生物选矿共61页

合集下载

生物选矿技术第三章新

生物选矿技术第三章新

二、氧化硫硫杆菌(Acidithiobacillus thiooxidans)
特征:
¶ 为圆头短杆状,通常以单个或成双、成短链状
存在,在菌体两端各有一油滴,可将培养基中的
硫溶入油滴之中再吸入体内进行氧化
¶ 其氧化元素硫的能力比氧化硫化合物的能力强, 可以产生较多的酸,并有较强的耐酸性能,可耐 5%的硫酸。生长温度:5-40℃;最适pH值:0.56.0. 能氧化元素硫,不能氧化Fe2+;
浓度的金属离子, 因此该菌属在从硫化矿提取金
属特别是从难选冶金矿回收金属方面展现了潜在
的应用前景.
• (3)极端嗜热细菌 (Extreme thermophile):
• 最佳生长温度60-85℃,多为古细菌,主要包括硫化 叶菌属。为兼性化能自养菌、嗜酸、极端嗜热, 可氧 化亚铁和元素硫。
• 其中,嗜中温菌和中等嗜热菌已成功应用于硫化矿的 生物氧化中,在低于45℃时以嗜中温菌为主;在45一 60℃范围内,以中等嗜热细菌为主;在40一45℃的范 围内可能有些重叠。 • 高温嗜热细菌在实验室已进行了扩大试验,但还未进 行大规模的工业应用。
2)培养分离
步骤 1、配臵培养基 液体培养基 由水和溶在水中的各种无机盐组成的,液体培
养基用于粗略地分离培养某种微生物。

浸矿自养菌的液体培养基是由水和溶在水中 的各种无机盐组成的,不能存在有机物。每种细 菌都有自己特有的培养基配方,这些配方是经过 研究者的试验研究之后得出的。例如氧化铁硫杆 菌培养基配方为 10克 0.4克 4克 1000ml MgSO4.7H2O FeSO4 CuCl2 0.5克 0.01克 0.25克
35℃恒温下,静臵培养(或振动培养)7~10天。
细菌生长繁殖使三角瓶中培养基的颜色由浅绿 变为红棕色,最后在瓶底出现高铁沉淀。 选择变化最快,颜色最深的三角瓶,在瓶中取 1mL培养液,接种到装有新培养基的三角瓶中, 同样培养。培养液将比头一次更快的变红棕色。

生物选矿技术概论

生物选矿技术概论

最佳生长温度60-85℃,多为古细菌,主要包括硫化叶菌属。为兼性化能自 养菌、嗜酸、极端嗜热,可氧化亚铁和元素硫。
2.3 生物选矿微生物的一般性特征
目前所研究的与选矿有关的微生物都具有几个共同的生理特征: (1)营养类型一般属于化能无机自养型,以CO2为碳源。尽管主要的微生物之 间对二氧化碳的固定效率存在着差异,但它们都能固定CO2 。只不过固定效率 较低的种类往往需要较高浓度的CO2或少量的酵母提取物才能迅速地生长。 (2)能够利用亚铁离子或还原性无机硫(或二者都能利用)作为电子供体,一般 以O2为电子受体;尽管某些采矿微生物能够使用Fe3+(并不是氧气)作为电子受 体,但它们通常在氧气充足的条件下生长得更好。
3.2 微生物堆浸
◆微生物堆浸通常利用斜坡地形,把低品位矿石堆积在矿坑外,从底部开始 以阶梯形式堆积起来,并整平其上部(一般6-10m高)。从上部喷射含菌浸 出液,在低处建集液池收集浸出液。随着浸出的进行,浸出矿物的金属离子 含量逐渐下降,此时在上部重新设置堆积层继续进行浸出。 ◆ 为提高浸出后的浸出液的集水率,堆积场的地表要具有不透水物选矿用微生物
微生物浸矿工艺
目 录
CONTENTS
2 3 4
微生物浸出的实际应用
一、生物选矿的概念
生物选矿是指利用微生物的催化氧化作用,将矿物中有价金属以离
子形式溶解到浸出液中,再通过离子交换、电解沉积、溶剂萃取等方法加
以回收有价金属;或将矿物中某些元素溶解并除去的技术,也称为生物浸 出或生物冶金,是矿冶工程和现代生物科学交叉结合形成的一门新型学科。
生成的Fe2(SO4 )3是强氧化剂和溶剂,可溶解矿石。如溶解铜矿(CuS), 从中浸出铜元素。 CuS+ Fe2(SO4 )3 → CuSO4 + 2FeSO4 + S 溶出的CuSO4 液再加入铁屑、废铁等便可将铜置换出来。生成的FeSO4 和S还可在这类细菌作用下再次氧化成H2SO4和Fe2SO4,而循环使用。

