第三章导数与微分习题解答
导数与微分练习题及解析

导数与微分练习题及解析在微积分学中,导数和微分是最基本的概念之一。
它们可以帮助我们研究函数的变化率和性质,广泛应用于物理、经济、工程等各个领域。
为了帮助你更好地理解导数和微分的概念,以下是一些练习题及其解析。
练习题1:求函数f(x) = x^2 + 3x + 2在x = 2处的导数和切线方程。
解析:首先,我们求函数f(x)的导数。
使用求导法则,对于多项式函数来说,可以将每一项的指数与系数相乘,并将指数减一,得到函数的导数。
f'(x) = 2x + 3接下来,我们计算x = 2处的导数值。
f'(2) = 2(2) + 3 = 7切线方程的一般形式为y = mx + b,其中m代表斜率,b代表截距。
根据导数的定义,导数即为切线的斜率。
所以切线的斜率为m = 7。
将切点的坐标代入切线方程,我们可以得到b的值。
2 = 7(2) + b2 = 14 + bb = -12最终的切线方程为y = 7x - 12。
练习题2:求函数f(x) = e^x * sin(x)的导数。
解析:考虑到函数f(x) = e^x * sin(x)是两个函数的乘积,我们可以使用乘积法则来求导。
乘积法则的公式为:(uv)' = u'v + uv'对于e^x和sin(x)两个函数,它们的导数分别为e^x和cos(x)。
根据乘积法则,我们可以将这两个导数与原函数进行组合,得到最终的导数为:f'(x) = (e^x * cos(x)) + (e^x * sin(x))练习题3:求函数f(x) = ln(x^2 + 1)的导数和微分。
解析:首先,我们求函数f(x)的导数。
根据链式法则,可以分别计算外函数和内函数的导数。
设内函数为u = x^2 + 1,则内函数的导数为du/dx = 2x。
外函数为f(u) = ln(u),则外函数的导数为df/du = 1/u。
根据链式法则,函数f(x)的导数为:f'(x) = df/du * du/dx= (1/u) * (2x)= 2x / (x^2 + 1)接下来,我们计算函数f(x)的微分。
第三章 导数与微分 习题及答案

第三章 导数与微分同步练习 一、填空 1、若[]1cos 1)0()(lim=--→xf x f x x ,则)0(f '= 。
2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。
3、若)(x e f y -=,且x x x f ln )(=',则1=x dxdy = 。
4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。
5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。
6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。
7、已知x x y ln =,则)10(y = 。
8、已知2arcsin )(),2323(x x f x x f y ='+-=,则:0=x dxdy = 。
9、设1111ln22++-+=x x y ,则y '= 。
10、设方程y y x =确定y 是x 的函数,则dy = 。
11、已知()xke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dyxd 。
二、选择1、设f 可微,则=---→1)1()2(lim1x f x f x ( )A 、)1(-'-x fB 、)1(-'fC 、)1(f '-D 、)2(f ' 2、若2)(0-='x f ,则=--→)()2(lim000x f x x f xx ( )A 、41 B 、41- C 、1 D 、-1 3、设⎪⎩⎪⎨⎧=≠=0001arctan )(x x xx x f ,则)(x f 在0=x 处( )A 、不连续B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 32+= B、x x y sin =C、21x x y +=D、x x y cos += 5、设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) A、在0=x 处极限不存在 B、有跳跃间断点0=x C、在0=x 处右极限不存在 D、有可去间断点0=x6、设函数)(),(21x y x y 的弹性分别为)0(,≠b b a ,则函数)()(21x y x y y =的弹性为( ) A、b a - B、b aC、2112y by ay - D、以上都不对 7、已知)(x f e y =,则y ''=( )A、)(x f e B、)]()([)(x f x f e x f ''+' C、)()(x f e x f '' D、)}()]({[2)(x f x f e x f ''+'8、设函数⎩⎨⎧≤+>+=11)ln()(2x bx x x a x f 在1=x 处可导。
3章微分中值定理与导数应用习题解答

第3章 微分中值定理与导数应用习题解答1.验证中值定理的正确性(1) 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cot ξ=0. 由y '(x )=cot x =0得)65 ,6(2πππ∈,因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.(2) 验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性.解 因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点ξ∈(0, 1), 使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x .因此确有)1 ,0(12135∈±=ξ, 使01)0()1()(--='y y y ξ.(3) 对函数f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上验证柯西中值定理的正确性. 解 因为f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上连续, 在)2 ,0(π可导, 且F '(x )=1-sin x 在)2 ,0(π内不为0, 所以由柯西中值定理知至少存在一点)2,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--. 令)0()2()0()2()()(F F f f x F x f --=''ππ, 即22sin 1cos -=-πx x .化简得14)2(8sin 2-+-=πx . 易证114)2(802<-+-<π, 所以14)2(8sin 2-+-=πx 在)2 ,0(π内有解, 即确实存在)2,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--.2. 证明题:(1)证明恒等式: 2arccos arcsin π=+x x (-1≤x ≤1).证明 设f (x )= arcsin x +arccos x . 因为 01111)(22≡---='x x x f ,所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x .(2)若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0, x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.(3)若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明: 在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0.又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0.(4) 设a >b >0, n >1, 证明: nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明 设f (x )=x n , 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即a n -b n =n ξ n -1(a -b ). 因为 nb n -1(a -b )<n ξ n -1(a -b )< na n -1(a -b ), 所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) .3. 用洛必达法则求下列极限: (1)22)2(sin ln limx x x -→ππ; (2)nn m m ax a x a x --→lim; (3)x xx 2tan ln 7tan ln lim0+→; (4)x x x 3tan tan lim 2π→;(5)2120lim x x e x →; (6)⎪⎭⎫ ⎝⎛---→1112lim 21x x x ; (7)x x xa )1(lim +∞→; (8)xx xsin 0lim +→; 解: (1)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ.(2)nm n m n m ax nn m m ax a nm na mx nx mx a x a x -----→→===--1111limlim. (3)2000021sec 77ln tan 77tan 272tan 7lim lim lim lim 11ln tan 22tan 727sec 22tan 2x x x x x x x x x x x x x x→+→+→+→+⋅⋅====⋅⋅.(4))sin (cos 23)3sin (3cos 2lim31cos 3cos lim 3133sec sec lim 3tan tan lim 22222222x x x x x x x x x x x x x x -⋅-==⋅=→→→→ππππ 3sin 3sin 3lim cos 3cos lim22=---=-=→→x xx x x x ππ.