程;求符合条件的点的轨迹方程。
2.能力目标:使学生掌握确定椭圆标准方程中参数a,b的方法;掌握求动点轨迹方程的一些方法(如直接法、相关点法等)。
3.情感目标:激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
通过主动探索、合作交流,感受探索的乐趣和成功的经验,体会数学的理性和严谨。
三、教学重点、难点重点:椭圆的标准方程,求动点的轨迹方程。
难点:求动点的轨迹方程。
四、教法和学法教法:设疑诱思、问题导学、合作探究。
学法:动手练习、主动探索、共同交流。
五、教学准备1.学生准备:复习椭圆及其标准方程,预习教材第41、42页例题。
2.教师准备:教学设计,多媒体课件制作。
3.教学手段:利用计算机多媒体教学。
人教版高中数学选择性必修第一册3-1-1(2课时)椭圆及其标准方程

【解析】 ∵|PF1|=4,∴|PF2|=2a-4=6-4=2.∵|F1F2|=2c =2 7,∴在△F1PF2 中,利用余弦定理可得,
cos∠F1PF2=|PF1|22+|PF|P1F|·2|2|-PF|2F| 1F2|2=-12, ∴∠F1PF2 的大小为 120°.
第24页
新教材同步学案 数学 选择性必修第一册
第3页
新教材同步学案 数学 选择性必修第一册
探究 1 此类题的条件恰好满足椭圆的定义,故先确定动点 的轨迹为椭圆,再由待定系数法求解.
第4页
新教材同步学案 数学 选择性必修第一册
思考题 1 设圆 Q:(x-1)2+y2=81,A 是圆内一点,坐 标为(-1,0),P 是圆 Q 上任意一点,线段 AP 的垂直平分线和 半径 QP 相交于点 M,求 M 的轨迹方程.
第11页
新教材同步学案 数学 选择性必修第一册
例 4 如图,设点 A,B 的坐标分别为(-5, 0),(5,0).直线 AM,BM 相交于点 M,且它们 的斜率之积是-49,求点 M 的轨迹方程.
第12页
新教材同步学案 数学 选择性必修第一册
【解析】 设点 M 的坐标为(x,y),因为点 A 的坐标是(-5, 0),
第30页
新教材同步学案 数学 选择性必修第一册
第21页
新教材同步学案 数学 选择性必修第一册
探究 5 椭圆中的焦点三角形问题经常是用定义结合正余弦 定理、勾股定理等来解决,在解题时,出现|PF1|+|PF2|形式,经 常用到配方、解方程,把|PF1|·|PF2|看作一个整体.
教学设计2:3.1.2 第2课时 椭圆的标准方程及性质的应用

3.1.2第2课时椭圆的标准方程及性质的应用
教材分析
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习椭圆的简单几何性质
教材的地位和作用地位:本节课是在椭圆的概念和标准方程的基础上,运用代数的方法,研究椭圆的简单几何性质及简单应用. 本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。
作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。
因此,内容在解析几何中占有非常重要的地位。
教学目标与核心素养
重点难点
重点:椭圆的方程及其性质的应用
难点:直线与椭圆的位置关系
课前准备
多媒体.
