有限元答案

合集下载

有限元法课后习题答案

有限元法课后习题答案

1、有限元是近似‎求解一般连续场问题的数值方‎法2、有限元法将连‎续的求解域离‎散为若干个子‎域,得到有限个单‎元,单元和单元之‎间用节点连接‎3、直梁在外力的‎作用下,横截面的内力‎有剪力和弯矩两个.4、平面刚架结构‎在外力的作用‎下,横截面上的内‎力有轴力、剪力、弯矩.5、进行直梁有限‎元分析,平面刚架单元‎上每个节点的‎节点位移为挠度和转角6、平面刚架有限‎元分析,节点位移有轴向位移、横向位移、转角。

7、在弹性和小变‎形下,节点力和节点‎位移关系是线性关系。

8、弹性力学问题‎的方程个数有‎15个,未知量个数有‎15个。

9、弹性力学平面‎问题方程个数‎有8,未知数8个。

10、几何方程是研‎究应变和位移之间关系的方‎程11、物理方程是描‎述应力和应变关系的方程12、平衡方程反映‎了应力和体力之间关系的13、把经过物体内‎任意一点各个‎截面上的应力状况‎叫做一点的应力状态14、9形函数在单‎元上节点上的‎值,具有本点为_‎1_.它点为零的性‎质,并且在三角形‎单元的任一节‎点上,三个行函数之‎和为_1_15、形函数是_三‎角形_单元内‎部坐标的_线‎性_函数,他反映了单元‎的_位移_状‎态16、在进行节点编‎号时,同一单元的相‎邻节点的号码差尽量小.17、三角形单元的‎位移模式为_‎线性位移模式‎_-18、矩形单元的位‎移模式为__‎双线性位移模‎式_19、在选择多项式‎位移模式的阶‎次时,要求_所选的‎位移模式应该‎与局部坐标系‎的方位无关的‎性质为几何_‎各向同性20、单元刚度矩阵‎描述了_节点‎力_和_节点‎位移之间的关‎系21、矩形单元边界‎上位移是连续变化的1. 诉述有限元法‎的定义答:有限元法是近‎似求解一般连‎续场问题的数‎值方法2. 有限元法的基‎本思想是什么‎答:首先,将表示结构的‎连续离散为若‎干个子域,单元之间通过‎其边界上的节‎点连接成组合‎体。

其次,用每个单元内‎所假设的近似‎函数分片地表‎示求解域内待‎求的未知厂变‎量。

(完整版)有限元第二章课后题答案

(完整版)有限元第二章课后题答案

2 弹性力学问题的有限单元法思考题2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格?答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。

2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗?答:对。

2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。

而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。

2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗?答:能。

矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。

矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。

因此矩形单元旋转一个角度后还能够保持在单元边界上的位移协调。

2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。

计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。

2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。

在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。

若形状相差过大,使结构应力分析困难加大,误差同时也加大。

2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。

有限元考试精彩试题及问题详解——第一组

有限元考试精彩试题及问题详解——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

中国科学院大学有限元试题及答案

中国科学院大学有限元试题及答案

(1)引入边界条件: v1 0,1 0, v2 0, M 3 m, M 2 0, Y3 0 由后三个方程可求得 2、v3、 3 ,然后把 2、v3、 3 代入前三个方程,求得 Y1、M 1、Y2 。
例1:已知:p,l,EA。求: u 2 , v 2
解:方法1:1)划分单元,给节点编号 2)单元分析 ①单元: 0, cos 1, sin 0
3
p
10
9
7
y
8 5
1
1
解:
6
9
8
x
6
3
7
5
2
2
4
3
题3 图
4
题3图. 三角形结构网 格
(2) d 4,
M B 2(d1 v4 0
4
4
7
15 10
11
3
1
2
6
13 15
题3图
5
9 12 14
答: (2) d=4 , B=2(d+1)=10 (3) u1 u15 v1 v15 0
p 作用。杆件沿 y 轴方向,长为 a 1 m ,截面积 A 0.01m 2 ,
E2 E0 。载荷及约束信息如图示,自重不计。试采用图示的
1个三角形常应变元和1个平面杆元求: (1)结构整体的等效结点力列阵; (2)采用划行划列法引入已知结 点位移,计算出结点1和2的 a 位移; (3)杆件中内力。 i j m 单元2: 1 3 2 单元1: 2 4
答: 在有限单元法中,采用低阶多项式拟合振型。结构的低阶振 型曲线与低阶多项式比较通配,结构的高阶振型曲线与低阶 多项式曲线有着显著的差异。因而,有限元法中求出的低阶 频率和振型是可信的,而所求出的高阶频率和振型误差较大 ,甚至无效。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。