(5)+∞====+∞→+∞→→→1lim lim 1lim lim 2101222t t t t x x xx e t e x e e x (注: 当x →0时, +∞→=21xt ). (6)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (7)解法1 因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而 221()ln(1)1lim (ln(1)limlim 11x x x aa axa x x x x x x→∞→∞→∞⋅-+++==- limlim 1x x ax aa x a →∞→∞===+ ,所以 a x ax x x x e exa ==++∞→∞→)1ln(lim )1(lim . 解法2 lim 1lim 1axxa ax x a a e x x →∞→∞⎡⎤⎛⎫⎛⎫⎢⎥+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(8) 因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 00ln lim sin ln lim csc x x x x x x →+→+= 2001sin lim lim 0csc cot cos x x x x x x x x→+→+==-=-⋅ ,所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .4. 验证下列各题: (1) 验证极限xxx x sin lim+∞→存在, 但不能用洛必达法则得出.解 1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x xx x sin lim+∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx xx x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则.(2) 验证极限xx x x sin 1sinlim20→存在, 但不能用洛必达法则得出.解 0011sin sin lim sin 1sinlim020=⋅=⋅=→→xx x x x x x x x , 极限x x x x sin 1sinlim 20→是存在的. 但xx x x x x x x x cos 1cos1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则. 5. 将下列函数展开的带有佩亚诺型余项的n 阶泰勒公式(1) 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1)所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+=])2[()2(2)1( )2(231)2(221)2(212ln 13322n n nn x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-.(2) 求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为f '(x )=e x +x e x ,f ''(x )=e x +e x +x e x =2e x +x e x , f '''(x )=2e x +e x +x e x =3e x +x e x , ⋅ ⋅ ⋅, f (n )(x )=ne x +xe x ;f (k )(0)=k (k =1, 2, ⋅ ⋅ ⋅, n ),所以 )(!)0( !3)0(!2)0()0()0()(32n nn xx o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+=)()!1(1!2132n n x o x n x x x +-⋅⋅⋅+++=.6. 确定下列函数的单调区间:(1) y =2x 3-6x 2-18x -7; (2)xx x y 6941023+-=; 解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0, 令y '=0得驻点x 1=-1, x 2=3. 列表得可见函数在(-∞, -1]和[3, +∞)内单调增加, 在[-1, 3]内单调减少.(2)223)694()1)(12(60x x x x x y +----=', 令y '=0得驻点211=x , x 2=1, 不可导点为x =0. 列表得可见函数在(-∞, 0), ]21 ,0(, [1, +∞)内单调减少, 在]1 ,21[上单调增加.7.证明下列不等式::(1)当x >0时, x x +>+1211;(2)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(, 则f (x )在[0, +∞)内是连续的. 因为x x f +-='12121)(01211>+-+=xx , 所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x ,也就是 x x +>+1211.(2)设f (x )=x ln2-2ln x , 则f (x )在[4, +∞)内连续, 因为 0422ln 224ln 22ln )(=->-=-='e x x x f ,所以当x >4时, f '(x )>0, 即f (x )内单调增加.因此当x >4时, f (x )>f (4)=0, 即x ln2-2ln x >0,也就是2x >x 2.8.求下列函数图形的拐点及凹或凸的区间: (1) y =x 3-5x 2+3x +5 ; (2) y =xe -x ;(3) y =(x +1)4+e x .解 (1)y '=3x 2-10x +3, y ''=6x -10. 令y ''=0, 得35=x .因为当35<x 时, y ''<0; 当35>x 时, y ''>0, 所以曲线在]35 ,(-∞内是是凸的, 在) ,35[∞+内是凹的, 拐点为)2720,35(.(2)y '=e -x -x e -x , y ''=-e -x -e -x +x e -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2).(3)y '=4(x +1)3+e x , y ''=12(x +1)2+e x .因为在(-∞, +∞)内, y ''>0, 所以曲线y =(x +1)4+e x 的在(-∞, +∞)内是凹的, 无拐点.9.求函数的极值:(1) y =2x 3-6x 2-18x +7; (2) y =x -ln(1+x ); (3) y =-x 4+2x 2 .解 (1)函数的定义为(-∞, +∞), y '=6x 2-12x -18=6(x 2-2x -3)=6(x -3)(x +1), 驻点为x 1=-1, x 2=3. 列表可见函数在x =-1处取得极大值17, 在x =3处取得极小值-47.(2)函数的定义为(-1, +∞), xxx y +=+-='1111, 驻点为x =0. 因为当-1<x <0时, y '<0; 当x >0时, y '>0, 所以函数在x =0处取得极小值, 极小值为y (0)=0.(3)函数的定义为(-∞, +∞),y '=-4x 3+4x =-4x (x 2-1), y ''=-12x 2+4, 令y '=0, 得x 1=0, x 2=-1, x 3=1.因为y ''(0)=4>0, y ''(-1)=-8<0, y ''(1)=-8<0, 所以y (0)=0是函数的极小值, y (-1)=1和y (1)=1是函数的极大值.10.求下列函数的最大值、最小值: (1) y =2x 3-3x 2 , -1≤x ≤4;(2) y =2x 3-6x 2-18x -7(1≤x ≤4).解 (1)y '=6x 2-6x =6x (x -1), 令y '=0, 得x 1=0, x 2=1. 计算函数值得 y (-1)=-5, y (0)=0, y (1)=-1, y (4)=80,经比较得出函数的最小值为y (-1)=-5, 最大值为y (4)=80.(2) y '=6x 2-12x -18=6(x -3)(x +1), 函数f (x )在1≤x ≤4内的驻点为x =3. 比较函数值:f (1)=-29, f (3)=-61, f (4)=-47,函数f (x )在x =1处取得最大值, 最大值为f (1)=-29.11.某地区防空洞的截面拟建成矩形加半圆(如图), 截面的面积为5m 2, 问底宽x 为多少时才能使截面的周长最小, 从而使建造时所用的材料最省?解 设矩形高为h , 截面的周长S , 则5)2(212=⋅+πx xh , x x h 85π-=.于是xx x x h x S 10422++=++=ππ(π400<<x ), 21041xS -+='π.令S '=0, 得唯一驻点π+=440x .因为0203>=''xS , 所以π+=440x 为极小值点, 同时也是最小值点. 因此底宽为π+=440x 时所用的材料最省. 12.从一块半径为R 的圆铁片上挖去一个扇形做成一漏斗(如图), 问留下的扇形的中心角ϕ取多大时, 做成的漏斗的容积最大?解 漏斗的底周长l 、底半径r 、高h 分别为 l =R ⋅ϕ, πϕ2R r =, 222242ϕππ-=-=Rr R h .漏斗的容积为22223242431ϕππϕπ-==R hr V (0<ϕ<2π).2222234)38(24ϕπϕπϕπ--⋅='R V ,驻点为πϕ362=. 由问题的实际意义, V 一定在(0, 2π)内取得最大值, 而V 在(0, 2π)内只有一个驻点, 所以该驻点一定也是最大值点. 因此当ϕ π362=时, 漏斗的容积最大.13.一房地产公司有50套公寓要出租. 当月租金定为1000元时, 公寓会全部租出去. 当月租金每增加50元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费100元的维修费. 试问房租定为多少可获最大收入?解 房租定为x 元, 纯收入为R 元.当x ≤1000时, R =50x -50⨯100=50x -5000, 且当x =1000时, 得最大纯收入45000元. 当x >1000时,700072501100)]1000(5150[)]1000(5150[2-+-=⋅---⋅--=x x x x x R ,72251+-='x R . 令R '=0得(1000, +∞)内唯一驻点x =1800. 因为0251<-=''R , 所以1800为极大值点, 同时也是最大值点. 最大值为R =57800.因此, 房租定为1800元可获最大收入.。
