最新八年级上册数学第二章实数测试题

合集下载

八年级(上册)数学第二章实数测试题

八年级(上册)数学第二章实数测试题

北师大版八年级数学上册第二章实数测试题(1)一、选择题1.下列各数:2π, 0·, 227,27, 1010010001.6,1个数为()A .2 个B .3 个C .4 个D .5 个2.在实数0,-32-,|-2|中,最小的是( ).A .-23B .C .0D .|-2|3.下列各数中是无理数的是( )A .B C D .4.下列说法错误的是( )A .±2BCD .2是分数 5.下列说法正确的是( ) A .0)2(π是无理数 B .33是有理数 C .4是无理数 D .38-是有理数6.下列说法正确的是( ) A .a 一定是正数 B .20163是有理数 C .22是有理数D .平方根等于自身的数只有17.估计20的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 8. (-2)2的算术平方根是( ) A .2 B . ±2 C .-2 D .2 9.下列各式中,正确的是( )A .3=-B .3=-C 3±D 3=± 10.下列说法正确的是( ) A .5是25的算术平方根 B .±4是16的算术平方根C .-6是(-6)2的算术平方根 D .0.01是0.1的算术平方根 11.36的算术平方根是( )A .±6B .6C .±6D . 612.下列计算正确的是( )4=±B.1= 4= 2=13.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 14.下列计算正确的是( )A .=B .27-123=9-4=1C .(21= D=15.如图:在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N16.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是 A .2.5 B .2 2 C . 3 D . 5 17.下列计算正确的是( ).A .2234-=4-3=1B .)25()4(-⨯-=4-2)×(-5)=10C .22511+=11+5=16D .32=3618.已知n -12是正整数,则实数n 的最大值为( )A .12B .11C .8D .3 19.2)9(-的平方根是x , 64的立方根是y ,则x +y 的值为( ) A .3 B .7 C .3或7 D .1或720.若||4x =9=,且||x y x y -=-,则x y +的值为( )A .5或13B .-5或13C .-5或-13D .5或-13二、填空题1.实数27的立方根是 2.若一个正数的两个平方根分别是2a -2和a -4,则a 的值是 . 3.-6的绝对值是___________. 4.估计7的整数部分是5.比较下列实数的大小(在 填上>、<或=)①-2; ②215- 21;③112 53。

(必考题)初中数学八年级数学上册第二单元《实数》检测题(包含答案解析)(1)

(必考题)初中数学八年级数学上册第二单元《实数》检测题(包含答案解析)(1)