铬矿选矿中的生物选矿技术研究

铬矿选矿中的生物选矿技术研究

环保:减少对环境的污染,提高资源利用率 成本:降低选矿成本,提高经济效益 效率:提高选矿效率,缩短选矿时间 应用领域:拓展生物选矿技术在更多领域的应用,如冶金、化工、环保等
结论
提高选矿效率: 生物选矿技术可 以提高铬矿选矿 的效率,降低选 矿成本。
环保:生物选矿 技术是一种环保 的选矿技术,可 以减少对环境的 污染。
生物选矿技术的 应用将更加环保, 减少对环境的污 染,提高选矿效 率。
生物选矿技术的研 究将更加注重与其 他学科的交叉融合, 如生物技术、材料 科学、环境科学等, 以实现技术的创新 和突破。
提高生物选矿效率:通过优化生物选矿工艺,提高选矿效率,降低成本。 扩大应用范围:将生物选矿技术应用于更多类型的矿石,如铜、铅、锌等。 提高环保性能:通过改进生物选矿技术,降低对环境的影响,实现绿色选矿。 智能化发展:结合人工智能、大数据等技术,实现生物选矿过程的智能化控制。
微生物吸附:利用微生物的吸附能力,将铬离子吸附在细胞表面 微生物氧化:利用微生物的氧化能力,将铬离子氧化为可溶性铬化合物 微生物还原:利用微生物的还原能力,将可溶性铬化合物还原为不溶性铬化合物 微生物沉淀:利用微生物的沉淀能力,将不溶性铬化合物沉淀下来,达到选矿的目的
环保:生物选矿技术对环境污染小,符合可持续发展理念 效率高:生物选矿技术具有较高的选矿效率,可提高铬矿的回收率 成本低:生物选矿技术所需设备简单,运行成本低,经济效益显著 适应性强:生物选矿技术可适用于各种类型的铬矿,具有广泛的应用前景
案例一:某公司采用生物选矿技术,成功提高了铬矿的回收率 案例二:某公司采用生物选矿技术,成功降低了铬矿的选矿成本
案例三:某公司采用生物选矿技术,成功减少了铬矿选矿过程中的环境污染
案例四:某公司采用生物选矿技术,成功提高了铬矿选矿的效率