第03章微分中值定理与导数的应用习题详解

M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。
可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。
—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。
可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。
「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。
微积分第三章习题解答

第三章习题解答 习题 3-11. 验证函数()f x =在区间[0,4]上满足罗尔定理的条件,并求出使得结论成立的点ξ。
解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f ==所以函数在区间[0,4]上满足罗尔定理,则有()0f ξ'==,83ξ=。
2. 验证函数3()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使得结论成立的ξ。
解:函数3()1f x x =-在区间[1,2]上连续,在(1,2)上可导,则满足拉格朗日中值定理,则有2(2)(1)321f f ξ-=-,即ξ=3. 函数4()1f x x =-与2()g x x =在区间[1,2]上是否满足柯西中值定理的所有条件,如满足,求出满足定理的数值ξ。
解:函数4()1f x x =-与2()g x x =在区间上连续,在区间(1,2)上可导,则满足柯西中值定理,则有3(2)(1)4(2)(1)2f f g g ξξ-=-,即ξ=4. 若4次方程432012340a x a x a x a x a ++++=有4个不同的实根,证明3201234320a x a x a x a +++=的所有根皆为实根。
证明:设43201234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x ,且1234x x x x <<<,则函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,则在1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。
这说明方程3201234320a x a x a x a +++=至少有3个实根,而方程为3次方,则最多也只有3个实根,所以结论得到证明。
5. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明:存在(0,1)ξ∈,使得()()f f ξξξ'=-。
高等数学(林伟初)习题详解习题详解-第3章导数与微分

习题3-11.设某产品的总成本C 是产量q 的函数:2+1C q =,求 (1) 从100q =到102q =时,自变量的改变量q ∆; (2) 从100q =到102q =时,函数的改变量C ∆; (3) 从100q =到102q =时,函数的平均变化率; (4) 总成本在100q =处的变化率. 解:(1) q ∆=102-100=2,(2) (102)(100)C C C ∆=-=22102+1)-(100+1)=404((3) 函数的平均变化率为00()()4042022C q q C q C q q +∆-∆===∆∆. (4) 总成本在100q =处的变化率为100()(100)lim 100q C q C q →--22100100100lim lim (100)200100q q q q q →→-==+=- 2.设()f x =(4)f '.解44()(4)(4)lim4x x f x f f x →→-'==-412x →==3.根据函数导数定义,证明(cos )sin x x '=-.证 根据函数导数定义及“和差化积”公式,得0cos()cos (cos )limh x h x x h →+-'=0sin2limsin()22h hhx h →=-+⋅sin x =-.4.已知()f a k '=,求下列极限:(1) 0()()lim;x f a x f a x→-- (2) 0()()lim x f a x f a x x→+--解 (1) 00()()()()limlim ();x x f a x f a f a x f a f a k x x →→----'=-=-=-- (2) 0()()lim x f a x f a x x →+--=0()()()()lim x f a x f a f a f a x x →+-+--00()()()()lim lim x x f a x f a f a x f a x x→→+---=+-()()2f a f a k ''=+= 5.已知.0)0(=f (0)1f '=,计算极限0(2)lim.x f x x→ 解 00(2)(2)(0)lim=2lim 2(0)22x x f x f x f f x x →→-'== 6.求下列函数的导数: (1) 5y x =;(2) y =(3) x y e -=; (4) 2x x y e =; (5) lg y x =;(6) sin 4y π=解(1) ()545x x '=;(2) 31443()4x x -''==;(3) 1()ln x x x e e e e ----'==-;(4) (2)[(2)](2)ln(2)2(ln 21)x x x x x x e e e e e ''===+;(5) 1(lg )ln10x x '=; (6)(sin )04π'=7.问函数⎩⎨⎧=,,sin )(x x x f 00≥<x x 在0=x 处是否可导?如可导,求其导数.解 考察0=x 处的左、右导数(0)f -'=0(0)(0)lim h f h f h -→+-0sin lim 1,h hh-→==(0)f +'=0(0)(0)lim h f h f h+→+-0lim 1h h h +→==, 所以,函数在0=x 处的可导,且(0)1f '=.8.讨论函数2,0()2,011,1x x f x x x x x ⎧-≤⎪=<<⎨⎪+≥⎩在点0=x 和1x =处的连续性与可导性.解 (1)考察0=x 处的左、右导数(0)f -'=0(0)(0)lim h f h f h-→+-0lim 1,h hh -→-==-(0)f +'=0(0)(0)limh f h f h+→+-02lim 2h hh +→==, 所以,函数在0=x 处不可导;又0lim ()lim ()0(0)x x f x f x f -+→→===,所以,函数在0=x 处连续. (2) 考察1x =处的左、右导数(1)f -'=1()(1)lim 1x f x f x -→--122lim 2,1x x x -→-==-(1)f +'=1()(1)lim 1x f x f x +→--21(1)2lim 2,1x x x +→+-==- 所以,函数在1x =处的可导,且(1)2f '=.9.求等边双曲线x y 1=在点⎪⎭⎫⎝⎛2,21处的切线的斜率, 并写出在该点处的切线方程和法线方程.解 由导数的几何意义,得切线斜率为31/21x x k y x =='⎛⎫'== ⎪⎝⎭1/2214x x ==-=-.所求切线方程为,⎪⎭⎫ ⎝⎛--=-2142x y 即.044=-+y x法线方程为,⎪⎭⎫⎝⎛-=-21412x y 即.01582=+-y x10.求曲线ln y x =在点(),1e 处的切线与y 轴的交点. 解 曲线ln y x =在点(),1e 处的切线斜率为111x x ek y x e==⎛⎫'=== ⎪⎝⎭故切线方程为11()y x e e-=-.上式中,令0x =,得0y =.所以,曲线ln y x =在点(),1e 处的切线与y 轴的交点为()0,0.习题3-21.求下列函数的导数:(1) 23sin y x x x =+-;(2) y =;(3) ln 2s t +; (4) cos ln y x x x =⋅(5) 11x y x +=-; (6) 21x e y x =+解 (1) y '=23cos x x +-;(2) 57332422()2()()353y x x x x x x ----''''=+-=+-;(3) sin )0s t t '''=+=t ; (4) cos ln (cos )cos (ln )y x x x x x x x ''''=⋅+⋅cos ln sin ln cos x x x x x x =⋅-⋅+ (5) 22(1)(1)(1)(1)2(1)(1)x x x x y x x ''+--+--'==--; (6) 22222()(1)(1)1(1)x x xe e x x e y x x ''+-+'==++ 222222(1)2(1)(1)(1)x x xe x xe x e x x +--==++ . 2.求下列函数在给定点处的导数: (1) arccos ,y x x =求12x y =';(2) tan sec ρθθθ=+,求4;d d πθρθ=(3) ()f x =(0)f '. 解 (1) y '=arccos +(arccos )x x x x ''=arccos x12x y ='=11arccos2-3π(2)2d tan sec sec tan d ρθθθθθθ=++4d 121d 4πθρπθ==+⋅+=2π(3) 331()ln(1)22x f x x e =-+,333()22(1)x f x e '=-+ 故(0)f '333(0)22(11)4f '=-=+3.曲线32y x x =-+上哪一点的切线与直线210x y --=平行?