下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。

答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。

答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。

答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。

假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。

结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。

分析载荷为2000 N,施加在结构的中心节点上。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1. 有限元法是一种数值方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 偏微分方程答案:D2. 在有限元分析中,以下哪项不是网格划分的基本原则?A. 网格应尽量均匀B. 网格应避免交叉C. 网格应尽量小D. 网格应适应几何形状答案:C3. 有限元方法中,单元的局部刚度矩阵可以通过以下哪种方式获得?A. 直接积分B. 矩阵乘法C. 线性插值D. 经验公式答案:A二、填空题1. 有限元方法中,______ 是指将连续的域离散化成有限数量的小单元。

答案:离散化2. 在进行有限元分析时,______ 是指在单元内部使用插值函数来近似求解场变量。

答案:近似3. 有限元法中,______ 是指在单元边界上满足的连续性条件。

答案:边界条件三、简答题1. 简述有限元法的基本步骤。

答案:有限元法的基本步骤包括:(1)定义问题域;(2)离散化问题域,生成网格;(3)为每个单元定义局部坐标系和形状函数;(4)组装全局刚度矩阵和载荷向量;(5)施加边界条件;(6)求解线性代数方程;(7)提取结果并进行后处理。

2. 描述有限元分析中的单元类型有哪些,并简述每种单元的特点。

答案:常见的单元类型包括:(1)一维单元,如杆单元和梁单元,特点是沿一个方向传递力;(2)二维单元,如三角形和四边形单元,特点是在平面内传递力;(3)三维单元,如四面体和六面体单元,特点是在空间内传递力。