一、选择题1.若表示a ,b 两个实数的点在数轴上的位置如图所示,则化简()2a b a b -++的结果等于( )A .2b -B .2bC .2a -D .2a2.下列是最简二次根式的是( ) A 6B 4C 15D 33.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★abb;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .①B .②C .①②D .①②③4.下列说法不正确...的是( ) A .8的立方根是2 B .23xy -的系数是13-C .对顶角相等D .若AC BC =,则点C 是线段AB 的中点5.与数轴上的点一—对应的数是( ) A .分数或整数 B .无理数 C .有理数D .有理数或无理数6.下列计算中,正确的是( ) A .((22253532=-=B .(3710101010=C .a ba c a bc =D .(3232321=-=7.在数2277,01822)316112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( ) A .3个 B .4个 C .5个 D .6个8.58) A 5B 10C 5D 5229.已知:a=23-,b=23+,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等10.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++,其中n 为正整数,则1232020a a a a ++++( ) A .201920202020B .202020202021C .202020212021D .20212021202211.已知x =5+2,则代数式x 2﹣x ﹣2的值为( ) A .9+55B .9+35C .5+55D .5+3512.下列运算正确的是( ) A .(x +y )2=x 2+y 2 B .(﹣12x 2)3=﹣16x 6 C .215-=125D .2(5)-=5二、填空题13.若最简二次根式41a -和135a b -+可以合并,则b a -=______. 14.计算:()235328-+---=__________.15.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++=_______ 16.计算()()2323-⨯+的结果是_____.17.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).1813a 13b ,那么2(2)b a +-的值是________. 19.2(1)10a b -+=,则20132014a b +=___________.20.已知4a ,化简:2(3)|2|a a +--=_____.三、解答题21.计算: (1)371(24)486⎛⎫-⨯-+⎪⎝⎭(2)31|13|(2)(32)2-+-⨯-- 22.(1)求x 的值:29x = (2)计算:22348(3)-+23.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.24.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数. 25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方. 例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n aa a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________; A .任何非零数的圈2次方都等于1; B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________; (3)将(m 为大于等于2的整数)写成幂的形式为_________.26.已知3m -的平方根是6±,3343n +=,求m n +的算术平方根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由数轴可判断出a <0<b ,|a|>|b|,得出a−b <0,a +b <0,然后再根据这两个条件对式子化简. 【详解】解:∵由数轴可得a <0<b ,|a|>|b|, ∴a−b <0,a +b <0, ∴()2a b a b -+|a−b|+|a +b|=b- a −(a +b ) =b- a –a-b =−2a . 故选:C . 【点睛】此题考查数轴,二次根式的化简,绝对值的化简,先利用条件判断出绝对值符号里代数式的正负性,掌握求绝对值的法则以及二次根式的性质,是解题的关键.2.A解析:A 【分析】根据最简二次根式的定义逐项分析即可. 【详解】6,是最简二次根式;4=2,故不是最简二次根式,不符合题意; 155=,故不是最简二次根式,不符合题意;D.=,故不是最简二次根式,不符合题意; 故选A. 【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.3.A解析:A 【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立; ③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】 解:①a b ≥时, a a b b ★, b a ab★, ∴=a b b a ★★;a b <时,a b b a ★, b b aa★, ∴=a b b a ★★; ∴①符合题意.②由①,可得:=a b b a ★★, 当a b ≥时,∴()()()()22a b b a a b a a a b b b ba b ====★★★★, ∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b b b b a a a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立, ∴②不符合题意.③当a b ≥时,0a >,0b >,∴1ab≥,∴(12a b a b a b ab ++====≥≥★★,当a b <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A . 【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.4.D解析:D 【分析】依次根据立方根、单项式、对等角和中点的定义去判断即可. 【详解】解:A. 8的立方根是2,正确,不符合题意;B. 23xy -的系数是13-,正确,不符合题意;C.对顶角相等,正确,不符合题意;D. 在同一条直线上,若AC BC =,则点C 是线段AB 的中点,原说法错误,符合题意. 故选:D . 【点睛】本题考查立方根、单项式、对等角和中点的定义.注意D 选项中要在同一条直线上.5.D解析:D 【分析】实数与数轴上的点一一对应,实数包括有理数和无理数. 【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确; 故选D . 【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.6.D解析:D 【分析】根据二次根式的性质逐一判断即可; 【详解】2228=-=-A 错误;=B 错误;=a C 错误;321=-=,故D 正确;故答案选D . 【点睛】本题主要考查了二次根式的性质,结合平方差公式和完全平方公式计算是解题的关键.7.C解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】227,0,22=,这些数都是有理数;,=112π-,3.2020020002…(相邻的两个2之间依次多一个0),是无理数,无理数共有5个. 故选:C .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义和各种类型.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.B解析:B 【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可. 【详解】===故选:B . 【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.9.C解析:C 【解析】 因为1a b ⨯==,故选C. 10.B解析:B 【分析】11(1)n n =++,然后把代数式进行化简,再进行计算,即可得到答案. 【详解】解:∵n 为正整数,∴==21(1)n n n n +++=11(1)n n ++;∴2020a +=(1+112⨯)+(1+123⨯)+(1+134⨯)+…+(1+120202021⨯) =2020+1﹣11111112233420202021+-+-++- =2020+1﹣12021=202020202021. 故选:B . 【点睛】本题考查了二次根式的化简求值,解题的关键是用裂项法将分数1n(n 1)+代成111n n -+,,寻找抵消规律求和.11.D解析:D 【分析】把已知条件变形得到x 2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可. 【详解】 ∵x, ∴x ﹣2∴(x ﹣2)2=5,即x 2﹣4x +4=5, ∴x 2=4x +1,∴x 2﹣x ﹣2=4x +1﹣x ﹣2=3x ﹣1,当x 时,原式=3)﹣1=. 故选:D . 【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D 【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误; B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确; 故选:D . 【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.【分析】由最简二次根式的定义以及同类二次根式的定义先求出ab 的值然后进行计算即可得到答案【详解】解:∵最简二次根式和可以合并∴和是同类二次根式∴∴∴;故答案为:【点睛】本题考查了最简二次根式的定义以解析:19【分析】由最简二次根式的定义,以及同类二次根式的定义,先求出a 、b 的值,然后进行计算,即可得到答案. 【详解】解:∵和 ∴和∴124135a a b -=⎧⎨-=+⎩,∴32a b =⎧⎨=⎩,∴2139ba--==; 故答案为:19. 【点睛】本题考查了最简二次根式的定义,以及同类二次根式的定义,解题的关键是熟记所学的定义,正确求出a 、b 的值.14.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()=322--=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.15.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键解析:2021 2022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=111111112021 11223342021202220222022 -+-+-++-=-=.故答案为:2021 2022.【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431 -=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.-π右【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点及π的值即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA 之间的距离为圆的周长=πA 点在原点的左边∴A解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA 之间的距离为圆的周长=π,A 点在原点的左边.∴A 点对应的数是-π.∵π>3.14,∴-π<-3.14.故A 点表示的数是-π.若点B 表示-3.14,则点B 在点A 的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.18.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 20.-5【分析】根据a 的取值范围化简二次根式及绝对值再根据整式的加减法计算法则计算得到答案【详解】∵∴a+3<02-a>0∴-a-3-2+a=-5故答案为:-5【点睛】此题考查二次根式的化简绝对值的化简解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵4a, ∴a+3<0,2-a>0,∴|2|a -=-a-3-2+a=-5, 故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.三、解答题21.(1)-1;(2)-3【分析】(1)使用乘法分配律使得计算简便;(2)实数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)371(24)486⎛⎫-⨯-+ ⎪⎝⎭371242424486=-⨯+⨯-⨯ 18214=-+-1=-(2)31|1(2)2)2-+-⨯-- 11(8)22=+-⨯142=--3=-【点睛】本题考查有理数的混合运算和实数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.(1)3x =±;(2)5.【分析】(1)根据平方根的定义求解即可;(2)先计算算术平方根、立方根和平方,再计算加减即可.【详解】解:(1)29x =x=3x =±;(22=4-2+3=5.【点睛】此题主要考查了求一个数的平方根及实数的运算,解题的关键是熟练掌握平方根的定义以及算术平方根、立方根和平方性质.23.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.24.(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.25.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意: A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.m n +的算术平方根为35【分析】根据算术平方根和立方根的定义列式求出m 、n 的值,然后代入代数式求出m +n 的值,再根据算术平方根的定义解答.【详解】解:∵3m -的平方根是6±,∴23(6)m -=±,∴39m =,∵3343n +=,∴3427n +=,∴6n =,∴m n +39635m n +=+=.【点睛】本题考查了算术平方根和平方根、立方根的定义,是基础题,熟记概念并列式求出m、n 的值是解题的关键.。

八年级数学上册第二章实数综合的测试题(有答案)

八年级数学上册第二章实数综合的测试题(有答案)