教学过程
离心率
解:建立如图所示的平面直角坐标系,
2 2+y2
b2
=1(a>b>0) ,
=2x +m ,椭圆C :x 24+y 2
2=
2F B n =,则22,AF n BF =
教学反思
通过椭圆几何性质的应用,培养学生数学建模能力,并介绍椭圆的定义二定义,体会圆锥曲线的统一性。
在直线与椭圆学习过程中,注意类比直线与圆的位置关系的判断方法。
高中数学选修2-1课时作业6:2.2.1 椭圆及其标准方程(二)

2.2.1 椭圆的标准方程(二)1.已知a =13,c =23,则该椭圆的标准方程为( ) A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1 [解析]选D.由a 2=b 2+c 2,∴b 2=13-12=1.分焦点在x 轴和y 轴上写标准方程.2.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( ) A .5 B .6C .7 D .8[解析]选D.∵a =5,|PF 1|=2.∴|PF 2|=2a -|PF 1|=2×5-2=8.3.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1C.y 24+x 23=1 D.y 24+x 2=1 [解析]选A.c =1,a =12()2+12+0+2-12+0=2,∴b 2=a 2-c 2=3.∴椭圆的方程为x 24+y 23=1. 4.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1[解析]选B.由椭圆方程,得a =3,b =2,c =5,∵|PF 1|+|PF 2|=2a =6且|PF 1|∶|PF 2|=2∶1,∴|PF 1|=4,|PF 2|=2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴△PF 1F 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×2×4=4. 5.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析]选C.mx 2+ny 2=1可化为x 21m +y 21n =1,因为m >n >0,所以0<1m <1n,因此椭圆焦点在y 轴上,反之亦成立.6.椭圆x 2m +y 215=1的焦距等于2,则m 的值是________. [解析]当焦点在x 轴时,m -15=1,m =16;当焦点在y 轴时,15-m =1,m =14.[答案]16或147.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是________.[解析]原方程可化为x 22+y 22k =1,因表示焦点在y 轴上的椭圆.∴⎩⎪⎨⎪⎧k >0,2k >2.解得0<k <1. ∴k 的取值范围是(0,1).[答案](0,1)8.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项,则椭圆的方程为__________.[解析]由题设知|PF 1|+|PF 2|=2|F 1F 2|=4,∴2a =4,2c =2,∴b =3,∴椭圆的方程为x 24+y 23=1.[答案]x 24+y 23=1 9.求适合下列条件的椭圆的标准方程:(1)椭圆上一点P (3,2)到两焦点的距离之和为8;(2)椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15.解:(1)①若焦点在x 轴上,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由题意知2a =8,∴a =4,又点P (3,2)在椭圆上,∴916+4b 2=1,得b 2=647. ∴椭圆的标准方程为x 216+y 2647=1. ②若焦点在y 轴上,设椭圆的标准方程为:y 2a 2+x 2b 2=1(a >b >0),∵2a =8,∴a =4. 又点P (3,2)在椭圆上,∴416+9b 2=1,得b 2=12.∴椭圆的标准方程为y 216+x 212=1. 由①②知椭圆的标准方程为x 216+y 2647=1或y 216+x 212=1. (2)由题意知,2c =16,2a =9+15=24,∴a =12,c =8,∴b 2=80.又焦点可能在x 轴上,也可能在y 轴上,∴所求方程为x 2144+y 280=1或y 2144+x 280=1. 10.已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是椭圆左、右焦点,若PF 1⊥PF 2,试求:(1)椭圆方程;(2)△PF 1F 2的面积.解:(1)由PF 1⊥PF 2,可得|OP |=c ,即c =5.设椭圆方程为x 2a 2+y 2a 2-25=1代入P (3,4), 得9a 2+16a 2-25=1,解得a 2=45,a 2=5(舍去).∴椭圆方程为x 245+y 220=1. (2)S △PF 1F 2=12|F 1F 2||y P |=5×4=20. 