化工原理课程设计换热器设计.doc

合集下载

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。

下面将为您介绍步骤和注意事项。

一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。

2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。

3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。

4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。

5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。

6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。

二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。

2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。

3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。

4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。

5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。

同时,必须符合国家有关规定。

化工原理课程设计 列管式换热器

化工原理课程设计 列管式换热器

化工原理课程设计列管式换热器设计要求:设计一个列管式换热器,实现两种不同温度的流体之间的热量传递。

设计要求如下:1. 列管式换热器采用直管式结构,热传导介质为水和油;2. 设计流量分别为水流量 Q1 = 500 L/h,油流量 Q2 = 300 L/h;3. 设计温度分别为水的进口温度 T1i = 80℃,油的进口温度T2i = 120℃;4. 确定水的出口温度 T1o 和油的出口温度 T2o;5. 选择合适的换热器材料,确保换热效果良好;6. 根据设计参数计算所需的换热面积 A 和换热效率η。

设计方案:1. 确定管径和管长:首先根据水和油的流量和温度差,计算所需的换热面积。

然后确定换热器的尺寸,其中包括管径和管长。

2. 选择换热器材料:根据换热介质的性质和工作条件,选择合适的换热器材料,例如不锈钢。

3. 计算出口温度:根据热平衡原理,计算水和油的出口温度。

假设换热器满足热平衡条件,即水的热量损失等于油的热量增加。

4. 计算换热面积:根据换热器的尺寸和热传导方程,计算所需的换热面积。

5. 计算换热效率:根据热平衡原理和换热器的热传导性能,计算换热效率。

实施步骤:1. 根据设计流量和温度差,计算所需的换热面积。

假设水和油的传热系数均为常数,可以使用换热传导方程进行计算。

2. 根据所需的换热面积和理论计算值,选择合适的换热器尺寸。

3. 根据所选换热器材料,计算换热器的尺寸和管径。

假设管壁温度近似等于流体温度。

4. 根据热平衡原理,计算出口温度。

假设热平衡条件满足,即水的热量损失等于油的热量增加。

5. 根据所选材料和尺寸,计算换热效率。

假设换热器的热传导系数为常数,使用换热效率计算公式进行计算。

总结:本课程设计主要针对列管式换热器的设计,通过选择合适的换热器材料和计算换热器的尺寸,实现了水和油之间的热量传递。

根据设计要求,通过计算出口温度和换热效率,验证了设计方案的合理性。

设计过程需要考虑多方面的因素,如流体性质、流量和温度差等。

化工原理课程设计-固定管板式换热器

化工原理课程设计-固定管板式换热器

化工原理课程设计-固定管板式换热器
固定管板式换热器课程设计
一、固定管板式换热器介绍
固定管板式换热器是由一系列密封的管子和管板组成的固定式换热器,它是一种高效的传热设备。

固定管板式换热器由管头、管板、管和膨胀节
组成,管板被以阶梯形式安装在壳体内,壳体无特殊要求,可以是钢料或
不锈钢料。

在制造过程中,在管头和管板之间要有一个膨胀节,可以在换
热器的两端安装膨胀节,用于调节管头的压力。

固定管板式换热器的管头有支架结构,管头上的管可以直接在管头上
安装,无需特殊设备,且安装费用便宜。

另外,固定管板式换热器的支架
结构为有利回转,可以一次性安装比较多的管。

换热器的传热面积大,且
不会有结垢的烦恼,这使得固定管板式换热器备受客户青睐。

二、固定管板式换热器实验
1.实验准备
在实验准备阶段,首先要做的就是对实验装置进行检查,在检查过程中,要检查铡管的弯曲度是否符合要求,对膨胀节是否无异常进行检查;
其次把准备好的介质进行油温测试;最后根据测得的油温,调节管头的压力。