八年级数学上册第二章实数综合的测试题(有答案)八年级数学上册第二章实数综合的测试题(有答案)八年级数学上册第二章实数综合测试题(有答案)一、选择题1. 在以下数0.3, 0, , , 0.123456,0.1001001 001中,其中无理数的个数是( )A.2B.3C.4D.52. 化简的结果是( )A. 4B. -4C.4D.无意义3. 如果a是(-3)2的平方根,那么等于( )A.-3B.-C.3D. 或-4.下列说法中,正确的是( )A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数[C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,15. 下列各式中,无意义的是( )A. B. C. D.6. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A.0B.10C.0或10D.0或-107. 如果 + 有意义,那么代数式|x-1|+ 的值为( )A.8B.8C.与x的值无关D.无法确定8. 若x0,则等于( )A.xB.2xC.0D.-2x二、填空题9. 的算术平方根是______.10.如果一个数的平方根等于它本身,那么这个数是________.11.如果 =2,那么(x+3 )2=______.12. 若 + 有意义,则 =______.13. 若m0,则m的立方根是。

14. 若与|b+2|是互为相反数,则(a-b)2=______.三、解答题15.若,求的值。

16.若一个偶数的立方根比2大,平方根比4小,则这个数可能是多少?17.一个正方体木块的体积是125cm3,现在将它锯成8个同样大小的正方体小木块,求每个小正方体木块的表面积。

18.若与互为相反数,求的'值。

19. 若x、y都是实数,且y= + +8,求x+3y的立方根.20.观察下列各式及验证过程:验证:= 验证:验证:(1)按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n2的自然数)表示的等式,并进行验证.参考答案:1.B2.A3.D4.D5.A6.D7.B8.D9. 10. 0, 1 11. 1612. 13. 14. 915. 解:由,知16. 10或12或1417. 解:小正方体的体积为 cm3,边长为 cm,所以每个小正方体木块的表面积为 cm2.18. 解:由与互为相反数,知,得19. 解:由题意知,,x+3y的立方根为3.20. (1) 验证略(2) 验证略。

(必考题)初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)(4)

(必考题)初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)(4)

一、选择题 1.计算82÷的结果是( )A .10B .6C .4D .2 2.计算132252⨯+⨯的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 3.16的平方根是( )A .4B .4±C .2±D .-2 4.下列运算中错误的是( ) A .235+= B .236⨯= C .822÷= D .2 (3)3-=5.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .186.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.87.5..的是( ) A 5B .253<<C .55D .|2552=8.已知|a+b ﹣220a b +-=,则(a ﹣b )2017的值为( )A .1B .﹣1C .2015D .﹣2015 9.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 10.已知三角形的三边长a 、b 、c 满足2(2)a +3b -|c 7|=0,则三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定11.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D =512.下列说法中正确的是( )A .81的平方根是9B 4C D .64的立方根是4± 二、填空题13.下列说法:①无理数就是开方开不尽的数;②<x x 的整数有4个;③﹣3④不带根号的数都是有理数;⑤不是有限小数的不是有理数;⑥对于任意实数a a .其中正确的序号是_____.14.下列各式:===a >0,b≥0);=-,其中一定成立的是________(填序号).15.计算((22⨯+的结果是_____.16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.已知a 、b |3|0b +=,则(a +b )2021的值为________.18.在实数π,87,0中,无理数的个数是________个.19.已知2x =,2y =+.则代数式x 2+y 2﹣2xy 的值为_____.20.16的平方根是_________,算术平方根是__________.三、解答题21.(1)计算:;).(2)解方程:①4(x -1)2-9 =0;②8x 3+125=0.22.(1﹣|2﹣|;(2)计算:45÷33×35. 23.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算: 281156415497-⨯=-==2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用代数式的运算对以上规律加以证明.24.(1)观察探究: 2222221212121222(22)(22)-===-=-⨯⨯⨯++-; 322332233223233223(3223)(3223)--====++-; 43344334433431434343324334(4334)(4334)===-=-⨯⨯⨯++-. (2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果) 7667+,9889+; (3)拓展应用:①(1)1n n n n +++; ② (22322343341009999100)+++++的值. 25.已知;53a =53b =(1)ab ;(2)223a ab b -+;26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】=(a≥0,b>0)进行计算即可. 【详解】=2, 故选:D .【点睛】此题主要考查了二次根式的除法,关键是注意结果要化成最简二次根式. 2.D解析:D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4=== ∵34<<, ∴748<<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 3.C解析:C【分析】先计算16的算术平方根a ,再计算a 的平方根即可.【详解】 ∵4=,∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键. 4.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.5.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.6.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2, ∴OA OB ==∴A 所表示的数为∵23.612.9613=<,23.713.6913=>, ∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.7.C解析:C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:AB 、23,说法正确,不符合题意;C 、5的平方根是,故原题说法错误,符合题意;D 、|22-=,说法正确, 不符合题意;故选C .