每种单元都有其特定的形状函数和刚度矩阵。

四、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间施加集中力P。

使用有限元法求解该杆的位移和应力分布。

答案:首先,将杆离散化为一个单元。

使用一维杆单元的局部刚度矩阵和形状函数,可以推导出全局刚度矩阵。

然后,施加边界条件,即杆的两端位移为零。

最后,将集中力P转换为等效节点载荷,求解线性代数方程,得到节点位移。

应力可以通过位移和杆的截面特性计算得出。

有限元填空选择题及答案

有限元填空选择题及答案

1有限元是近似求解_一般连续_场问题的数值方法2有限元法将连续的求解域离散为若干个子域_,得到有限个单元,单元和单元之间用节点相连3从选择未知量的角度来看,有限元法分为三类位移法. 力法混合法4以_节点位移_为基本未知量的求解方法称为位移法.5以_节点力_为基本未知量的求解方法称为力法.6一部分以__节点位移__,另一部分以_节点力_为基本未知量的求解方法称为混合法.7直梁在外力的作用下,横截面的内力有剪力_和_弯矩_两个.8平面刚架结构在外力的作用下,横截面上的内力有轴力_ 、剪力_和弯矩.9进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角10平面刚架结构中,已知单元e的坐标变换矩阵[T]和在局部坐标系x’O’y’下的单元刚度矩阵[K’],则单元在真体坐标系xOy下的单元刚度矩阵为_ [K]= [T][K’] [T]13弹性力学问题的方程个数有15个,未知量的个数有15个.14弹性力学平面问题的方程个数有8_个,未知量个数有8_个15几何方程是研究__应变___和_位移之间关系的方程16物理方程是描述_应力_和_应变_关系的方程17平衡方程反映了_应力__和_位移_之间关系的18把经过物体内任意一点各个_ 截面上的应力状况叫做__该点_的应力状态19形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_20 形函数是_三角形_单元内部坐标的_线性位移_函数,他反映了单元的_位移_状态21在进行节点编号时,要尽量使用同一单元的相邻节点的狭长的带状尽可能小,以使最大限度地缩小刚度矩阵的带宽,节省存储,提高计算效率.22三角形单元的位移模式为_线性位移模式_-23矩形单元的位移模式为__线性位移模式_24在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性25单元刚度矩阵描述了_节点力_和_节点位移之间的关系26在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的_完备性和协调性要求27三节点三角形单元内的应力和应变是_常数,四节点矩形单元内的应力和应变是线性_变化的28在矩形单元的边界上,位移是线性_变化的29整体刚度是一个呈_ 狭长的带状_分布的稀疏矩阵30整体刚度[K]是一个奇异阵,在排除刚体位移_后,它正义阵1从选择未知量的角度来看,有限元法可分为三类(力法,位移法,混合法)2下列哪有限元特点的描述中,哪种说法是错误的(D需要使用于整个结构的插值函数)3几何方程研究的是(A应变和位移)之间关系的方程式4物理方程是描述(D应力和应变)关系的方程5平衡方程研究的是(C应力和位移)之间关系的方程式6在划分单元时,下列哪种说话是错误的(A一般首选矩形单元)7下列哪种单元的单元刚度矩阵必须通过积分才能得到(D矩形单元)8单元的刚度矩阵不取决于下列哪种因素(B单元位置)9可以证明,在给定载荷的作用下,有限元计算模型的变形与实际结构变形之间的关系为(B前者小于后者)10ANSYS按功能作用可分为若干个处理器,其中(B求解器)用于施加载荷和边界条件11下列有关有限元分析法的描述中,哪种说话是错误的(B单元之间通过其边界连接成组合体)12下列关于等参数单元的描述中,哪些说话是错误的(C将规则单元变换为不规则单元后,易于构造位移模式)13从选择未知量的角度来看,有限元可以分为三类,混合法的未知量是(C节点力和节点位移) 14下列对有限元特点的描述中,哪种说话是错误的(B对有限元求解域问题没有较好的处理方法)15在划分单元时,下列哪种说话错误(D自由端不能取为节点)16对于平面问题,选择单元一般首选(D三角形单元或等参单元)17下列哪种说法不是形函数的性质(C三角形单元任一条边上的形函数,与三角形的三个节点坐标都有关)18下列四种假设中,哪种分析不属于分析弹性力学的基本假设(C大变形假设)19下列四种假设中,哪种不属于分析弹性力学的基本假设(B有限变形假设)20下列关于三角形单元说法中哪种是错误的(C在单元的公共边上应力和应变的值是连续的) 21下列关于矩形单元的说法哪项是错误的(D其形函数是线形的)22应用圣维南原理简化边界条件时,静力等效是指前后的力系的(D主矢量相同,对于同一点的主矩也相同)24描述同一点的应力状态需要的应力分量是(C6个)25在选择多项式作为单元的位移模式时.多项式阶次的确定,要考虑解答的收敛性,哪种说法不是单元必须满足的要求(D对称性)1、试述节点力和节点载荷的区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的?(1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。

(2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。

因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。

(3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。

1.3单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。

整体刚度矩阵的性质:对称性、奇异性、稀疏性。

单元Kij物理意义Kij即单元节点位移向量中第j个自由度发生单位位移而其他位移分量为零时,在第j个自由度方向引起的节点力。

整体刚度矩阵K中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。

2.2什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件?(1)在外力作用下,物体内部将产生应力ζ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。

(2)外力势能就是外力功的负值。

(3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零δΠp=δUε+δV=0此即变分方程。

对于线性弹性体,势能取最小值,即δ2ΠP=δ2Uε+δ2V≧0此时的势能变分原理就是著名的最小势能原理。

势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。

2.3什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么?等效积分形式通过分部积分,称式∫ΩC T(v)D(u)dΩ+∫ΓE T(v)F(u)dΓ为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。