2.实验步骤
(1)首先将介质压入换热器,并使用电动泵将介质压入管内,介质
被。

化工原理(换热器)课程设计

化工原理(换热器)课程设计
本设计选择了冷却水走管程,丁二烯液体走壳程的方案。由设计冷却的丁二烯液体的流量不是很大,故选择所需的换热器为单壳程、双管程,可以达到设计的基本要求,且设计的列管式换热器所需的换热面积也较合适,计算得到的面积裕度也较合适,这样所损耗的热量相对来说不会很大。至于本设计能否用在实践中生产,或者生产的效率是否会很低,这些只有在实践中才能具体的说明。
可依据传热管内径和流速确定单程传热管数:
=
按单程管计算,所需的传热管长度为:
= m
按单程管设计,传热管偏长,宜采用多管程结构。根据本设计实际情况,采用国家标准设计,取传热管长 ,则该换热器的管程数为:
=
传热管总根数: = =
3.传热温差校平均正及壳程数
平均温差校正系数:
=
=
按单壳程,双管程结构,根据《化工原理课程设计》上册,图5-19[1] [2]采用外推法,得:
8.其他附件
拉杆数量与直径选取,本换热器壳体内径为1200mm,故其拉杆直径大小为Ф12拉杆数量12,壳程入口处,应设置防冲挡板。
(5)换热器核算
1.热流量核算
①壳程表面传热膜系数
用克恩法计算[3] [5]:
当量直径
=
壳程流通截面积:
壳程流体流速及其雷诺数分别为:
普朗特数:
粘度校正:
②管程表面传热膜系数:
流体流经管束的阻力
= = =0.339
=
流体流过折流板缺口的阻力
, ,
总阻力
= =122329.89
由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。
在允许范围之内(见表2)。
表2列管式换热器允许阻力范围[7]
操作压力/Pa
允许阻力/Pa

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--XXX学院本科课程设计题目:列管式换热器的设计专业: XXXXXXXX学院: XXXXXXXXXX学院班级: XXXXXXX姓名: XXXX学号: XXXXXXXXXX指导教师: XXXXXX浮头式换热器设计说明说书1概述课程设计学习目的及其重要性设计是一项创造劳动,是设计者对许多构思加以综合,应用基础知识和专业知识去实现设计目标的一个过程。

化工原理课程设计是化工类相关专业的本科生运用化工原理及有关先修课程的基本知识去完成某一设计任务的一次较为全面的化工设计训练,可以增强我们独立学习,独立思考,独立分析的能力。

在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备的计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。

所以,课程实践是培养学生解决实际工程问题能力的有益实践。

通过课程设计,我们应该注重以下几个能力的训练和培养:1.初步掌握化工单元操作设计的基本方法和程序。

2.查阅资料,选用公式和搜集数据的能力。

3.树立既考虑技术上的先进性和可行性,又考虑经济上的合理性,并注意操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力。

4.提高运用工程语言表达设计思想的能力。

5.提高正确的进行工程计算和利用Auto CAD画图的能力。

6.提高用简洁明了的文字,清晰的图表来表达自己设计思想和撰写设计报告的能力。

列管式换热器设计的重要性及其步骤重要性:换热设备是化工工业应用典型的工艺设备,主要用于实现热量传递,使热量由高温流体传给低温物体。

一般来说,换热设备在化工厂装置中所占的比例在建设费用方面高达10%~40%。

因此从能源节省以及工厂投资的角度来讲,合理地选择和使用换热设备,可节省投资,降低能耗,具有重要意义。

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计本课题研究的目的要紧是针对给定的固定管板式换热器设计要求,通过查阅资料、分析设计条件,以及换热器的传热运算、壁厚设计和强度校核等设计,差不多确定固定管板式换热器的结构。

通过分析固定管板式换热器的设计条件,确定设计步骤。

对固定管板式换热器筒体、封头、管板等部件的材料选择、壁厚运算和强度校核。

对固定管板式换热器前端管箱、后端管箱、传热管和管板等结构进行设计,对换热器进行开孔补强校核。

绘制符合设计要求的固定管板式换热器的图纸,给出相关的技术要求;在固定管板换热器的结构设计过程中,要参考相关的标准进行设计,比如GB-150、GB151……,使设计能够符合相关标准。