【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数. 8.A解析:A【详解】解:由题意得122a b a b +=⎧⎨+=⎩解得:10a b =⎧⎨=⎩()()20172017101a b ∴-=-=故选A . 9.C解析:C【解析】 因为1a b ⨯==,故选C. 10.C解析:C【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c =∴a =,3b = ,c =又∵ 222279a c b +=+==∴该三角形为直角三角形故选C .【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.11.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.12.C解析:C【分析】根据平方根,立方根,算术平方根的定义解答即可.【详解】A .81的平方根为9±,故选项错误;B 2,故选项错误;C ,故选项正确;D .64的立方根是4,故选项错误;故选:C .【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.二、填空题13.②③【分析】根据有理数无理数实数的意义逐项进行判断即可【详解】解:①开方开不尽的数是无理数但是有的数不开方也是无理数如:π等因此①不正确不符合题意;②满足﹣<x <的x 的整数有﹣1012共4个因此②正 解析:②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;②<x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意; ③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意; ⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.14.②③④【分析】根据二次根式的性质及运算法则逐项分析即可【详解】①时原式成立否则不成立如:故不一定;②一定成立因为成立时一定满足;③当时故一定成立;④当成立时则故一定成立;故答案为:②③④【点睛】本题解析:②③④【分析】根据二次根式的性质及运算法则逐项分析即可.【详解】①00,a b ≥>≠,故不一定;=00,a b ≥>;③当00,a b >≥333b a a aa ===,故一定成立; ④3a 成立时,0a ≤3a a a a a ,故一定成立; 故答案为:②③④.【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键. 15.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.16.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2-※=2=2-=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.17.-1【分析】要使只有当和时成立即此时解出a 和b 代入中求出结果即可【详解】由题意可知∴∴故答案为:-1【点睛】本题考查非负数的性质几个非负数的和为0时那么这几个非负数都为0解析:-1【分析】30b +=0=和30b +=时成立.即此时20a -=,30b +=,解出a 和b ,代入2021()a b +中求出结果即可.【详解】由题意可知20a -=,30b +=,∴23a b ==-,.∴20212021()(23)1a b +=-=-.故答案为:-1.【点睛】本题考查非负数的性质,几个非负数的和为0时,那么这几个非负数都为0. 18.【分析】无理数就是无限不循环小数理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称即有限小数和无限循环小数是有理数而无限不循环小数是无理数由此即可判定选择项【详解】由无理数的定义可知 解析:2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.由无理数的定义可知,π故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y-,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x=-2y=+23x y,则22222()(23)12x y xy x y,故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.20.±44【解析】∵42=16(−4)2=16∴16的平方根为±4;算术平方根为4故答案为±44解析:±4 4【解析】∵42=16,(−4)2=16,∴16的平方根为±4;算术平方根为4.故答案为±4,4.三、解答题21.(1)①5;②6-;(2)52x=或12x=-;②52x=-.【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a=的的形式,再根据平方根定义求解即可;②将方程移项,再整理为3x a=根据立方根定义求解即可;解:(1)解:①原式==5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4 x-=则312x-=或312x-=-,解得,52x=或12x=-.②原方程可化为3125 8x=-,解得,52x=-.【点睛】本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.22.(1)2;(2)1.【分析】(1)先分别对各自进行化简,再合并同类二次根式即可;(2)利用二次根式的乘除法公式将乘除法全部化到根号下,乘除后开方即可.【详解】解:(1)原式22+-=2;(2)原式===1.【点睛】本题考查二次根式的乘除法运算和二次根式的加减法运算.(1)中会正确对二次根式化简是解题关键;(2)熟记二次根式的乘除法公式是解题关键.23.(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可; (2)设中间那个数为n ,列得2(7)(7)n n n --+,根据平方差公式及合并同类项法则计算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,213620169120497-⨯=-==;(2)证明:设中间那个数为n ,则:2(7)(7)497n n n --+==∴2(7)(7)7n n n --+=..【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.24.(2)67-,②2143-;(3)1n n +②910. 【分析】(2)根据所给实例的解题方法计算即可;(3)根据所给的实例进行变形计算即可;【详解】 (2)()()7667766776766776677667===⨯++-67 ()()9889988998988998899889===⨯++-2143-; (3)①===②原式=1191...2221010-++-+-=. 【点睛】本题主要考查了与实数有关规律题型,准确分析计算是解题的关键.25.(1)2;(2)10.【分析】(1)根据二次根式的乘法法则求出ab 即可;(2)根据二次根式的减法法则求出-a b ,根据二次根式的乘法法则求出ab ,把原式化简,把a b ab -、代入计算即可.【详解】解:5a =+b =532ab ∴==-=,a b -==∴ (1)ab =2(2)()(22223210a ab b a b ab -+=--=-=. 【点睛】本题是一道求代数式值的问题,考查了的是二次根式的减法和乘法和整式的完全平方公式,掌握二次根式的减法法则、乘法法则是解题的关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可; (2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