解 231y x '=-,令2y '=,即231=2x -,得=1x 或=-1x ,代入原曲线方程都有:2y =,故所求点为:()1,2或()-1,2.4.求下列函数的导数: (1) x y sin ln =;(2) 310(1)y x =-;(3) 23(cos )y x x =+;(4) y =(5) 22sin sin y x x =⋅; (6) 2tan[ln(1)]y x =+ ;(7) 1sin 2x y = ;(8)ln x xy e=;(9)ln(y x =;(10))0(arcsin 22222>+-=a ax a x a x y 解(1) y '=()1sin sin x x '⋅cos cot sin x x x==; (2) 39323910(1)(1)30(1)y x x x x ''=--=-; (3) 2223(cos )(cos )y x x x x ''=++223(cos )(12cos (sin ))x x x x =++⋅-223(cos )(1sin 2)x x x =+-;(4) 211ln(2)ln(1)32y x x ==--+y '=221(1)3(2)21x x x '-+-+=213(2)1x x x --+; (5) 2222sin cos sin sin cos 2y x x x x x x '=⋅+⋅⋅222sin 2sin 2sin cos x x x x x =⋅+⋅;(6) 222sec [ln(1)][ln(1)]y x x ''=+⋅+=222222212sec [ln(1)](1)sec [ln(1)]11x x x x x x'+⋅+=+++ ; (7) 1sin 12ln 2(sin )xy x ''=⋅=1sin 112ln 2cos ()xx x'⋅1sin22ln 21cos xx x =-;(8)ln ()ln x x x y e x ''= ln 2ln (ln )ln x x x x x x e x ''-==ln 2ln 1ln xx x e x-;(9)y x ''=22'==+;(10)22y '=22=+5.已知)(u f(1) (csc )y f x =; (2) (tan )tan[()]y f x f x =+.解 (1) (csc )(csc )y f x x '''=⋅=(csc )csc cot f x x x '-⋅⋅ (2) 2(tan )(tan )sec [()]()y f x x f x f x ''''=⋅+⋅=22sec (tan )sec [()]()x f x f x f x ''⋅+⋅.习题3-31.求下列由方程所确定的隐函数()y y x =的导数d d y x: (1) 4444x y xy -=-; (2); sin cos()0y x x y +-=;(3) sin 0x y e e xy --=;(4) arctan y x=.解 (1)方程两边同时对自变量x 求导,得33d d 4444d d y y x y y x x x -=--, 整理得 33d ()d y y x x y x -=+,故33d d y x y x y x+=-; (2) d d cos sin sin()(1)0d d y yy x x x y x x+⋅--⋅-= 整理求得d d y x =sin()cos sin()sin x y y xx y x---+(3) d d cos ()0d d x y y y e exy y x x x--+= 求得 d d y x =cos cos x y e y xy e x xy-+(4)2222111.(22)21()xy y x yy y x x y x'-'=+++ 整理求得 2222xy y x yy x y x y ''-+=++ 故 d d y x =x yx y+-.2.求曲线3335x xy y ++=在点(1,1)处的切线方程和法线方程.解 方程两边同时对自变量x 求导,得2233330x y xy y y ''+++=解得 d d y x =22y x y x+-+,在点(1,1)处,(1,1)1y '=-,于是,在点(1,1)处的切线方程为 11(1)y x -=--,即20x y +-=, 法线方程为 11(1)y x -=-即y x =.3.用对数求导法求下列各函数的导数d d y x: (1) sin (0)x y x x =>; (2) a x x y x a x =++;(3) y =(4) (sin )(cos )y x x y =.解 (1)等式两边取对数ln sin ln y x x =⋅两边对x 求导得11cos ln sin ,y x x x y x'=⋅+⋅ 故 s i n d 1cos ln sin d x y x x x x x x ⎛⎫=⋅+⋅ ⎪⎝⎭. (2) ()1ln a x x y ax a a x -''=++()1ln ln 1a x x axa a x x x -=++⋅+(3) []1ln(1)ln(2)ln(3)ln(4)2y x x x x =-+----- 11111121234y y x x x x ⎛⎫'=+-- ⎪----⎝⎭得11111234y x x x x ⎫'=+--⎪----⎭.(4) lnsin ln cos y x x y =lnsin cot ln cos tan y x y x y x y y ''+=-⋅ d d y x =ln cos cot tan ln sin y y x x y x-+ 4.求下列参数方程所确定的函数的导数d d yx:(1) 221x t t y t ⎧=-⎨=-⎩; (2) 33cos sin x a y a θθ⎧=⎨=⎩. 解 (1) d ()d ()y y t x x t '='212t t -=- (2) 22d ()3sin cos d ()3cos (sin )y y a x x a θθθθθθ'⋅=='⋅-=tan θ- 5.求椭圆6cos 4sin x t y t=⎧⎨=⎩在4t π=相应点处的切线方程.解 d ()d ()y y t x x t '='()()4sin 4cos 2cot 6sin 36cos t t t t t '===--'.4t π=时,切线斜率为4d 2d 3t yxπ==-,()4x π=()4y π=.故所求切线方程为2(3y x -=-- .习题3-41.求函数2x y =当x 由1改变到1.005的微分. 解 因为d d 2d ,y y x x x '== 由题设条件知 1x =,d 1.00510.005x x =∆=-= 故所求微分为 d 210.0050.0y =⨯⨯= 2.求函数sin 2y x =在0x =处的微分. 解 所求微分为00d (sin 2)d 2cos2d x x y x x x x =='===2d x 3.求下列各微分d y : (1) 3cos x y e x =; (2) 2sin 2xy x =; (3) 2ln(1)x y e-=+;(4) y = (5) 23xy e x y =+;(6) 221xy x y +=.解 (1) 33d cos d()d(cos )x x y x e e x =+=33cos 3d sin d xxx e x e x x ⋅-⋅=3(3cos sin )d x e x x x -;(2) 22244dsin 2sin 2d 2cos 2d 2sin 2d d x x x x x x x x xy x x x --== 32(cos 2sin 2)d x x x x x-=; (3) 222212d d(1)d 11x xx x xe y e xe ----=+=-++;(4) d y =2)x =+=(5)方程两边对求微分(d d )3d 2d xy e x y y x x y y +=+.整理得 (2)d (3)d xy xy xe y y ye x -=-解得 3d d 2xyxy ye y x xe y-=-;(6) 方程两边对求微分22d 2d 2d d =0y x xy y xy x x y +++.整理得 22(2)d (2)d xy x y y xy x +=-+解得 222d d 2xy y y x x xy+=-+4.计算下列各数的近似值:(1) 0.03e ;(2)解(1) 0.0310.03e ≈+=1.03;(2)==112(1)516=≈-⋅=1.975. 5.在下列等式的括号中填入适当的函数, 使等式成立.(1) d()3d x =; (2) d()2d x x =;(3) d()sin d t t ω=; (4) 2d(cos )(x =.解(1) 3x c +;(2) 2x c +;(3) 1cos t ωω-;(4) 22d(cos )2sin d x x x x =-x = 即d x =,故22d(cos )4x x =-.习题3-51.求下列函数的二阶导数:(1) 38cos y x x x =+-; (2) 2(1)arctan y x x =+; (3) 2x y xe =;(4) x y x =.解(1) 238sin y x x '=++,6cos y x x ''=+; (2) y '=2arctan 1x x +,y ''=222arctan 1xx x ++; (3) y '=2222x x e x e +,y ''=2222244x x x xe xe x e ++=222(32)x xe x +;(4) ln ln y x x =,1ln 1y x y'=+,y '=(ln 1)x x x + y ''=21()(ln 1)(ln 1)(1ln )x x x x x x x x x x x -''+++=++2. 验证函数2312x xy C e C e -=+(其中12,C C 为任意常数)满足方程60y y y '''+-=.证:23122-3x x y C e C e -'=,231249x x y C e C e -''=+232323121212(49)(2-3)6()x x x x x x C e C e C e C e C e C e ---++-+0=. 3.设函数()y f x =二阶可导,求下列函数的二阶导数: (1) (sin )y f x =; (2) 2(ln )y x f x =.