区别:弱形式得不到解析解。

建立弱形式的关键步骤:对场函数要求较低阶的连续性。

2.4为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么?只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。

2.6为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz法收敛的条件是什么?(1)在Ritz 法中,N决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。

如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。

然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。

因此,试探函数只能是真实场函数的近似。

可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。

(2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。

通常情况下这是不可能的,因而变分法的应用受到了限制。

(3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则Ritz 法的近似解将趋近于数学微分方程的精确解。

3.1构造单元形函数有哪些基本原则?形函数是定义于单元内坐标的连续函数。

单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。

为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。

多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。

若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一个坐标方向的次数不应超过完全多项式的次数。

有时为了使位移函数保持一定阶次的完全多项式,可在单元内部配置节点。

然而,这种节点的存在将增加有限元格式和计算上的复杂性,除非不得已才加以采用。

形函数应保证用它定义的位移函数满足收敛要求,即满足完备性要求和协调性条件。

3.1构造单元形函数有哪些基本原则?试采用构造单元的几何方法,构造T10 单元的形函数,并对其收敛性进行讨论。

通常单元位移函数采用多项式,其中的待定常数由节点位移参数确定,因此其个数应与单元节点自由度数相等。

根据实体结构的几何方程,单元的应变是位移的一次导数。

为了反映单元刚体位移和常应变即满足完备性要求,位移函数中必须包含常数项和一次项,即完全一次多项式。

3.3何谓面积坐标?其特点是什么?为什么称其为自然坐标或局部坐标?(1)三角形单元中,任一点P(x,y)与其3个角点相连形成3个子三角形,其位置可以用下述称为面积坐标的三个比值来确定:L1=A1/A L2=A2/A L3=A3/A其中A1,A2,A3分别为P23,P31,P12的面积。

(2)面积坐标的特点:a T3单元的形函数Ni就是面积坐标Lib面积坐标与三角形在整体坐标系中的位置无关。

c三个节点的面积坐标分别为节点1(1, 0, 0)、节点2(0, 1, 0)、节点3(0, 0, 1),形心的面积坐标为(1/3, 1/3, 1/3)。

d单元边界方程为Li=0(i=1,2,3)e在平行于23边的一条直线上,所有点都有相同的面积坐标L1(L1对应的三角形具有相同的高和底边),而且L1就等于此直线至23边的距离与节点1至23边的距离之比值。

f面积坐标与直角坐标互为线性关系。

(3)面积坐标与三角形在整体坐标系中的位置无关,故称为局部坐标或自然坐标。

4.1与平面问题相比,轴对称问题有何特点?在有限元表达格式上有何区别?轴对称问题是空间问题的一种特殊情况,结构的几何形状、约束条件及荷载分布都对称于某个轴,其位移、应变、应力等也对称于此轴,而与环向坐标无关。

4.2试用体积坐标构造10节点四面体单元的形函数并讨论收敛性。

5.1何谓等参单元?等参单元具有哪些优越性?在等参单元计算中,数值积分的阶次是否越高越好?为什么?等参单元(简称等参元)就是坐标变换和单元内的等变量(通常是位移函数)采用相同的节点参数和相同的插值函数进行变换而设计出的一种单元。

优越性:一,有些工程结构的形状比较复杂,如果用直边单元离散这些结构将需要大量的单元才能得到较好的近似,而曲边的等参单元可非常方便的离散复杂结构。

二,如果在单元内多取些节点,单元便具有较多的位移自由度,从而就能够插值表示较复杂的单元内部位移场,这样也就提高了单元本身的精度。

三,等参单元刚度矩阵、荷载矩阵的计算是在规则单元域内进行的,因此不管被积函数多么复杂都可方便的采用标准化数值分析。

在等参单元计算中,数值积分的阶次并不是越高越好,5.6何谓位移的零能模式?在什么条件下会发生零能模式?对应于某种非刚体位移模式,减缩积分时高斯点上的应变正好等于零,此时的应变能当然也为零,这种非刚体位移模式称为零能模式。