同时要是设计的结构满足生产的需要,达到安全生产的要求。

通过设计过程达到熟悉了解换热器各部分结构特点及工作原理的目的。

关键词:换热器;固定管板;设计;强度名目摘要 ....................................................... 错误!未定义书签。

1绪论 (1)1.2固定管板换热器介绍 (2)1.3本课题的研究目的和意义 (3)1.4换热器的进展历史 (4)2产品冷却器结构设计的总体运算 (6)2.1 产品冷却器设计条件 (6)2.2前端管箱运算 (8)2.2.1前端管箱筒体运算 (8)2.2.2前端管箱封头运算 (10)2.3后端管箱运算 (11)2.3.1后端管箱筒体运算 (11)2.3.2后端管箱封头运算 (12)2.4壳程圆筒运算 (13)3各部分强度校核 (15)3.1开孔补强运算 (15)3.2壳程圆筒校核 (18)3.3管箱圆筒校核 (19)4换热管及法兰的设计 (20)4.1换热管设计 (20)4.2管板设计 (21)4.3管箱法兰设计 (22)4.4壳体法兰设计 (25)4.5各项系数运算 (27)5 产品冷却器制造过程简介 (34)5.1 总则 (34)5.2零部件的制造 (34)结论 (43)参考文献: (44)致谢 (44)1绪论1.1换热器的作用及分类在工业生产中,换热设备的要紧作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满足工艺过程上的需要。

化工原理课程设计 换热器

化工原理课程设计 换热器

一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。

本次设计条件满足第②种情况。

另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。

采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。

本设计中的固定管板式换热器采用的材料为钢管(20R钢)。

2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。

热空气和冷却水逆向流动换热。

根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。

(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。

查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。

本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。

2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。

三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:体积流量进口温度出口温度操作压力设计压力注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。

化工原理设计(换热器设计)

化工原理设计(换热器设计)

广东石油化工学院化工原理课程设计说明书题目:柴油预热原油的管壳式换热器学生班级:学生姓名:学生学号: 18指导教师:李燕化学化工学院年月日化工原理课程设计任务书一、设计题目:列管式换热器设计二、设计任务及操作条件某炼油厂用柴油将原油预热。

柴油和原油的有关参数如下表, 两侧的污垢热阻均可取1.72×10-4m2.K/W,要求两侧的阻力损失均不超过0.5×105Pa。

试选用一台适当型号的列管式换热器。

(x:学号)三、设计要求提交设计结果,完成设计说明书。

设计说明书包括:封面、目录、设计任务书、设计计算书、设计结果汇总表、参考文献及设计自评表、换热器装配图等。

(设计说明书及图纸均须手工完成)四、定性温度下流体物性数据物料温度℃质量流量kg/h比热kJ/kg.℃密度kg/m3导热系数W/m.℃粘度Pa.s 入口出口柴油175 T2 34220 2.48 715 0.133 0.64×10-3原油70 110 44330 2.20 815 0.128 3.0×10-3 推荐总K=45~280 W/m.℃注:若采用错流或折流流程,其平均传热温度差校正系数应大于0.8五、参考书目:1、姚玉英 . 化工原理 ,上册,1版.天津:天津大学出版社,19992、柴诚敬.化工原理课程设计. 1版.天津:天津大学出版社,19943、匡国柱.化工单元过程及设备课程设计. 1版.北京:化学工业出版社,20024、李功祥.常用化工单元设备设计.1版.广州:华南理工大学出版社,2003目录1.设计任务书 (1)2.概述 (2)3.设计条件及物性参数表 (2)4.方案设计和拟定 (3)5.设计计算 (6)6.热量核算 (11)7.参考文献 (16)8.心得体会 (17)1.设计任务书1.1设计题目用柴油预热原油的管壳式换热器1.2设计任务1.查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2.根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3.根据换热器工艺设计及计算的结果,进行换热器结构设计;4.以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5.编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计设计任务:换热器班级: 13 级化学工程与工艺( 3)班姓名:魏苗苗学号: 1320103090目录化工原理课程设计任务书 (2)设计概述 (3)试算并初选换热器规格 (6)1.流体流动途径的确定 (6)2.物性参数及其选型 (6)3.计算热负荷及冷却水流量 (7)4.计算两流体的平均温度差 (7)5.初选换热器的规格 (7)工艺计算 (10)1.核算总传热系数 (10)2.核算压强降 (13)设计结果一览表 (16)经验公式 (16)设备及工艺流程图 (17)设计评述 (17)参考文献 (18)化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件:1、苯:入口温度80℃,出口温度40℃。