解 (1)求导数d (sin )(sin )cos (sin )d yf x x x f x x'''=⋅=⋅,于是22d (cos )(sin )cos (sin )(sin )d yx f x x f x x x'''''=⋅+⋅⋅ =2cos (sin )sin (sin )x f x x f x '''⋅-⋅ (2) d 2(ln )(ln )d y xf x xf x x '=+22d d yx =2(ln )2(ln )(ln )(ln )f x f x f x f x ''''+++=2(ln )3(ln )(ln )f x f x f x '''++. 4.对下列方程所确定的函数)(x y y =求22d d yx:(1) 2y e xy e +=;(2) arctan y x=.解 (1)方程两边对x 求导0y e y y xy ''++=得 yyy e x'=-+. 因此求得222d ()(1)d ()y y y y y e x y e y x e x ''+-⋅+=-+ =2()(1)()y y y y y y y e x y e e x e x e x --+-⋅+++-+=2322()y y y xy ye y e e x +-+;(2) 方程两边对x 求导2222211()1xy yx yy y x yx x'-'+=++得 x yy x y+'=-. 因此求得222d (1)()()(1)d ()y y x y x y y x x y ''+--+-=- = 2232()()x y x y +-5.对下列参数方程所确定的函数)(x y y =求22d d yx:(1) 2323x t t y t t⎧=-⎪⎨=-⎪⎩(1)t ≠; (2) ⎩⎨⎧-=-=)cos 1()sin (t a y t t a x . 解(1) d ()d ()y y t x x t '='2333(1)222t t t -==+-. 故 22d d y x 3(1)222t t '+=-=34(1)t -; (2) d ()d ()y y t x x t '='()()1cos sin 1cos sin a t t ta t t '-==-'-. 故 22d d yxsin ()1cos (1cos )t t a t '-=- 2cos (1cos )sin sin (1cos )(1cos )t t t tt a t --⋅-=-21(1cos )a t --).,2(Z n n t ∈≠π 6.求下列函数的n 阶导数:(1) 2sin y x =; (2) ln(1)y x =+; (3) 112-=x y ; (4) (1)(2)()y x x x x n =+++ .解(1) 2()()1cos 2(sin )()2n n x x -=1cos 211()2(sin 2)2cos 2,2222x x x π-⎛⎫'=-⋅-=-⋅+ ⎪⎝⎭221cos 211()2sin 22cos 2,222222x x x πππ+⎡⎤⎛⎫⎛⎫''=-⋅-+=-⋅++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2()()1cos 2(sin )()2n n x x +==12cos(2)2n n x π--+;(2) []1ln(1)1x x '+=+[]21ln(1)(1)x x ''+=-+ ,[](3)32ln(1)(1)x x +=+ []()1(1)!ln(1)(1)(1)n n nn x x --+=-+; (3) 21111()1211y x x x ==---+, 故()11(1)!112(1)(1)n n n n n y x x ++⎡⎤-=-⎢⎥-+⎣⎦; (4) 1(1)(2)()(12)n n y x x x x n xn x +=+++=+++++()(1)(1)!!()(1)!22n n n ny n x n x n +=++=++ 复习题3(A )1.已知0()f x k '=(k 为常数),则(1) 000(2)()limx f x x f x x∆→+∆-=∆;(2) 001lim [()()] n n f x f x n→∞+-=(3) 000()(2)lim h f x h f x h h→+--=.1.解 (1)2k ; (2) k ; (3) 3k .(1) 000000(2)()(2)()lim 2lim 2x x f x x f x f x x f x x x∆→∆→+∆-+∆-=∆∆=2k ;(2) 00001()()1lim [()()]lim 1n n f x f x n n f x f x nn→∞→∞+-+-==k ;(3) 000()(2)lim h f x h f x h h →+--=00000()()()(2)lim h f x h f x f x f x h h →+-+--000000()()(2)()lim +2lim 2h h f x h f x f x h f x h h→→+---=-=3k . 2.函数)(x f y =在点0x 处的左导数0()f x -'和右导数0()f x +'都存在,是()f x 在0x 可导的( )A . 充分必要条件;B . 充分但非必要条件;C . 必要但非充分条件;D . 既非充分又非必要条件. 2 .答C . ()f x 在0x 可导的充分必要条件是0()f x -'和0()f x +'都必须存在且相等;反之,0()f x -'和0()f x +'都存在,不能保证()f x 在0x 可导.3.函数()sin f x x =在0=x 处 ()A . 可导;B . 连续但不可导;C . 不连续;D . 极限不存在.3.答B . 函数()sin f x x =在0=x 连续;但(0)1(0)1f f -+''=-≠=,故()s i n f x x =在0=x 不可导.4.设()f x 对定义域中的任意x 均满足(1)()f x mf x +=,且(0)f n '=则必有 ( )A . (1)f '不存在;B . (1)f m '=;C . (1)f n '=;D . (1)f mn '=.4.答D . 0(1)(1)(1)limh f h f f h→+-'=00()(0)()(0)lim lim h h mf h mf f h f m h h →→--== (0)mf mn '==5.解答下列各题:(1)设ln 2y =,求y ';(2) 设a x x a y x a x a =+++(0,1)a a >≠,求d d y x; (3)设22()x y x f e =⋅,)(u f 可导,求d y ;(4) y =d d y x ;(5) 求曲线sin()0xy x y -+=在点(0)π,的切线与法线方程;(6) 已知函数)(x y y =由方程 ⎩⎨⎧==ta y t a x 33sin cos 确定,求d d y x ,22d d y x ; (7) 设(sin )cos 2csc f x x x '=+,求()f x '';(8) 设31x y x =+,求()n y (3)n ≥.5.解(1)y '=22=2cot x x ⋅(2) y '=1ln ()a x x ax a a x -'++由对数求导法,可求得()(1ln )x x x x x '=+故y '=1ln (1ln )a x x ax a a x x -+++; (3) 2222d 2d ()()d x x x y x x f e x f e e '=⋅+⋅=22222()d ()2d x x x xf e x x f e e x '+⋅⋅ =2222[()()]d x x x x f e xe f e x '+⋅;(4)取对数 1ln ln (ln ln )(ln ln )2b y x b a x a x b a ⎡⎤=+-+-⎢⎥⎣⎦两边求导 1y y '=1ln 2b b a a x x ⎛⎫-+ ⎪⎝⎭故y '=1ln 2b a b ax -⎛⎫+ ⎪⎝⎭(5) 两边求导cos()(1)0y xy x y y '+-++=得cos()cos()x y yy x x y +-'=-+,故(0)1+1y ππ-'=, 因此切线方程为 1()1y x ππ=--+,法线方程为(1)()y x ππ=+-; (6) d ()d ()y y t x x t '='223sin cos 3cos (sin )a t t a t t ⋅=⋅-=tan t - 22d d y x 2(tan )3cos (sin )t a t t '-=⋅-22sec 3cos (sin )t a t t -=⋅-=4sec 3sin t a t; (7) 由21(sin )cos 2csc 12sin sin f x x x x x'=+=-+知21()12f x x x '=-+故()f x ''=214x x--;(8) 3321111111x x y x x x x x -+===-+++++ ()n y =1(1)!(1)n nn x +-⋅+(3)n ≥. 6.设函数2,(),ax b f x x +⎧=⎨⎩ 11x x <≥在1x =处可导,求,a b 的值.6.解:因可导必连续,所以211lim ()lim 1x x ax b x -+→→+==,得1a b += 考察1x =处的左、右导数(1)f -'=1()(1)lim 1x f x f x -→--111lim lim 11x x ax b ax a a x x --→→+--===--(1)f +'=1()(1)lim 1x f x f x +→--211lim 2,1x x x +→-==- 所以,得到2,1a b ==-.7. 设函数()g x 在x a =点连续, 且()()()f x x a g x =-, 证明()f x 在x a =的可导,并求出()f a '.7.证:因()g x 在x a =点连续,故lim ()()x ag x g a →=,又()()limx a f x f a x a →-- ()()0limlim ()()x a x a x a g x g x g a x a →→--===- 故()f x 在x a =的可导,()f a '=()g a8.验证函数12y C C e =+其中12,C C 为任意常数)满足方程420xy y y '''+-=.8.