八年级数学上册第二章实数测试题试题

八年级数学上册第二章实数测试题试题

第二章 卜人入州八九几市潮王学校实数一、根底训练1、______________叫做无理数,如:_______________〔至少举出三个〕2、平方根等于它本身的数是_______;算术平方根等于它本身的数是_______;立方根等于它本身的数是___。

3、正数的算术平方根是_______;0的算术平方根是_______;负数_______算术平方根;正数的平方根有_______它们互为_______;0的平方根是_______;负数_______平方根;正数有一个_____立方根;0的立方根是_______;负数有一个_______立方根。

4、对于正数a ,(a )2=______;(3a )3=______;33a =______;5、一个数的算术平方根是它本身,那么这个数是。

一个数的平方根是它本身,那么这个数是。

一个数的立方根等于它本身,那么这个数是________.1、9的算术平方根是。

化简20==81。

81的算术平方根是;64的立方根是=-2)3(π___________4、-5的绝对值是________,51-的相反数是________,211的倒数是________. 5、如图,数轴上的点A 和点B 之间的整数点有。

6、以下说法中,正确的选项是:〔〕A.带根号的数是无理数B.无理数是开方开不尽而产生的数C.无理数是无限小数D.无限小数是无理数7、在数16,-4,,3-,364,8,0.101001000100001……〔两个1之间依次多一个零〕,中是无理数的有________.826a =,那么以下结论正确的选项是〔〕 A、4.5 5.0a <<B、5.0 5.5a <<C、5.5 6.0a <<D、6.0 6.5a <<9、以下等式成立的是〔〕2- A B7-A .9494+=+B .3333=+C .4)4(2-=-D .3327=10、以下运算结果正确的选项是〔〕A .632=⨯B .2221=C .251822=+D .32)32(2-=-11、23-的相反数是________,23-的倒数是________,23-的绝对值是________.12、x 、y 为实数,且0)2(312=-+-y x ,那么x-y 的值是________. 13、按规律填空:2,2,6,22,10,…,(第n 个数).14、“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2〞,这种说明问题的方式表达的数学思想方法叫做()(A)代入法(B)换元法(C)数形结合(D)分类讨论二、典型例题15、计算:〔1)、98)21()2()2(3102-++---〔2〕221332+-; (3)2163)1526(-⨯-;(4)325092-+ (5) 2)22(32+-;〔6〕022)12(1212218--++÷--- 16、.某数有两个平方根分别是a +3与2a -15,求这个数.17、:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.18、如图,在网格图中的小正方形边长为1,那么图中的ABC ∆的面积等于。