能力提升1.已知椭圆x 23+y 24=1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形[解析]选B.由椭圆定义知|MF 1|+|MF 2|=2a =4,且已知|MF 1|-|MF 2|=1,所以|MF 1|=52,|MF 2|=32.又|F 1F 2|=2c =2.所以有|MF 1|2=|MF 2|2+|F 1F 2|2.因此∠MF 2F 1=90°,△MF 1F 2为直角三角形.2.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为__________.[解析]当△PF 1F 2面积取最大时,S △PF 1F 2=12×8b =12,∴b =3.又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1. [答案]x 225+y 29=1 3.已知椭圆8x 281+y 236=1上一点M 的纵坐标为2. (1)求M 的横坐标;(2)求过M 且与x 29+y 24=1共焦点的椭圆的方程. 解:(1)把M 的纵坐标代入8x 281+y 236=1,得8x 281+436=1, 即x 2=9.∴x =±3.即M 的横坐标为3或-3.(2)对于椭圆x 29+y 24=1,焦点在x 轴上且c 2=9-4=5, 故设所求椭圆的方程为x 2a 2+y 2a 2-5=1(a 2>5),把M 点坐标代入得9a 2+4a 2-5=1, 解得a 2=15(a 2=3舍去).故所求椭圆的方程为x 215+y 210=1. 4. 已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过点B 且与圆A 内切,如下图,求圆心P 的轨迹方程.解:设|PB|=r.∵圆P与圆A内切,圆A的半径为10,∴两圆的圆心距|P A|=10-r,即|P A|+|PB|=10,而|AB|=6,∴|P A|+|PB|>|AB|,∴圆心P的轨迹是以A,B为焦点的椭圆.∴2a=10,2c=|AB|=6.∴a=5,c=3.∴b2=a2-c2=25-9=16.∴圆心P的轨迹方程为x225+y216=1.。
椭圆及其标准方程第二课时(教学设计)高中数学新教材选择性必修第一册

3.1.2 椭圆及其标准方程第2课时教学设计(一)教学内容椭圆及其标准方程(二)教学目标1.通过知识的教学,使学生能熟练掌握椭圆的标准方程,焦点、焦距等概念以及a、b、c之间的关系,发展解析几何中代数运算素养.2.通过求点的轨迹方程,能使学生体验曲线与方程之间的一一对应关系,进一步体会坐标法和数形结合的思想.(三)教学重点及难点重点:求椭圆的标准方程.难点:轨迹方程的求法.(四)教学过程设计(主体内容)用问题分解教学目标1.课题导入问题1:上节课我们学习了椭圆的定义,请同学们回忆一下,椭圆是怎样定义的?追问1:椭圆的标准方程是怎样的?它的图形有什么特点?参数a、b、c的关系是怎样的?追问2:现在我们来求椭圆的标准方程,还需要用坐标法吗?师生活动:学生作答,老师适时补充,教师板书,明确求椭圆的标准方程不需要用坐标法,可用待定系数法确定a,b即可.设计意图:目的是使学生熟悉椭圆的定义及标准方程以及a,b,c各量的关系,熟悉焦距.为下一步求椭圆的标准方程做好铺垫.2.例题教学例1 求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点(2,0)和点(0,1).(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到与它较近的一个焦点的距离为2.(3)椭圆经过点(1,32),(2)师生活动:通过学生交流探索,让学生学会分析与解决问题,学会转化问题和应用方程组思想,体会椭圆标准方程的常规方法待定系数法,便于掌握本节的重点.设计意图:巩固椭圆及其标准方程.问题2:动点的轨迹和轨迹方程有何区别?例2 如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足。
当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?(当P经过圆与x轴的交点时,规定点M与点P重合.师生活动:(1)轨迹是指图形,轨迹方程是指方程.明确求轨迹方程即是求轨迹上任意的点M的坐标(x,y)所满足的条件,因此必须先搞清楚点M所满足的条件.(2)掌握求一类轨迹问题的基本思路与方法,即通过建立点M与已知曲线上点的联系,利用已知曲线的方程求解. (3)明确椭圆与圆的联系,椭圆可看作是把圆“压扁”或“拉长”后,圆心一分为二所成的曲线.设计意图:提高思维的探究性与挑战性,理解椭圆与圆的关系.例3 如图4,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是4 -9,求点M 的轨迹方程.师生活动:(1)在学生分析、讨论解题思路的基础上,由学生独立完成;(2)教师视情况讲解、点评;(3)注意检验方程与曲线之间是否等价;(4)此题反过来,就是椭圆的一条性质.