证:因12y C C e '=-,12121(4y C C e C C e x''=-++故12121424(4xy y y x C C e C C e x ⎡⎤'''+-=-++⎢⎥⎣⎦(121220C C e C C e ⎤+--+=⎥⎦232323121212(49)(2-3)6()x x x x x x C e C e C e C e C e C e ---++-+0=.(B )1. 设函数()f x 在0x =连续,下列命题错误的是( )A . 若0()lim x f x x→存在,则(0)0f =;B . 若0()lim x f x x→存在,则(0)f '存在;C . 若0(2)()lim x f x f x x→+存在,则(0)0f =;D . 若0()()lim x f x f x x→--存在,则(0)f '存在.1.答:D .A .正确,因为0()limx f x x→存在,则0l i m ()=0x f x →,又()f x 在0x =连续,所以0(0)l i m ()=0x f f x →=; B .正确,因为若0()limx f x x →存在,则0()(0)(0)lim x f x f f x →-'==0()lim x f x x →存在;C .正确,因若0(2)()lim x f x f x x→+存在,则0lim (2)()=lim (2)lim ()=2(0)0x x x f x f x f x f x f →→→++=[],故(0)0f =;D .错,如()f x x =, 0()()lim0x f x f x x→--=,但(0)f '不存在.2. 若21()lim (1)tx x f t t x→∞=+,则()f t '= .2. 2(12)t t e +,221()lim (1)txt x f t t te x→∞=+=,所以()f t '=2()t te '=2(12)t t e +.3.设周期函数()f x 在()-∞∞,周期为3,且0(1)(1)li m 13x f f xx→--=,则曲线)(x f y =在点(4(4))f ,的切线斜率为 .3. -3,00(4)(4)(1)(1)(4)limlim x x f x f f x f f x x →→+-+-'==0(1)(1)limx f f x x →-+=-=0(1)(1)lim x f f t t →--=-0(1)(1)3lim 33x f f x x→--=-=-, 4. 已知(1)(2)(10)()(1)(2)(10)x x x f x x x x ---=+++ ,求(1)f '.4. 解:(1)f '1()(1)lim 1x f x f x →-=-1(1)(2)(10)(1)(2)(10) lim 1x x x x x x x x →---+++=- 1(2)(10)1(2)(9)lim (1)(2)(10) 2391011x x x x x x →---⋅--==+++⋅⋅⋅ =1110 - 5.设()f a '存在,求()()lim x a xf a af x x a→--.5. 解:()()()()()()lim lim x a x a xf a af x xf a af a af a af x x a x a→→--+-=--()()()lim x a f x f a f a a x a→-=--=()()f a af a '-6.设()max{f x x =,在区间(02),内求()f x '.6.解:()max{,f x x x ==⎪⎩0112x x <≤<<,考察1x =处的左、右导数(1)f -'=1()(1)lim 1x f x f x -→--1111lim lim ,12x x x --→→===-(1)f +'=1()(1)lim 1x f x f x +→--11lim 1,1x x x +→-==- 所以,函数在1x =处不可导.故所求导数为:1()1,f x ⎧⎪'=⎨⎪⎩0112x x <<<< 7. 设函数()g x 在0x x =点连续, 且()()f x x a g x =-, 讨论()f x 在0x x =的可导性.7. 解:0000000()()()()limlimx x x x x x g x f x f x f x x x x x →→--'==-- (1)若0()0g x ≠,则0000()lim x x x x g x x x →--不存在,此时()f x 在0x x =不可导(2)若0()0g x =,则0000()()lim 0x x x x g x f x x x →-'==-,此时()f x 在0x x =可导.8. 验证下列命题:(1) 若定义在()-∞∞,内以周期为T 的周期函数()f x 可微,则()f x '也是以周期为T 的周期函数.(2) 若函数()f x 在()a a -,内是可微奇(偶)函数,则()f x '()a a -,内必为偶(奇)函数. 8. 证: (1)因()()f x T f x +=,又0()()()lim h f x h f x f x h→+-'=,因此00()()()()()lim lim h h f x T h f x T f x h f x f x T h h→→++-++-'+===()f x '(2) 若函数()f x 在()a a -,内是可微奇函数,则有0()()()lim h f x h f x f x h →-+--'-=0()()lim h f x h f x h →--+=0()()lim h f x h f x h→--=-=()f x ', 即证得:若函数()f x 在()a a -,内是可微奇函数,则()f x '()a a -,内必为偶函数. 同理可证得:若函数()f x 在()a a -,内是可微偶函数,则()f x '()a a -,内必为奇函数.9. 设函数()f x 可微,且()()()2f x y f x f y xy +=+-,(0)3f '=,求()f x . 9. 解:由()()()2f x y f x f y xy +=+-,令0x y ==,则(0)(0)(0)f f f =+,得(0)0f =()()()limy f x y f x f x y →+-'=0()()2()limy f x f y xy f x y→+--= 0()lim2y f y x y→=-(0)232f x x '=-=-因此()f x 23x x C =-+(C 为任意常数),又(0)0f =则C =0,故()f x 23x x =- 10. 设在()-∞∞,内函数()f x 有定义, 且(0)0f =,(0)f C '=(0C ≠),又2()s i n c o s xg x e x x =+, 对任意,x y 有关系式()()()()()f x y f x g y f y g x +=+成立,证明()()f x C g x '=⋅10. 证:0()()()lim y f x y f x f x y →+-'=0()()()()()lim y f x g y f y g x f x y→+-=00()1()()lim()limy y g y f y f x g x y y →→-=+00()(0)()(0)()lim ()limy y g y g f y f f x g x y y→→--=+ =()(0)()(0)f x g g x f ''+又 2()sin sin 2sin x x g x e x e x x '=+-,得(0)0g '= 故 ()()f x C g x '=⋅.。
高数上册第三章微分中值定理和导数的应用习题答案

《高等数学教程》第三章 习题答案习题3-1 (A)1. 34=ξ 2. 14-=πξ习题3-2 (A)1. (1)31 (2) 81- 1)12()11()10(1)9(31)8(21)7()6(21)5(1)4(3)3(31e e --∞习题3-2 (B)1. n a a a e e 21)8(1)7(0)6(2)5(21)4(32)3(1281)2(41)1(--2. 连续4. )(a f ''5. )0()1(g a '=⎪⎪⎩⎪⎪⎨⎧=+''≠--+'='0]1)0([210]c o s )([]s i n)([)()2(2x g x x x x g x x g x x f(3) 处处连续.习题3-31. 432)4()4(11)4(37)4(2156)(-+-+-+-+-=x x x x x f2. 193045309)(23456+-+-+-=x x x x x x x f3. )40(,)(cos 3]2)()[sin sin(31tan 4523<<+++=θθθθx x x x x x x4.)10()]4(4[16!4)4(15)4(5121)4(641)4(412432<<-+---+---+=θθx x x x x x5. )10()(!)1(2132<<+-++++=θn nxx O n x x x x xe6. 645.1≈e7. 430533103.1;3090.018sin )2(1088.1;10724.330)1(--⨯<≈⨯<≈R R8. 121)3(21)2(23)1(-习题3-4 (A)1. 单调减少2. 单调增加3. .),23()23,()1(内单调下降在内单调上升;在+∞-∞.),2[]2,0()2(内单调增加在内单调减少;在+∞ .),()3(内单调增加在+∞-∞.),21()21,()4(内单调增加在内单调减少;在+∞-∞ .),[]0[)5(内单调下降在上单调上升;,在+∞n n7. (1) 凸 (2) 凹 (3)内凸内凹,在在),0[]0,(+∞-∞ (4)凹 8. ),(内凹,拐点内凸,在)在(82),2[]2,(1-+∞-∞ ),(内凹,拐点内凸,在)在(222),2[]2,(2e+∞-∞ 内凹,无拐点)在(),(3+∞-∞),(),(:内凹,拐点,内凸,在),,)在(2ln 1;2ln 1]11[1[]1,(4--∞+--∞ ),(内凸,拐点内凹,在)在(3arctan 21),21[]21,(5e +∞-∞ ),(凹,拐点),、凸,在、)在(001[]0,1[]1,0[]1,(6∞+---∞ 9. 