(好题)初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)

(好题)初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)

一、选择题1.下列命题是真命题的是( ) A .同位角相等B .算术平方根等于自身的数只有1C .直角三角形的两锐角互余D .如果22a b =,那么a b =2 ) A .4 B .4± C .2± D .-2 3.一个数的相反数是最大的负整数,则这个数的平方根是( ) A .1- B .1 C .±1 D .0 4.81的平方根是( )A B .9-C .9D .9±5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★abb;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .①B .②C .①②D .①②③ 6.下列各式计算正确的是( )A +=B .26=(C 4=D =7.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7±8.下列计算正确的是( )A +=B =C 4=D 3=-9.下列说法正确的是( )A B .5C .2 3D 的点10.已知﹣1<a <0的结果为( ) A .2aB .﹣2aC .2a-D .2a11.最接近的整数是( ) A .9B .8C .7D .612.下列说法中正确的是( )A .81的平方根是9B 4 CD .64的立方根是4±二、填空题13.方程()2116x +=的根是__________. 14.已知3x -+|2x ﹣y |=0,那么x ﹣y =_____. 15.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______16.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.17.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.18.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).1913a 13b ,那么2(2)b a +-的值是________. 20.已知:15-=m m,则221m m -=_______.三、解答题21.设a 为正整数,对于一个四位正整数,若千位与百位的数字之和等于a ,十位与个位的数字之和等于1a -,则称这样的数为“a 级收缩数”.例如在正整数2634中,因为268+=,34781+==-,所以2634是“8级收缩数”,其中8a =.(1)直接写出最小的“6级收缩数”和最大“7级收缩数”;(2)若一个“6级收缩数”的千位数字与十位数字之积为6,求这个“6级收缩数”.22.25(326)(326)++-. 23.计算题: (112273⨯;(2;(3))()2331⨯-24.(1(2)计算:.25.已知(25|50x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.26.2++【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质判断即可. 【详解】解:A 、同位角不一定相等,原命题是假命题;B 、算术平方根等于自身的数有1和0,原命题是假命题;C 、直角三角形两锐角互余,是真命题;D 、如果a 2=b 2,那么a=b 或a=-b ,原命题是假命题; 故选:C . 【点睛】本题考查了命题的真假判断,包括同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.2.C解析:C 【分析】先计算16的算术平方根a ,再计算a 的平方根即可. 【详解】 ∵4=,∴4的平方根为±2. 故选C. 【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.3.C解析:C 【分析】由于最大的负整数是-1,本题即求-1的相反数,进而求其平方根. 【详解】解:最大的负整数是-1,根据概念,(-1的相反数)+(-1)=0, 则-1的相反数是1,则这个数是1,1的平方根是±1, 故选:C . 【点睛】本题考查了相反数、负整数的概念及求一个数的平方根,正确掌握相关定义是解题的关键.4.D解析:D 【分析】根据平方根的定义求解. 【详解】 ∵2(9)±=81, ∴81的平方根是9±, 故选:D . 【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.5.A解析:A 【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立; ③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】 解:①a b ≥时, a a bb★,b a ab★, ∴=a b b a ★★;a b <时,a b b a ★, b b aa★, ∴=a b b a ★★; ∴①符合题意.②由①,可得:=a b b a ★★, 当a b ≥时,∴()()()()22a b b a a b a a a bb b ba b ====★★★★, ∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b b b b a a a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立, ∴②不符合题意.③当a b ≥时,0a >,0b>,∴1ab≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A . 【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.D解析:D 【分析】根据二次根式的运算法则一一判断即可. 【详解】AB 、错误,212=(;C ==D ==故选:D . 【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.7.C解析:C 【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题. 【详解】 解||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-, 7a b ∴-=或1, 故选C . 【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.8.B解析:B 【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A错误;B、5的平方根是B错误;C∴23,故C正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.A解析:A【分析】先把被开方数化为完全平方式的形式,再根据a的取值范围去根号再合并即可.【详解】===∵-1<a <0,∴2110a a a a--=>,10a a +<∴原式1111()2a a a a a a a a a⎡⎤=---+=-++=⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了二次根式的化简,能够熟练运用完全平方公式对被开方数进行变形,是解答此题的关键.11.B解析:B 【分析】直接得出89<<,进而得出最接近的整数. 【详解】解:∵<<,∴89<<∵ 28.267.24=∴8.故选B . 【点睛】的取值范围是解题关键.12.C解析:C 【分析】根据平方根,立方根,算术平方根的定义解答即可. 【详解】A .81的平方根为9±,故选项错误;B 2,故选项错误; C,故选项正确; D .64的立方根是4,故选项错误; 故选:C . 【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.二、填空题13.或【分析】根据平方根的定义求解即可【详解】解:两边开方得或解得或【点睛】本题考查了平方根的意义解题关键是熟练运用平方根的意义准确进行计算解析:3x =或5x =-. 【分析】根据平方根的定义求解即可. 【详解】解:()2116x +=,两边开方得,14x +=或14x +=-, 解得,3x =或5x =-. 【点睛】本题考查了平方根的意义,解题关键是熟练运用平方根的意义,准确进行计算.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3 【分析】先根据非负数的性质列出方程组,求出x 、y 的值,进而可求出x ﹣y 的值. 【详解】解:∵+|2x ﹣y |=0,∴3020x x y -=⎧⎨-=⎩,解得36x y =⎧⎨=⎩.所以x ﹣y =3﹣6=﹣3. 故答案为:-3 【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.15.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可. 【详解】 解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.16.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:2+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案. 【详解】 解:根据题意,(1)1BC =-=,∴1AB BC ==,∵1AB a =--,∴11a --=,∴2a =-∴22a =-=;故答案为:2+ 【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.17.4【分析】首先根据平方根的定义求出m 值再根据立方根的定义求出n 代入-n+2m 求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵解析:4 【分析】首先根据平方根的定义,求出m 值,再根据立方根的定义求出n ,代入-n+2m ,求出这个值的算术平方根即可. 【详解】解:∵一个正数的两个平方根分别是m+3和2m-15,∴m+3+2m-15=0,解得:m=4,∵n的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m、n值,然后再求-n+2m的算术平方根.18.-π右【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点及π的值即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA之间的距离为圆的周长=πA点在原点的左边∴A解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.19.【分析】直接利用的取值范围得出ab的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab的值是解题关键解析:11-【分析】a、b的值,进而求出答案.【详解】<<,解:3134∴=,a3∴=-,3b()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)最小的“6级收缩数”为:1505,最大的“7级收缩数”为:7060;(2)这个“6级收缩数”为:2432、3323或6014【分析】(1)根据“a 级收缩数”的定义可写出所有的可能性,进而即可确定最小的“6级收缩数”以及最大的“7级收缩数”;(2)在第(1)问的基础上,结合条件“一个“6级收缩数”的千位数字与十位数字之积为6”将所拥有的可能性进行分类讨论,即可得到答案.【详解】解:(1)∵千位与百位的数字之和等于6,十位与个位的数字之和等于5∴千位与百位上的数字可能是0和6、1和5、2和4、3和3、4和2、5和1、6和0,十位与个位上的数字可能是0和5、1和4、2和3、3和2、4和1、5和0∴最小的“6级收缩数”为:1505;同理,∵千位与百位的数字之和等于7,十位与个位的数字之和等于6∴最大的“7级收缩数”为:7060.(2)设这个“6级收缩数”千位上的数字为x ,十位上的数字为y ,则这个“6级收缩数”百位上的数字为6x -,个位上的数字为615y y --=-∵09x ≤<,069x ≤-≤,09y ≤≤,059y ≤-≤∴06x ≤<,05y ≤≤∵6xy =∴当1x =时,6y =,不合题意舍去;当2x =时,3y =,符合题意,此时,百位是4,个位是2,为2432;当3x =时,2y =,符合题意,此时,百位是3,个位是3,为3323;当4x =时,32y =,不合题意舍去; 当5x =时,65y =,不合题意舍去; 当6x =时,1y =,符合题意,此时,百位是0,个位是4,为6014∴这个“6级收缩数”为:2432、3323或6014.【点睛】本题考查了新定义问题以及分类讨论的数学思想,认真审题是解题的关键.22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)8+;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-+8=(3)23)(31)+--2(31)=--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.24.(1)5;(2)1【分析】(1)将原式化为最简二次根式,在根据二次根式的加减法则运算即可(2)按平方差公式展开,利用二次根式的性质化简,再进行计算即可【详解】(15=(2)22-=65=-1=【点睛】本题考查了二次根式的混合计算,解题关键是熟练掌握运算法则,准确计算.25.(1)5x =5y =+2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.26【分析】先把二次根式化简、分母有理化、求立方根和乘方,再合并即可.【详解】解:原式32=--2332=+--=【点睛】本题考查了二次根式的运算、分母有理化、立方根,解题关键是明确分母有理化的方法,熟练进行二次根式化简与计算,会求立方根.。