课堂练习:教科书第109页练习第3,4题.设计意图:深化学生对求曲线的方程的方法、椭圆的几何特征的认识.师生活动:学生运用椭圆的概念与椭圆的标准方程解决第3题,运用求曲线的方程的方法解决第4题,教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程.问题3:什么是椭圆的焦点三角形?焦点三角形又蕴含哪些知识呢?定义:椭圆上一点和两个焦点构成的三角形,称之为椭圆的焦点三角形.例4 椭圆22143x y+=,点P是椭圆上一点,F1,F2是椭圆的左、右焦点,且∠PF1F2=120°,则△PF1F2的面积为________.师生活动:教师在黑板上画出示意图,引导学生可联想解三角形的知识,由学生说出解决方案.(时间允许的话)从此题可推出一般结论:(1).(2)当P 点在椭圆与y 轴的交点时,焦点三角形面积最大为bc.设计意图:例题的难度不大,由学生自主思考分析并通过运算解决,培养独立思考独立分析解决问题的能力,通过练习,提醒学生在解决问题时,要根据题目的条件,灵活选用相关知识进行求解.3.课堂小结:问题4:回顾本节课所学知识与学习过程,你能对本节课的研究内容与结论作个梳理吗?师生活动:先由学生对椭圆的标准方程和轨迹方程求法作梳理,教师进行补充.设计意图:及时梳理、提炼与升华所学知识.(五)目标检测设计1.课堂检测(1).求符合下列条件的椭圆的标准方程:①经过点P(-,(1,;②a=2b0).设计意图:考查学生对椭圆的标准方程及a ,b ,c 之间的关系的理解与掌握水平,(2).已知△ABC 的周长为6,顶点A ,B 的坐标分别为(0,1),(0,-1),则点C 的轨过方程为( ) (A)221x 2)43x y +=≠±( (B)2212)34x y +=≠±(y (C)221x 0)43x y +=≠( (D)2210)34x y +=≠(y设计意图:考查学生对椭圆及其标准方程的理解水平以及思维的严谨性.(3).已知点A(-1.0),B 是圆F :229(1)x y +=-(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程. 师生活动:学生先独立完成,后相互交流,教师视学生错误情况进行点评、校正.教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程,考查学生求轨迹方程的掌握情况.2.课后作业教科书习题3.1第2,6,10题.(六)教学反思 点的纵坐标)是(P b S PF F 0021y .cy 2tan 2==∆θ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1.1 椭圆及其标准方程(第 2 课时)
【学习目标】
1.掌握运用定义法、待定系数法求椭圆的标准方程。
2.利用中间变量求点的轨迹。
【重点】利用中间变量求点的轨迹(椭圆),体会坐标法的基本思想。
【难点】利用中间变量求点的轨迹,感受坐标法的应用。
【复习回顾】
【课堂探究】
题型探究一:利用待定系数法求椭圆的标准方程
(这个内容在第1课时已讲解,对应导学案的例2及变式训练,还有课本第34页的例1.)
题型探究二:利用椭圆定义求轨迹方程
例1:已知圆B :22(1)16x y ++=及点(1,0)A ,C 为圆B 上任意一点,求AC 的垂直平分线l 与线段CB 的交点P 的轨迹方程。
【变式1】已知 B 、C 是两个定点,|BC |=6,且△ABC 的周长等于 16,求顶点 A 的轨迹方程。
题型探究三:利用中间变量求点的轨迹
(课本第34页的例2、例3)
【变式2】(课本第36页的练习4)
题型探究四:椭圆中的焦点三角形问题
例4:椭圆221127
x y +=的焦点为1F ,2F ,点P 在椭圆上,若12PF =-,则2PF = ,12F PF ∠的余弦值为 。
【变式3】已知P 为椭圆22
1259
x y +=上一点,1F ,2F 是椭圆的焦点,1290F PF ∠=︒,则12F PF ∆的面积为 。
【课堂练习】
1. 椭圆22
1916
x y +=上一点P 到两焦点的距离之和为( ) A. 10 B. 8 C. 6 D.不确定
2.已知焦点坐标为(0,4)-,(0,4),且6a =的椭圆方程是( ) A. 2213620x y += B. 2212036x y += C. 2213616x y += D. 22
11636
x y += 3.已知椭圆的方程为:22
12516
x y +=,若C 为椭圆上一点,1F ,2F 分别为椭圆的左、右焦点,并且12CF =,则2CF = 。
4.若ABC ∆的两个顶点坐标分别为(4,0)A -,(4,0)B ,ABC ∆的周长为18,则顶点C 的轨迹方程是( )
A. 221259y x +=
B. 221259x y +=
C. 221259y x +=(0)y ≠
D. 221259
x y +=(0)y ≠ 【课堂小结】
本节课主要掌握:利用中间变量求点的轨迹(椭圆),体会坐标法的基本思想。
【布置作业】
课本教材第42页:习题2.1 A 组 第6题;B 组第1题。