生物选矿技术第四章

生物选矿技术第四章

• 胞外多聚物 (Extracellular Polymers,简称EPS) 是微生物表面分泌的粘液层,它是附着于细胞壁 外面的一层松散透明、粘液状或胶质状的物质。 胞外多聚物的化学组成因菌种和培养条件而不同, 主要是多糖,有时为多肽、蛋白质、脂肪以及由
他们组成的复合物一一脂多糖、脂蛋白等。
2、 非接触浸出机制
硫代硫酸盐途径(FeS2、MoS2、WS2) • 酸不溶性硫化矿物可抵抗质子攻击,不能被
酸溶解,仅仅能被Fe3+氧化,并产生一种叫做硫代 硫酸盐的副产物。铁氧化菌可氧化Fe2+ 到Fe3+ , 因此它们只能被铁氧化菌溶解。用反应式可表示 为
• •
FeS2+6Fe3++3H2O——7Fe2+ +S2O32-+6H+
这是迄今为止绝大多数研究者都赞同的细菌 浸出机制。
非接触浸出
对比细菌和Fe3+浸出辉铜矿(CuS2)发现二者的反 应产物不同。 Fe3+ 氧化为元素硫: Cu2S+2Fe2(SO4)3=2CuSO4+4FeSO4+S
细菌氧化不产生元素硫:
Cu2S+H2SO4+2O2 = 2CuSO4+H2O
用细菌浸出已知组成的铜蓝和辉铜矿发现有菌与无 菌条件下铜蓝的浸出速度相差很大。
上述反应形成的硫代硫酸盐在酸性溶液中并 不稳定,尤其是遇到Fe3+时易被氧化成连四硫酸盐, 而连四硫酸盐又可经过一个复杂的中间产物分解 成其他的连多硫酸盐、单质硫和硫酸。
• 黄铁矿( FeS2)是酸不溶性的,细菌新陈代谢由 于需要能量,必然更多、更快地吸附到黄铁矿表 面,因为溶液中缺乏足够的能量; • 而闪锌矿(ZnS)、黄铜矿( CuFeS2)等是酸溶性 的,溶液中有一定的能量源,于是细菌对矿物的 黏附要慢、要少一些。

生物选矿技术概论

生物选矿技术概论

3.2 微生物堆浸
◆微生物堆浸通常利用斜坡地形,把低品位矿石堆积在矿坑外,从底部开始 以阶梯形式堆积起来,并整平其上部(一般6-10m高)。从上部喷射含菌浸 出液,在低处建集液池收集浸出液。随着浸出的进行,浸出矿物的金属离子 含量逐渐下降,此时在上部重新设置堆积层继续进行浸出。 ◆ 为提高浸出后的浸出液的集水率,堆积场的地表要具有不透水性。
2.4 选矿细菌的采集、培养与训化
(1)细菌菌样的采集;
(2)细菌的分离、培养、纯化与鉴定; (3)细菌的驯化;
(4)细菌数量的测定;
(5)细菌活性的测定。
2.5 细菌生长曲线
四个时期: 生长慢期:2~4周 对数生长期 稳定生长期 衰亡期
以上是所有微生物生长繁殖所必须经历的四个时期,每个时期的长 短和细菌的活跃程度受环境因素制约。
2.6 生物选矿的机理
2.6.1 接触浸出机制
◆在浸出体系中,细菌通过分泌胞外多聚物(EPS),吸附于矿物表面形
成吸附层。在吸附层内,细菌将硫化矿氧化产生的及其它存在于浸出体
系中的Fe2+氧化为Fe3+,将低价S氧化为高价S,Fe3+和H+具有强氧化作用,
对硫化矿物进一步氧化,硫化矿物氧化析出有用金属及Fe2+,Fe2+又被细 菌氧化为Fe3+,如此反复。这样整个浸出过程分为两步,即Fe3+的生成和
生成的Fe2(SO4 )3是强氧化剂和溶剂,可溶解矿石。如溶解铜矿(CuS), 从中浸出铜元素。 CuS+ Fe2(SO4 )3 → CuSO4 + 2FeSO4 + S 溶出的CuSO4 液再加入铁屑、废铁等便可将铜置换出来。生成的FeSO4 和S还可在这类细菌作用下再次氧化成H2SO4和Fe2SO4,而循环使用。