(好题)初中数学八年级数学上册第二单元《实数》测试(含答案解析)

(好题)初中数学八年级数学上册第二单元《实数》测试(含答案解析)

一、选择题1.下列算式中,运算错误的是( )A .632÷=B .3515⨯=C .7310+=D .2(3)-=32.已知数据:3,4,5-,2π,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.8 3.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .144.81的平方根是( )A 81B .9-C .9D .9±5.下列选项中,属于无理数的是( )A .πB .227-C 4D .0 6.下列二次根式中,不能..3合并的是( ) A 12B 8 C 48 D 1087.下列各式计算正确的是( ) A 235+=B .236=() C 824= D 236= 8.1x -x 的取值范围是( )A .0x ≥B .1x ≤C .1x ≥-D .1≥x 9.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或2 10.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7± 11.下列计算正确的是( )A 3=3B 39 3C 235D .222 12.在代数式13x -中,字母x 的取值范围是( )A .x >1B .x ≥1C .x <1D .x 13≤ 二、填空题13.______.14.数轴上A 点表示的数是1-,点B ,C 分别位于点A 的两侧,且到A 的距离相等,若B表示的数是,则点C 表示的数是 ____________.15.计算:23-=______ =______.16.旧知回顾:在七年级学习“平方根”时,我们会直接开方解形如2810x -=的方程(解为129,9x x ==-).解题运用:方程(18)(1)170x x x -++=解为_________.17.已知3y =,则xy 的值为__________.18.10b +=,则20132014a b +=___________.19.已知,a b 为两个连续的整数,且 a b <<,则a b +=_______ 20.已知:15-=m m ,则221m m -=_______. 三、解答题21.计算:(1;(222.已知2a =2b =-a 2+b 2﹣3ab 的值.23.如果n x y =,那么我们记为:(),x y n =.例如239=,则()3,92=.(1)根据上述规定,填空:()2,8=___________,12,4⎛⎫= ⎪⎝⎭__________; (2)若()4,2a =,(),83b =,求(),b a 的值.24.计算:(101122-⎛⎫- ⎪⎝⎭25.计算:(1(8)2-÷;(2)2112(4)1223⎛⎫-÷--⨯- ⎪⎝⎭.26.计算:2016(2019)|52π-⎛⎫--- ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】解:∵=∴A选项不合题意;∵=∴B选项不合题意;∵∵C选项符合题意;∵﹣2(=3,正确,∴D选项不合题意;故选:C.【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键. 2.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】=π是无限不循环小数,解:∵2∴π是有理数,∴由30.6=可得无理数出现的频率为0.6,5故选C .【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.3.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】14==.故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.4.D解析:D【分析】根据平方根的定义求解.【详解】∵2(9)±=81,∴81的平方根是9±,故选:D.【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.5.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.6.B解析:B【分析】并的二次根式.【详解】解:AB被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C 被开方数相同,是同类二次根式,能进行合并,故本选项错误;D 故选B .【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.7.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 8.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D .【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 9.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去.②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 10.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.11.D解析:D【分析】根据二次根式的化简、立方根的化简、二次根式的加减乘除法则进行判断即可;【详解】A3,故A 错误;B ,故B 错误;C 3=6 ,故C 错误;D 、 ,故D 正确;故选:D .【点睛】本题考查了二次根式的化简、立方根的化简、二次根式的加减乘除,熟练掌握计算法则是解题的关键;12.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x﹣1≥0,解得x≥1,故选:B.【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;二、填空题13.【分析】直接利用相反数的定义得出答案【详解】解:的相反数是:故答案为【点睛】此题主要考查了相反数正确掌握相反数的定义是解题关键【分析】直接利用相反数的定义得出答案.【详解】解:.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.14.【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:设点C所表示的数为c则解得:故答案为:【点睛】此题主要考查了数轴上两点之间中点求法我们把数和点对应起来也就是把数和形结合起来二者解析:-2【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可.【详解】解:设点C所表示的数为c,则1-=解得:2-+故答案为:2-【点睛】此题主要考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.15.-94【分析】分别根据乘方和开方的意义即可求解【详解】解::-9故答案为:-9;4【点睛】本题考查了乘方和开方的意义理解乘方和开方的意义是解题关键注意在计算-32时底数为3解析:-9 4【分析】分别根据乘方和开方的意义即可求解.【详解】解::23-=-94=.故答案为:-9;4.【点睛】本题考查了乘方和开方的意义,理解乘方和开方的意义是解题关键,注意在计算-32时,底数为3.16.【分析】先将原方程化为即可类比题目中解方程的方法求解即可【详解】解:合并同类项得移项得解得故答案为:【点睛】本题考查了利用平方根解方程及整式的乘法运算掌握平方根的定义是解答此题的关键解析:1x =2x =-【分析】先将原方程化为2180x -=,即可类比题目中解方程的方法求解即可.【详解】解:(18)(1)170x x x -++=,21718170x x x --+=,合并同类项,得2180x -=,移项,得218x =,解得1x =,2x =-故答案为:1x =,2x =-.【点睛】本题考查了利用平方根解方程及整式的乘法运算,掌握平方根的定义是解答此题的关键. 17.6【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以236xy =⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.18.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 19.7【分析】由无理数的估算先求出ab 的值再进行计算即可【详解】解:∵∴∵为两个连续的整数∴∴;故答案为:7【点睛】本题考查了无理数的估算解题的关键是正确求出ab 的值从而进行解题解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵<< ∴34<<,∵a、b 为两个连续的整数,a b <<,∴3a =, 4b =,∴ 347a b +=+=;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a 、b 的值,从而进行解题. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m ∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1+;(21. 【分析】(1)先把二次根式化成最简二次根式,后根据混合运算的法则有序计算即可; (2)利用运算律,因式分解,二次根式乘法公式,有序计算即可.【详解】(1=2+;(2=1-2=1.【点睛】本题考查了二次根式的化简计算,熟练掌握化简的技巧,运算的技巧,运算的顺序是解题的关键.22.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵2a =+2b =-∴a+b =4,(2431ab =+=-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.23.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a 与b 的值,然后求解【详解】解:(1)∵328=∴()2,8=3 ∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键.24.3--【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.25.(1)0;(2)1-【分析】(1)先进行开方运算,再进行除法运算,然后进行减法运算;(2)先进行乘方运算,再利用乘法的分配律进行计算,再计算除法,最后进行加减运算.【详解】解:(1)原式44=-=0;(2)原式114(4)121223=-÷--⨯+⨯ 14(4)126=-÷--⨯ 164=-+12=-1=-【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.26.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:216(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.。

八年级数学上册《第二章实数》单元测试题(含答案)

八年级数学上册《第二章实数》单元测试题(含答案)