29,32=-=b a10. a = 3, b = -9, c = 811. a = 1, b = -3, c = 24, d = 16习题3-4 (B)1. .)1,21(),1()21,0()0,()1(内单调增加在内单调减少;、、在∞+-∞.]22,32[]32,2[)2(内单调下降在内单调上升;在πππππππ+++k k k k .],32[),[]32,()3(内单调下降在内单调上升;、在a a a a ∞+-∞ 2. .1)3(10)2(1)1(是有一个实根时有两个实根时无实根ea e a e a =<<>3. .)2,0(内只有一个实根在π8. .9320时及当=≤k k 9. 在)(凹,拐点凹,在2,),[],(a b b b +∞-∞ 12. 82±=k 习题3-5 (A)1. .1)2(,5)0()1(==y y 极小值极大值.0)0(,4)2()2(2==-y e y 极小值极大值.25)16(,1)4()3(==y y 极小值极大值.205101)512()4(=y 极大值.45)43()5(=y 极大值.0)0()6(=y 极小值 (7) 没有极值. .)()8(1e e e y =极大值.3)1()9(=y 极大值.0)5()1(,18881)21()10(3==-=y y y 极小值极大值2. .14)2(,11)3()1(-==y y 最小值最大值.22)2ln 21(,2)1()2(1=-+=-y e e y 最小值最大值.2ln )41(,0)1()3(-==y y 最小值最大值3. 提示:可导函数的极值点必为驻点,.在题设条件下无驻点所以可证明y '4. .29)1(-=y 最大值5. .27)3(=-y 最小值6. .3)32(,2为极大值==f a7. .21,2-=-=b a8. 长为100m ,宽为5m.9. .1:1:;22,233===h d v h v r ππ 10. .44ππππ++aa ,正方形周长为圆的周长为11. .3843a a h π时,最小体积为锥体的高为=12. .22.1.776小时时间为公里处应在公路右方13. .6000)2(1000)1(==x x14. .45060075.3元件,每天最大利润为元,进货量为定价为 15. .167080,101利润=p习题3-5 (B)1. 1,0,43,41==-==d c b a 2. x = 1为极小点,y (1) = 1为极小值3. 当c = 1时,a = 0,b = -3,当c = -1时,a = 4,b = 5.4. 296)(23++-=x x x x P5. (1) f (x ) 在x = 0处连续;(2) 当ex 1=时,f (x ) 取极小值;当 x = 0时f (x ) 取极大值. 6. 310=x 当时,三角形面积最小7. 323)2()(11)1(032=--=-l x x x x y 8. .1222-≥<b b b b 时为,当时为当 9. 400 10.bc a 2 11. c a e bd L ae bd q -+-=+-=)(4)(,)(2)1(2最大利润eqedd -=η)2( ed q 21)3(==得当η 12. 2)2()4(25)1(=-=t t x 13. 156250元14. (1) 263.01吨 (2) 19.66批/年 (3)一周期为18.31天 (4)22408.74元15. 2)2()111(1)()1(-+-+=e n n n n M n16. 提示:.)1()1(ln )1()(22是极小值,证明令f x x x x f ---=习题3-6 (A)1. (1) x = 0, y = 1; (2) x = -1, y = 0; (3) x = -1, x = 1, y = 0 ; (4) x = 1, x = 2, x = -3.2. 略习题3-6 (B)1. ex y e x 1,1)1(+=-=(2)x= -1,x=1,y= -2 (3)y=x, x=0 (4)y= -2, x=0 4121,21)5(-=-=x y x2. 略习题3-7 (A)1. k=22. x x k sec ,cos ==ρ3. 02sin 32t a k =4. a a k t 4,41,===ρπ 5. 233)22ln ,22(处曲率半径有最小值- 习题3-7 (B)1. 略2. ⎪⎪⎭⎫ ⎝⎛++=)2(),2(,332323132323131x a y y a x axyR 曲率圆心3. 8)2()3(22=++-ηξ4. 约1246 (N) [提示:作匀速圆周运动的物体所受的向心力为Rmv F 2=]5. 16125)49()410(22=-+--ηπξ 习题3-81.19.018.0<<ξ 2. 19.020.0-<<-ξ 3. 33.032.0<<ξ 4. 51.250.2<<ξ总复习题三一. (1)B (2)B (3)B (4)D (5)C (6)B (7)C (8)B (9)C (10)C] 二. 25)8(/82)7()0,1()6(3)5(63)4()22,22()3(2ln 1)2(2)1(3s cm π+--x x x xeyx y 4)1(,)1(4)10()9(2222+++=三. 9)3(0)2(3)1(,7541,6,50,40,31,221,123---e⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0)1)0((210)1()()()()1(,82x g x x e x x g x g x x f x上连续在),()()2(+∞-∞'x f 9, 略四、证明题和应用题 6.)027.0,025.0()2(450449)1(7.)2,2(b a P8.12ln 31,2ln 3121-+ 9.%82.0%13)3(173)2(20)1(总收益增加,时,若价格上涨当=-p pp10.略。
第三章 导数与微分习题

习 题 三1.根据导数的定义求下列函数的导数:(1)221x y -= (2)21x y = (3)32x y =2.给定函数f (x )=ax 2+bx +c ,其中a 、b 、c 为常量,求:)(x f ',)0(f ',)21(f ',)2(a b f -' 3.一物体的运动方程为s =t 3+10,求该物体在t =3时的瞬时速度。
4.求在抛物线y =x 2上点x =3处的切线方程。
5.自变量x 取哪些值时,抛物线y =x 2与y =x 3的切线平行?6.函数⎪⎩⎪⎨⎧≤-<≤+=x x x x x f 113101)(2在点x =1处是否可导?为什么?7.讨论函数y =x|x|在点x =0处的可导性。
8.用导数定义求⎩⎨⎧≥+<=0)1ln(1)(x s x xx f 在点x =0处的导数。
9.设⎩⎨⎧<<--+≤<-+=101101)1ln()(x xx x x x f 讨论f (x )在x =0处的连续性与可导性。
10.函数⎪⎩⎪⎨⎧=+≠=0)1ln(1sin )(12x s x x x f x 在点x =0处是否继续?是否可导?11.讨论⎪⎪⎩⎪⎪⎨⎧<≤<+≤<+≤=x xx x x x x x f 2212101201)(2在x =0,x =1,x =2处的连续性与可导性。
12.求下列各函数的导数(其中a ,b 为常量):(1)532+-=x x y (2)b a x y +=(3)3412+-=xx y (4)2222x x y += (5)x x y 31-= (6))12(2-=x x y(7))11)(1(-+=x x y (8)x x y 2)1(+=(9)ba b ax y ++= (10)))((b x a x y --=(10))1)(1(a b bx ax y ++=13.求下列各函数的导数(其中a ,b ,c ,d ,n 为常量):(1))3)(2)(1(+++=x x x y(2)x x y ln =(3)x x y n ln = (4)x y alog = (5)11-+=x x y (6)215xx y += (7)x x x y --=223 (8)n cx b a y += (9)x x y ln 1ln 1+-= (10)2211xx x x y +--+= 14.求下列各函数的导数:(1)x x x y cos sin += (2)xx y cos 1-=(3)x x x y tan tan -= (4)xx y cos 1sin 5+= (5)x x x x y sin sin += (6)x x x y ln sin ⋅= 15.求曲线x y sin =在点x =π处的切线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P61 习题3-11、根据定义求导数:(1)cos y x =00000cos()cos lim2sin sin22limsin()sin22lim2sin2lim sin()lim22sin x x x x x x x x y xx x x x x x xx xx xx x x x ∆→∆→∆→∆→∆→+∆-'=∆+∆++∆--=∆∆∆+=-∆∆∆=-+⋅=- 12(2)y x =1122012()lim limlim 12x x x x x xy xx ∆→∆→∆→-+∆-'=∆====(3)y =033223222(limlimlimlimx x x x x x y x∆→∆→∆→∆→+∆'=∆=====(4)x y a =001lim lim x x x x xx x a a a y a x x+∆∆∆→∆→--'==∆∆设t x =∆,则01lim t xt a y a t→-'=再设ts a =,则log a t s =,于是111111011lim log 1limlog 1lim log [1(1)]1log ln x s ax s s a x s s a xa x s y a s a sa s a ea a→→--→--'===+-==2、0000000()()(1)lim[(()]()lim ()x x f x x f x xf x x f x x f x ∆→-∆→-∆-∆+-∆-=--∆'=-00000000000000000000000()()(2)lim()()()()lim ()()()()lim lim ()()()()lim lim ()[()]2()x x x x x x f x x f x x xf x x f x f x f x x xf x x f x f x f x x x xf x x f x f x x f x x x f x f x f x ∆→∆→∆→∆→∆→∆→+∆--∆∆+∆-+--∆=∆+∆---∆=+∆∆+∆--∆-=-∆∆''=--'= 000()(3)lim()lim (0)(0)lim (0)x x x f x x f x xf x f x f →∆→∆→∆=∆+∆-=∆'= 00001001(4)lim [()()]1()()lim 1()n nn f x f x nf x f x n nf x →∞→+-+-='=3、证:()f x 为偶函数且(0)0f =,则00000(0)(0)(0)lim ()(0)lim ()(0)lim ()(0)lim ()(0)lim (0)x x x x x f x f f x f x f xf x f xf x f xf x f x f ----+-∆→∆→∆→∆→-∆→++∆-'=∆∆-=∆-∆-=∆-∆-=--∆-∆-=--∆'=- 又()f x 在0x =处可导,则(0)(0)f f -+''=即(0)(0)f f ++''=- 所以(0)0f +'= 故(0)0f '=。