生物选矿技术 第二章 微生物学基础

生物选矿技术 第二章 微生物学基础
• 细菌细胞壁由肽聚糖构成
– 肽聚糖是N-乙酰氨基葡萄糖(NAG)和带有交替 排列的D-型或L-型氨基酸侧链的N-乙酰胞壁酸 (NAM)的多聚体。
图 肽聚糖的化学组成和一级结构
四、革兰氏染色 (Gram Stain)
– 1884年革兰姆·克里斯琴(Christian Gram)发 明;
– 细菌常被分成两类:G+和G-。
G+细菌细胞壁组成
•革兰氏阳性细菌细胞壁具有较厚(30-40nm) 而致密的肽聚糖层,多达20层,占细胞壁的成 分60-90%,它同细胞膜的外层紧密相连;
第二章 微生物学基础
• 第一节 微生物概述 • 第二节 细菌的形状、大小和结构 • 第三节 微生物的营养
2、生物中哪些是微生物
• 微生物通常包括: • (1)病毒、亚病毒(类病毒、拟病毒、朊病毒) • (2)具原核细胞结构的细菌、古菌 • (3)具真核细胞结构的真菌(酵母、霉菌、蕈
菌等) • (4)原生动物和单细胞藻类 • 它们的大小和特征如下:
(紫阳G+);
• 呈现第二次染色的效果 红色;称革兰氏阴性菌
(红阴G -)
Gram Stain of Staphylococcus aureus
A Gram Stain of a Mixture of GramPositive and Gram-Negative Bacteria.
Gram Stain of Escherichia coli
如 1 2.5 m 。 – 细菌大小的测定:在显微镜下使用显微测微尺
测定。
三. 细菌的细胞构造
(一)细胞壁
(二)细胞膜
基 本
(三)细胞质及其内含物

(四)原核和质粒

生物选矿

生物选矿

• 柱底部设有多孔隔板,矿石即装添在此板之上。 柱底部设有多孔隔板,矿石即装添在此板之上。 浸出液在底部容器中配制, 浸出液在底部容器中配制,该容器也作为收集浸 出排出液用。顶部浸液喷淋应保证布液均匀。 出排出液用。顶部浸液喷淋应保证布液均匀。并 随时测定PH PH。 PH计调节溶液的酸度 计调节溶液的酸度。 随时测定PH。用PH计调节溶液的酸度。 • 主要的工艺流程为:细菌氧化,产出的氧化浸出 主要的工艺流程为:细菌氧化, 液进行细菌再生,产生的氧化渣进行碱中和、 液进行细菌再生,产生的氧化渣进行碱中和、富 集,经进一步处理、分离提取出金属。 经进一步处理、分离提取出金属。 • 浸出时,首先用硫酸预浸,待PH稳定后(约1.5浸出时,首先用硫酸预浸, PH稳定后 稳定后( 1.52.5),然后接种菌种开始细菌浸出。 2.5),然后接种菌种开始细菌浸出。循环的浸出 液量可根据具体情况而定,这方面的数据较少。 液量可根据具体情况而定,这方面的数据较少。 试验过程中需要定期测量PH Eh及金属溶解量 PH、 及金属溶解量。 试验过程中需要定期测量PH、Eh及金属溶解量。 当浸出液中浸出目的金属的浓度达到一定值时, 当浸出液中浸出目的金属的浓度达到一定值时, 应通过适当方法回收。 应通过适当方法回收。
试验开始后,按一定时间间隔, 试验开始后,按一定时间间隔,定时取样分析 Fe2+/Fe3+电位、pH值和 值和SO 浓度等, Fe2+/Fe3+电位、pH值和SO42-浓度等,每次取样前 电位 应补偿蒸馏水以补偿水的蒸发损失, 应补偿蒸馏水以补偿水的蒸发损失,取样后记下矿 浆重量,待下次取样前补水恢复。搅拌浸出的起始 浆重量,待下次取样前补水恢复。搅拌浸出的起始 参数一般由摇瓶实验结果提供。 参数一般由摇瓶实验结果提供。 • 摇瓶试验的设备是锥形瓶和恒温生物摇床。 摇瓶试验的设备是锥形瓶和恒温生物摇床。 • 使用摇床试验的最大好处是它可同时进行几个条件 的试验,获得多种信息。 的试验,获得多种信息。故它特别适合于条件试验 及菌种选育。 及菌种选育。