第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3=5B .43-33=1C .23×33=63D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x 3C .-0.1x 2-1D .3-6x 2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+3B.2-3C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b 2b 所有可能的值为________.三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a 2-b 2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a 2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510m ,宽为415m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.- 213.< 14.12 15.6-216.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17.(3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =± 2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 5 5③9 5-2 5 7 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12= 3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新八年级上册数学第二章实数测试题一、选择题1.下列各数:2π, 0 0.23·, 227,27, 1010010001.6,1理数个数为( )A .2 个B .3 个C .4 个D .5 个2.在实数032-,|-2|中,最小的是( ).A .-错误!B .C .0D .|-2|3.下列各数中是无理数的是( )A B C D 4.下列说法错误的是( )A .±2B 是无理数C 是有理数D 5.下列说法正确的是( )A .0)2(π是无理数B .33是有理数C .4是无理数D .38-是有理数6.下列说法正确的是( )A .a 一定是正数B .错误! 是有理数C .2,2是有理数D .平方根等于自身的数只有17.估计,20的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间8. (-2)2的算术平方根是( )A .2B . ±2C .-2D .29.下列各式中,正确的是( )A .3-B .3-C 3±D 3=±10.下列说法正确的是( )A .5是25的算术平方根B .±4是16的算术平方根C .-6是(-6)2的算术平方根D .0.01是0.1的算术平方根11.36的算术平方根是( )A .±6B .6C .±,6D . ,612.下列计算正确的是( )4=± B.1= 4= 2= 13.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·错误!=614.下列计算正确的是( )A .=B .错误!=错误!-错误!=1C .(21-= D=15.如图:在数轴上表示实数,15的点可能是( )A .点PB .点QC .点MD .点N16.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A .2.5B .2,2C .,3D .,517.下列计算正确的是( ).A .2234-=4-3=1B .)25()4(-⨯-=4-2)×(-5)=10C .22511+=11+5=16D .32=36 18.已知n -12是正整数,则实数n 的最大值为( )A .12B .11C .8D .319.2)9(-的平方根是x , 64的立方根是y ,则x +y 的值为( )A .3B .7C .3或7D .1或720.若||4x =9,且||x y x y -=-,则x y +的值为( )A .5或13B .-5或13C .-5或-13D .5或-13二、填空题1.实数27的立方根是2.若一个正数的两个平方根分别是2a -2和a -4,则a 的值是 .3.-,6的绝对值是___________.4.估计,7的整数部分是5.比较下列实数的大小(在 填上>、<或=)①-2; ②215- 21;③5. 6.6425的算术平方根是7= .8.若,x y 为实数,且20x +=,则2016()x y +的值为___________.9.如图,在网格图中的小正方形边长为1,则图中的△ABC 的面积等于 .10.如图,图中的线段AE 的长度为 .三、解答题:1.)212(8-⨯ 230|2|(2π)+-4.,8+(-1)2016-|-,2|50(π2)1-- 6.|-3|+(π-1)0-错误!7.782)2)⋅ 8四、综合题1.已知:=0,求实数a ,b 的值.2、计算(1)(21)-1-2--121-+(-1-2)2;(2)(-2)3+21(2004-3)0-|-21|;3.已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.4、甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.5、化简:(1)请用不同的方法化简错误!:(2)化简:错误!+错误!+错误!+…+错误!.答案:第二章实数检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.下列无理数中,在-2与1之间的是()A.-B.-C.D.2.(2014·南京中考)8的平方根是()A.4 B.±4C. 2D.3. 若a,b为实数,且满足|a-,则b-a的值为()A.2 B.0 C.-2 D.以上都不对4. 下列说法错误的是()A.5是25的算术平方根B.1是1的一个平方根C.(-4)2的平方根是-4 D.0的平方根与算术平方根都是05. 要使式子有意义,则x的取值范围是()A.x>0 B.x≥-2 C.x≥2 D.x≤26.若a,b均为正整数,且a b a+b的最小值是()A.3B.4C.5D.67. 在实数,,,-3.14,中,无理数有()A.1个B.2个C.3个D.4个8. =-11,212c⎛⎫-⎪⎝⎭=0,则abc的值为()A.0 B.-1 C.-12D.129.若(m-1)20,则m+n的值是()A.-1 B.0 C.1 D.210. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于()A.2 B.8 C.D.二、填空题(每小题3分,共24分)11.1.910 6.042≈,±≈ .12. 绝对值小于π的整数有 .13. 0.003 6的平方根是 ,的算术平方根是 .14. 已知|a -5|0,那么a -b = .15.已知a ,b 为两个连续的整数,且a b ,则a +b = .1611)=________.17.使式子有意义的x 的取值范围是________.18.)计算:﹣=_________.三、解答题(共46分)19.(6分)已知,求的值.21.(6分)先阅读下面的解题过程,然后再解答:形如nm 2±的化简,只要我们找到两个数a,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 因为,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小,并说明理由:(1)与6;(2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗? 事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+的小数部分是,5-的整数部分是b ,求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+;(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3++⋅⋅⋅+的值.第二章 实数检测题参考答案一、选择题1.B ,即-32,即-21,即1223,所以选B.2.D 解析:8=±.点拨:注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.C 解析:∵ |a -2|0,∴ a =2,b =0,∴b -a =0-2=-2.故选C .4.C 解析:A.,所以A 项正确;B.=±1,所以1是1的一个平方根说法正确;C.±4,所以C项错误;D.00,所以D项正确.故选C.5.D 解析:∵二次根式的被开方数为非负数,∴ 2-x≥0,解得x≤2.6.C 解析:∵a,b均为正整数,且ab a的最小值是3,b的最小值是2,则a+b的最小值是5.故选C.7.A 2,所以在实数23-,0,,-3.1423-,0,-3.14是无理数.8.C=-11,212c⎛⎫-⎪⎝⎭=0,∴a=-1,b=1,c=12,∴abc=-12.故选C.9.A 解析:根据偶次方、算术平方根的非负性,由(m-1)20,得m-1=0,n+2=0,解得m=1,n=-2,∴m+n=1+(-2)=-1.10.D 解析:由图得64的算术平方根是8,8的算术平方根是故选D.二、填空题11.604.2 ±0.019 1解析:≈604.2;±=0.019 1.12.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.13.±0.063解析:0.06±,9的算术平方根是3是3.14.8 解析:由|a-5|0,得a=5,b=-3,所以a-b=5-(-3) =8.15.11解析:∵a b,a,b为两个连续的整数,a=6,b=5,∴a+b=11.16.1 解析:根据平方差公式进行计算,1)(2-1)=()22-12=2-1=1.17.x≥0 解析:根据二次根式的被开方数必须是非负数,要使有意义,必须满足x≥0.18.2解析:12-222==三、解答题19.解:因为,,即, 所以.故,从而,所以,所以.20.解:∵ 2<7<3,∴ 7<5+7<8,∴ a =7-2. 又可得2<5-7<3,∴ b =3-7. 将a =7-2,b =3-7代入ab +5b 中,得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意,可知,因为,所以.22. 分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小; (2)可采用近似求值的方法来比较大小.解:(1)∵35<36 6.(2)∵ 1≈-2.236+1=-1.236,≈-0.707,1.236>0.707,+1<.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴ =-2.又∵ -2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴ b =2,∴ +b =-2+2=.24. 解:(1)(2(13-=13.25.1=解:((2==(3+⋅⋅⋅=-11+10=9.。

相关文档
最新文档