2、冷却介质:循环水,入口温度32.5 ℃。

3、允许压强降:不大于50kPa。

4、每年按 300 天计,每天 24 小时连续运行。

三、设备型式:管壳式换热器四、处理能力:109000 吨/ 年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。

3、设计结果概要或设计结果一览表。

4、设备简图。

(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。

六、附表:1.设1.1出口温度40.5℃壳体内部空间利用率70%选定管程流速 u( m/s) 1壳程流体进出口接管流 1 计概述体流速 u1( m/s)热量传递的概念与意义1.1.1热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热。

由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。

1.1.2化学工业与热传递的关系化学工业与传热的关系密切。

这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。

总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。

应予指出,热力学和传热学既有区别又有联系。

热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。

1.1.3传热的基本方式根据载热介质的不同,热传递有三种基本方式:1.1.3.1热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。

热传导的条件是系统两部分之间存在温度差。

1.1.3.2热对流(简称对流)流体各部分之间发生相对位移所引起的热传递过程称为热对流。

热对流仅发生在流体中,产生原因有二:一是因流体中各处温度不同而引起密度的差别,使流体质点产生相对位移的自然对流;二是因泵或搅拌等外力所致的质点强制运动的强制对流。

此外,流体流过固体表面时发生的对流和热传导联合作用的传热过程,即是热由流体传到固体表面(或反之)的过程,通常称为对流传热。

1.1.3.3热辐射因热的原因而产生的电磁波在空间的传递称为热辐射。

热辐射的特点是:不仅有能量的传递,而且还有能量的转移。

1.2 换热器的概念、意义及基本设计要求1.2.1 换热器的概念及意义:在化工生产中为了实现物料之间能量传递过程需要一种传热设备。

这种设备统称为换热器。

在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝。

换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递到温度较低的流体,以满足工艺上的需要。

它是化工炼油,动力,原子能和其他许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工炼油等工业生产来说,换热器尤为重要。

换热器在化工生产中,有时作为一个单独的化工设备,有时作为某一工艺设备的组成部分,因此换热器在化工生产中应用是十分广泛的。

任何化工生产中,无论是国内还是国外,它在生产中都占有主导地位。

1.2.2 换热器设计要求:序号特别要求1 对事故工况的校核2 对管箱隔板强度的校核3 各部件吊耳安装位置的校核4 浮头式和 U 形管束固定管板外径延伸,使管板兼作试压法兰时的强度校核5 管板的刚度校核6 风载荷和地震载荷的校核7 进出口接管承受管线载荷的校核8 叠装换热器中,底下那台换热器的校核9 鞍式支座的校核10 外表油漆干膜厚度的检测11 封头热压成形时,终压温度的检测12 壳体直线度的检测13 氢工况的判别及材料要求1.3 管壳式换热器的简介1.3.1 概述:管壳式换热器是目前应用最为广泛的一种换热器。

它包括: 固定管板式换热器、 U 型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。

管壳式换热器由管箱、壳体、管束等主要元件构成。

管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。

另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。

管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。

1.3.2 工作原理:管壳式换热器和螺旋板式换热器、板式换热器一样属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。

管程和壳程分别通过两不同温度的流体时,温度较高的流体通过换热管壁将热量传递给温度较低的流体,温度较高的流体被冷却,温度较低的流体被加热,进而实现两流体换热工艺目的。

1.3.3主要技术特性:1、耐高温高压,坚固可靠耐用;2、制造应用历史悠久,制造工艺及操作维检技术成熟; 3、选材广泛,适用范围大。

2.试算并初选换热器规格2.1 流体流动途径的确定本换热器处理的是两流体均不发生相变的传热过程,且水易结垢,根据两流体的情况,故选择循环水走换热器的管程,苯走壳程。