选矿简介ppt课件-2024鲜版

选矿简介ppt课件-2024鲜版
筛分
将破碎后的矿石通过筛网进行分 级,不同粒级的矿石分别进入不 同的选别作业。筛分设备包括振 动筛、滚筒筛等。
12
磨矿与分级流程
磨矿
将破碎后的矿石进一步磨细,以便更 好地解离有用矿物和脉石。磨矿设备 包括球磨机、棒磨机等。
分级
将磨矿后的矿浆按粒度进行分级,合 格的细粒级进入选别作业,粗粒级则 返回磨矿机继续磨矿。分级设备包括 水力旋流器、螺旋分级机等。
故障处理
遇到设备故障时,及时停机检查 并排除故障,确保设备安全运行

2024/3/28
19
05
选矿实践案例分析
2024/3/28
20
案例一:某金矿选矿实践
矿石性质
该金矿矿石属于难选冶金矿石,含有较高的硫、砷等有害元素。
选矿流程
采用破碎、磨矿、重选、浮选等联合工艺流程进行选别。
2024/3/28
选矿效果
16
常见选矿设备介绍
破碎设备
颚式破碎机、圆锥破碎 机、反击式破碎机等, 用于将矿石破碎至合适
粒度。
2024/3/28
磨矿设备
球磨机、棒磨机等,用 于将破碎后的矿石进一
步磨细。
分选设备
浮选机、磁选机、重选 设备等,根据矿石的物 理或化学性质进行分选

17
脱水设备
浓缩机、过滤机等,用 于将选矿后的矿浆进行
针对复杂难选的矿石,需要采用联合选矿 流程,综合运用多种选矿方法以提高选矿 效果。
2024/3/28
稀有金属矿石通常具有较低的品位和复杂的 矿物组成,需要采用高效的选矿方法和精细 的操作流程以提高回收率。
10
03
选矿工艺流程
2024/3/28
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Boon假定黄铁矿的溶解以间接作用方式进行:
Fe3+与黄铁矿反应转化为Fe2+;Fe2+经细菌氧化变为Fe3+;两步 反应以Fe3+和Fe2+的互相转化相关联 第一步,Fe2+的生成速率
Fe2

Fe2 [FeS2 ]

1

max Fe2
B[Fe2 ]
[Fe3 ]

– 直接作用
细菌吸附到矿物表面,细菌通过氢键、离子键或蛋白酶与矿物作用
– 矿物间电化学作用
当两种硫化矿相互接触构成的电化学对中,活泼的矿物充当阳极发生腐蚀, 惰性的矿物充当阴极被保护
– 接触作用(充分肯定吸附细菌对矿物溶解的促进作用)
吸附在矿物表面的细菌,通过其胞外层结合的大量Fe3+离子对细菌进行氧 化溶解
acidocaldarius
– 1976年,Golovacheva R.S等分离出中等嗜热嗜酸菌
Sulfobacillus thermosulfooxidans
– 1994年,Hallberg K.B分离出中等嗜热嗜酸菌Acidithiobacillus
caldus
一、浸矿微生物
典型浸矿微生物分类
定态,此时的速率即为浸 出过程的速率。
由上面模型得到的黄铁矿浸出速率与溶液电位的关系线与实践数据相吻合
二、矿物-微生物作用
浸矿过程动力学
– 堆浸过程数学模拟
堆浸过程数学模型需要考虑热量和物质的传输,液体和 气体的流动以及堆中发生的各种生物化学反应。
国外以Dixon为代表的学者,开展了从液体流动、空气和 热量传递以及矿物溶解等各种因素的堆浸模拟研究。 国内相关研究还十分缺乏
一、浸矿微生物
典型浸矿微生物的发现史
– 1922年,Waksman and Joffe分离出 Acidithiobacillus thiooxidans – 1947年,Hinkle与Colmer分离出Acidithiobacillus ferrooxidans – 1972年,从美国矿床中分离出Leptospirillum ferrooxidans – 1973年,Briereyetal分离出极端嗜热嗜酸菌Sufolobus
– 目前已发展出以Fe浓度、氧浓度等为限制性影响因素的各种 生长动力学模型,但多集中在铁氧化类细菌;对硫氧化类细 菌的生长动力学模型描述较少
二、矿物-微生物作用
1)直接作用理论 是指在有水、空气存在的情况下,细菌与矿物表面
接触,将金属硫化物氧化为酸溶性的二价金属离子和硫 化物的原子团。在没有细菌的作用时这一氧化作用只是 热力学上可行,十分缓慢而不具实用价值,由于细菌的参与 使这一过程加快。 如:(1)黄铁矿
Fe2