4、证:(1)设()f x 为可导的奇函数,则:0000()()()lim()()lim ()()lim[()]()lim ()x x x x f x x f x f x x f x x f x xf x x f x xf x x f x x f x ∆→∆→∆→-∆→-+∆--'-=∆--∆+=∆-∆-=-∆+-∆-=-∆'= 所以()f x '为偶函数。
(2)设()f x 为可导的偶函数,则:0000()()()lim()()lim ()()lim[()]()lim ()x x x x f x x f x f x x f x x f x xf x x f x xf x x f x x f x ∆→∆→∆→-∆→-+∆--'-=∆-∆-=∆-∆-=--∆+-∆-=--∆'=- 所以()f x '为奇函数。
(3)设()f x 为可导的周期函数且其周期为T ,则:00()()()lim()()lim ()x x f x T x f x T f x T x f x x f x x f x ∆→∆→++∆-+'+=∆+∆-=∆'= 所以()f x '仍为以T 为周期的周期函数。
5、解:00||1x x x y e =='==x y e ∴=在点(0,1)处的切线斜率为1,法线斜率为了-1,故所求的切线和法线方程分别为:1,1y x y x -=-=-即1,1y x y x =+=-+。
6、解:1lim ()lim sin0(0)x x f x x f x→→=== 所以()f x 在0x =处连续;000000011()sinsin lim ()lim 111sin sin sinlim 11sin sin1lim lim sin 11(sin sin )1lim sin 11112cos sin 12sin lim x x x x x x x x x x x x x f x xx x x x x x x x xx x x x x x x xx x x x x xx x x x x xx x -------∆→∆→∆→∆→∆→∆→∆→+∆-+∆=∆+∆-+∆+∆=∆-+∆=+∆+∆-+∆=+∆+-+∆+∆=+0022sin112()sin 2cos lim 1sin112()2()sin 2cos lim 2()111sin 2cos ()2111sin cosx x xx x x x x x x xxx x x x x x x x x x x x x x x x x x x x--∆→∆→∆-∆+∆=+∆--∆+∆+∆=+-∆+∆=+⋅-=-即:111()cos sin f x x x x'=- 于是()f x 在0x =处不可导。
7、解:()f x 在1x =处连续,112lim ()lim()(1)11x x f x ax b a b f ++→→∴=+=+===即1a b +=又()f x 在1x =处可导,00(1)(1)(1)lim (1)()lim x x f x f f x a x b a b x a---∆→∆→+∆-'=∆+∆+-+=∆= 022020(1)(1)(1)lim (1)1lim 2lim 2x x x f x f f x x xx x x +--+∆→∆→∆→+∆-'=∆+∆-=∆∆+∆=∆= 又()f x 在1x =处可导,2a ∴=由1a b +=得1b =-。
8、解:由已知,产品的产量N 并不随劳动力数量x 的增加而均匀增加,当0x x =时劳动生产率应为: 0000()()lim()x x N x N x N x x x →-'=-。
P67 习题3-21、求下列函数的导数:52524(1)(31)()(3)()1561y x x x x x x x x ''=+++''''=+++=++ 2222(2)(cos )()cos (cos )2cos sin y x x x x x x x x x x ''=''=+=- 221(3)()sin (1)sin (1)(sin )sin sin (1)cos sin xy xx x x x xx x x x+''=''+-+=-+=2(4)(tan sin )(tan )(sin )sec cos y x x x x x x''=+''=+=+ 2222222(5)()(2)4x x xy e e x xe ''='=⋅=(6)(arctan 1112y x ''='==⋅+=2222222(7)(cos3)()cos3(cos3)2cos3(3sin 3)2cos33sin 3x x x x x x x y e x e x e x e x x e x xe x e x''=''=+=⋅⋅+-=-(8)(ln(cos ))ln(cos )(ln(cos ))ln(cos )(cos )cos sin ln(cos )cos ln(cos )tan y x x x x x x xx x x x xx xx x x''=''=+'=+⋅=-=-2、解:2212122211()()2111()()21[(2)][(1)]12(2)(1)f x x x x x x x x x x --''=+++''=+++''=+++=--++2221201(0)(02)(01)4f ⨯'∴=--=-++ 22212(1)1(1)(12)((1)1)2f ⨯-'-=--=--+-+ 22212111(1)(12)(11)18f ⨯'=--=-++ 3、解:11()1111()1x f x x xf x x ==++∴=+ 211()()1(1)f x x x ''∴==-++ 4、解:当1x -∞<<时,(1)1y x ''=-=-当12x ≤≤时,[(1)(2)]23y x x x ''=--=-当2x <<+∞时,[(2)1]1y x ''=--+=1,123,121,2x y x x x --∞<<⎧⎪'∴=-≤≤⎨⎪<<+∞⎩P69 习题3-31、求下列函数的二阶导数:325527553(1)()536()525y x x y x x---'''==='''∴==-22222222222(2)()(2)2(2)(2)(2)()22(2)24x x xx x x x x x x y e e x xe y xe x e x e e x xe ex e----------''==⋅-=-'''''∴=-=-+-=---=-+ 22(3)(sin cos )cos sin (cos sin )sin cos y ax bx a ax b bxy a ax b bx a ax b bx ''=+=-'''∴=-=-- (4)(sin )sin cos (sin cos )(sin )(cos )sin cos cos sin 2cos x x x x x xxx x x x x y e x e x e x y e x e x e x e x e x e x e x e x e x ''==+'''∴=+''=+=++-=21(5)(ln 2)11()y x x y x x''=='''∴==-22(6)[ln(2)]ln(2)2[ln(2)]2122(2)4(2)x y x x x x x y x x x x x x x x ''=+=+++'''∴=++++-=++++=+2、求下列函数的n 阶导数:3222(1)(1)321(321)62(62)6y x x x x x y x x x y x ''=+++=++'''=++=+''''=+=当3n >时()0n y =112(4)23(5)34()1(2)(ln )ln 1(ln 1)()()2(2)6()(2)!,(2)n n n y x x x y x x y x x y x x y x x y n x n --------''==+'''=+=''''==-'=-='==-=--≥2(4)(5)(6)(3)(sin )2sin cos sin 2(sin 2)2cos 22sin(2)22(2cos 2)4sin 24sin(2)23(4sin 2)8cos 28sin(2)24(8cos 2)16sin 216sin(2)25(16sin 2)32cos 232sin(y x x x x y x x x y x x x y x x x y x x x y x x ππππ''==='''===+''''==-=+'=-=-=+'=-==+'===()12)212sin(2)2n n x n y x ππ-+-=+()(4)()(1)[(1)](1)(2)()x x x xx x x xn xy xe e xe x ey x e e x e x e y x n e ''==+=+'''=+=++=+=+P73 习题3-4 1、解:由0xyxy e e -+=两边对x 求导得:0x y x yy xy e e y e y y e x''+-+⋅=-'∴=+2、解:由1ln()yy x y e =-++两边对x 求导得:111yyy y y e y x yy xe ye x y '+''=-+⋅+'∴=+---3、解:由23xy e x y --=两边对x 求导得:()2021xy xyxye y xy y ye y xe ''+--=-'∴=-把0y =代入23xy e x y --=解得1x =-,12|11xyx xy ye y xe =--'∴==--即所给曲线在点(1,0)-处的切线斜率1k =- 故所求切线方程为:1(1)y x =-+即1y x =--。