采用减缩积分时会发生零能模式。

6.1对于杆系结构单元,为什么要在局部坐标系内建立单元刚度矩阵?为什么还要坐标变换?(1)在局部坐标系内可以更方便的建立单元刚度矩阵。

(2)在整体分析中,对所有单元都应采用同一个坐标系即整体坐标系X Y,否则围绕同一节点的不同单元对节点施加的节点力不能直接相加。

因此,在进行整体分析之前,还需要进行坐标转换工作,把局部坐标系中得出的单元刚度方程转换成整体坐标系中的单元刚度方程,从而得出整体坐标系中的单元刚度矩阵。

6.2有哪几种梁弯曲理论?如何用中性轴位移确定梁内任一点的位移?工程梁理论、剪切梁理论、通用梁理论、空间梁理论。

梁弯曲理论(包括工程梁理论和剪切梁理论)在弹性力学基本假定的基础上引入了某些附加假定,将问题归结为求解中性轴位移,而梁内任一点的位移都可以通过中性轴位移来表示。

7.1在薄板弯曲理论中做了哪些假设?如何用中面位移确定板内任一点的位移?假设:(1)板厚度方向的挤压变形可忽略不计,即εZ=0。

(2)在板弯曲变形中,中面法线保持为直线,且仍为弹性曲面(挠度曲面)的法线,即直法线假设。

(3)薄板中面只发生弯曲变形,没有面内的伸缩变形,即中面水平位移。

(u)z=0 =(v)z=0 =0薄板的全部位移、应力和应变分量都可以用板的挠度ω来表示,而薄板小挠度弯曲被简化为中面的弯曲问题,只要中面挠度ω确定,任何点的位移都可确定。

薄板内不等于零的应变分量有如下三个:εx=бu/бx=-z б2ω/бx2 εy=бv/бy=-б2ω r xy=бu/бy+бv/бx=-2z б2ω/бxбy7.2薄板单元和厚板单元的基本假设有什么不同?各自是怎样选择节点位移参数的?不同点:薄板单元假设横向纤维无挤压,板的中面法线变形后仍保持为直线,该直线垂直于变形后的中面,但是厚板单元的假设考虑横向变形的影响,板的中面法线变形后仍基本保持为直线,但该直线不再垂直于变形后的中面,法线绕坐标轴的转角不再是挠度的导数,而是独立的变量。

7.3在薄板单元中,节点力矩与薄板内力有何区别?节点力矩M xi,M yi是集中力矩,而板内力矩M x,M y是分布力矩,此外,两者的正负号规定也不相同,因为M x,M y与应力正负号的规定相应。

8.1薄壳理论有哪些假设?与薄板理论的假设有何异同?厚壳分析中引入了何种假设?与厚板理论的假定有何异同?薄壳理论的假设:薄壳发生微笑变形时,忽略沿壳体厚度方向的挤压变形;且认为直法线假设成立,即变形后中面法线保持为直线且仍为中面的法线;壳体变形时中面不但发生弯曲,而且面内也将产生面内伸缩变形;折板假设;非耦合假设。

与薄板理论的假设的相同点:直法线假设和法向(板厚度方向)的纤维无挤压假设均成立。

不同点:薄板中面只发生弯曲变形,没有面内的伸缩变形,即中面水平位移为零,而壳体变形时中面不但发生弯曲,而且也将产生面内伸缩变形。

厚壳分析的假设:变形前后的中曲面法线变形后仍基本保持为直线,但因横向剪切变形的缘故,该直线不再垂直于变形后的中曲面,此外,壳体厚度方向的挤压变形可以忽略。

与厚板理论的假设的相同点:中面法线变形后仍基本保持为直线,但因横向剪切变形的缘故,该直线不在垂直于变形后的中面。

厚度方向的挤压变形忽略不计。

不同点:厚板理论的假设中,中面内的线位移可以忽略,而厚壳理论的假设中,中面内的位移不可忽略,并且厚壳的位移场可用中面位移表示。

8.2何谓平板型壳单元?在分析这种单元时都做了哪些假设?应用平板型壳单元可能会出现什么问题,如何解决?简述形成平板型壳单元刚度矩阵的基本思路。

相关文档
最新文档