1
[FeS2 B[Fe2
] max Fe2
] [Fe3
]
当两个速率相等时, 达到了浸出过程的假定稳
第二步,细菌参与下Fe2+消耗速率

qFe2
Fe2 Cx

1

K
q max Fe2
[Fe3 ]
[Fe2 ]

Fe2

C qmax x Fe2
1 K[Fe3 ] [Fe2 ]
1.15.0
杆状 好氧、化能自养、革兰氏阴 性菌,单鞭毛,可动
螺旋状 好氧、化能自养、革兰氏阴 性菌,有鞭毛,可动
杆状 好氧、化能自养、革兰氏阴 性菌,单鞭毛,可动
球形 好氧、化能自养、革兰氏阴 性菌,不可动
杆状 好氧、化能自养、革兰氏阳 性菌
三、微生物浸矿工艺
氧化亚铁硫杆菌细胞形态图
氧化亚铁微螺菌细胞形态图
次生硫化铜矿/原生硫化铜表外矿生物堆浸已大规模商 业化应用,目前年产阴极铜约100万t/a,
典型矿山有:Canana、 Qubrada Blanca、紫金山、德兴
矿石破碎
智利Qubrada Blanca生物 堆浸-萃取-电积提铜 矿山 处理含铜1.3%的次生硫 化铜矿石 年产阴极铜8.0万吨
筑堆 萃取
三、微生物浸矿工艺
2)微生物搅拌浸出 一般用于处理高品位的矿石或精矿;用于搅拌浸出的 物料一般粒度非常细,浓度比较低。 搅拌过程中还需控制温度,以免影响细菌生长。 3)微生物地浸 又称原地浸出或溶浸采矿,它是通过地面钻孔至金属 矿体,然后由地面注入细菌浸矿剂到矿体中,浸矿剂在多 孔金属矿体中循环,最后经泵将浸出液抽到地面并回收。
矿物加工学(2)
含金 氧化 矿体 的原 地浸 出示 意图
三、微生物浸矿工艺
4)微生物槽浸 矿石槽浸是一种渗透浸出过程,通常在浸滤池或者槽 中进行,一般用于处理高品位的矿石或精矿。 矿石粒度比堆浸小,每个浸出槽一次可以装矿数十吨 或数百吨,浸出周期为十天至数百天。
四、硫化矿生物浸出-铜的提取
商业化历程
2FeS 27O2 2H 2源自 细菌 2FeSO4 2H 2 SO4 4FeSO4 O2 2H 2 SO4 细菌 2Fe2 (SO4 )3 2H 2O
二、矿物-微生物作用
(2)黄铜矿 CuFeS2 4O2 细菌CuSO4 FeSO4
(3)辉钼矿
滴淋浸出 电积
四、硫化矿生物浸出-镍钴的提 取
– 2019年,BHP Billton公司成功开发BioNIC工艺,并 建成日产20kg阴极镍的示范厂
三、微生物浸矿工艺
4)搅拌浸出试验 (1)半连续浸出试验 (2)连续浸出试验
第二篇 矿物的生物与化学处理
第二章 矿物(煤)的生物处理
矿物加工学(2)
微生物连续浸出实验装置 1-浸出反应器;2-调浆反应器;3-给矿机;4-矿浆收集器;5-矿浆
三、微生物浸矿工艺
3、微生物 浸矿工艺过程 微生物浸矿方法: 1)微生物堆浸 2)微生物搅拌浸出 3)微生物地浸 4)微生物槽浸
u rx umaxcs cx ks cs
qs

rs cx
umaxcs Ysx (ks cs )
Cs——最大比生长率(l/h);Cx——细胞浓度(mol/L);u——比生长速率(L/h); Umax——最大比生长速率(L/h);ks——培养基饱和常数(mol/L); rx——细胞生长速率(mol C/L/h);rs——底物消耗速率(mol S/L/h); qs——细胞底物比消耗速率(mol S/mol C/h);Ysx——底物生长得率(mol C/mol S);
菌的条件下,可以被快速氧化,生成硫酸铁。 硫酸铁是一种高效金属矿物氧化剂和浸出剂,其它
金属矿物都可以被其浸出。 凡是利用Fe3+为氧化剂的金属矿物的浸出,都是间
接浸出。如:(1)黄铁矿
FeS2 7Fe2 (SO4 )3 8H 2O 15FeSO4 8H 2 SO4
二、矿物-微生物作用
三、微生物浸矿工艺
1、微生物浸矿的影响因素 (1)菌种 不同细菌对矿物的氧化和浸矿作用是不同的。目前
用于浸矿的细菌主要有氧化亚铁硫杆菌、氧化亚铁微螺 菌、氧化硫硫杆菌和嗜酸硫杆菌。实际上,菌液是各种 细菌的混合液。
(2)细菌的适应性 (3)培养基的成分及氧和碳 (4)有害组分和抑制组分
三、微生物浸矿工艺
三、微生物浸矿工艺
1)微生物堆浸
微生物堆浸一般多在地面上进行,通常利用斜坡地形,将矿石堆 在不透水的地面,在矿堆表面喷洒细菌浸矿剂浸出,在低处建集液池收 集浸出液。
该工艺的特点是:规模大、浸出时间长,成本低。
微生物堆浸工艺流程示意图
矿物加工学(2)
微 生 物 氧 化 难 浸 金 矿 的 堆 浸 工 艺 流 程
三、微生物浸矿工艺
2)物理化学因素
(1)PH值 (2)温度 (3)氧化还原电位
3)工艺技术因素
(1)矿石粒度 (2)矿浆浓度
4)其他影响因素
(1)表面活性剂 (2)光照 (3)金属离子 (4)渗透压
三、微生物浸矿工艺
2、 微生物浸矿的实验研究方法 1)微生物浸矿的典型流程
原矿或精矿 矿石准备 细菌浸出 固液分离
– 嗜温嗜酸菌
最佳生长温度30-45℃,主要包括Acidithiobacillus ferrooxidans,
Acidithiobacillus thiooxidans,Leptospirillum ferrooxidans
– 中等嗜热嗜酸菌
最佳生长温度45-55℃,主要有Acidimicrobium ferrooxidans,
一、浸矿微生物
极端嗜热嗜酸菌
嗜温嗜酸菌
一、浸矿微生物
浸矿微生物的鉴定
– 浸矿微生物的鉴定采用多相分类方法
即:从形态学、生理生化特性、细胞化学组分、免疫学与 分子生物学上加以区分鉴定和描述,继而综合各项鉴定结果 确定菌株的归属。
– 分子生物学手段是目前细菌鉴定分类中极其重要 的一类研究方法
它主要包括:16S rRNA基因序列分析 、PCR-DGGE技术、DNA G+C 含量测定和DNA/DNA杂交、DNA探针分析等等
– 协同作用
矿物氧化溶解既有Fe3+离子的化学氧化作用,又有矿物表面吸附细菌的 催化溶解作用
对于细菌对矿物溶解产物硫的氧化溶解作用的认识是统一的
二、矿物-微生物作用
浸矿过程动力学
– 颗粒反应动力学模型
研究内容包括:细菌在矿物表面的吸附平衡,矿物溶解的 反应动力学与扩散动力学等方面
二、矿物-微生物作用
Sulfobacillus thermosulfidooxidans,Sulfobacillus acidophilus
– 极端嗜热嗜酸菌
最佳生长温度60-85℃,包括Sulfolobus acidocaldarius, Sulfolobus solfataricus及Acidianus brierleyi等
相关文档
最新文档