2.2 确定流体的定性温度、物性数据,并选择列管换热器的型式2.2.1定性温度冷却介质为循环水,入口温度为:25 ℃,出口温度为:33 ℃;80 40 T m2 60苯的定性温度:℃;水的定性温度:t m=(25+33)/2=29 ℃;两流体的温差:Tmtm60 27.5 32.5℃——两流体温差不大于50℃,不考虑热补偿;故选用固定管板式列管换热器。

2.2.2物性数据苯=0.381cp=0.381mPa·s水=0.807cp=0.807mPa·sCp苯=0=1.828KJ/( ㎏·o C)Cp水=4.176KJ/( ㎏·o C)苯=0.151W/( m·o C)水 =0.613W/( m·o C)两流体在定性温度下的物性数据如下:物性㎏ /m3 比热 KJ/( ㎏·o C) 粘度 mPa·s导热系 W/(m·o C) 密度流体苯836.6 1.828 0.381 0.151水995.7 4.176 0.807 0.6132.3 计算热负荷和冷却水流量2.3.1热流体流量:W h=134000000/(300*24)= 18611.11111kg/h2.3.2热负荷:Q= W h*C苯*1000*(80-40)/3600= 378012.3457W2.3.3冷流体的质量流量: W c=Q*3600/1000/C水/(32-25)= 40753.60699 kg/h2.4 计算两流体的平均温度差按单壳程、多管程进行计算,逆流时平均温度差为:2.4.1平均温度差△ t ′ m=(△ t2 —△ t1 )/ln( △t2/ △t1)=[(80-33)-(40-25)]/ln[(80-33)/(40-25)]= 28.02℃2.4.2 温度矫正系数P=(t2-t1)/(T2-T1)=(33-25)/(80-40)=0.145R=(T1-T2)/(t2-t1)=(80-40)/(33-25)=5由《化工原理》上册P238 页查图 4- 19 可得 : φ△ t=0.92所以 △tm=φ△ t * △t ′m=0.92*28.02= 25.77713598 ℃ 不需要热补偿又因为 0.92>0.8 ,故可选用单壳程的列管换热器。

2.5 试算和初选换热器的规格2.5.1 初定 K 值:根据低温流体为水,高温流体为有机物(参见《化工原理》P355)有 K 值的范围:2o2430~ 850W/(m· C ),假设 K0=300W/(m ·℃ )2.5.2单管程的管子根数:因为水走管程且初选φ 25*2.5 , L= 6m 的列管,所以设u i =1m/sVu id i 2 n i 由4可求得:V=40753.60699 kg/h /(995.7*3600)=0.01137m^3n i =4V/(3.14*0.02*0.02)=36.2取 37根2.5.3 传热面积:S 0 =Q/(△ tm*K0)=48.88m^22.5.4 单管程管长:Li=S /(3.14*d *n )=16.83moi2.5.5 管程数:Np=L i /L=16.83/6=2.84初选管程为 Np=32.5.6 总管数:n=Np*n i =3*37=111 根2.5.7 管心距:t=1.25*d 0=1.25*25=32mm2.5.8横过管束中心线的管数:n c=1.19*n^1/2=13根2.5.9计算壳径:D=1.05*t*(111/0.7)^1/2=423mm取整:450mm2.5.10折流板:采用弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为h=0.25*450=112.5mm ,取 h=110mm;折流板间距取B=150mm折流板数: N B=传热管长 / 折流板间距 -1=6000/150-1=39块折流板圆缺面水平装配2.5.11接管:壳程流体进出口接管:取接管内油品流速为u1=1m/s ,则接管内径为d1=[4V/(3.14*u)]^1/2=[4*134000000/300/24/3600/836.6/3.14]^1/2=0.0887m取整d1=90mm管程流体进出口接管:取接管内循环水流速u2=1.5m/s, 则接管内径为d2=[4V/(3.14*u)]^1/2=[4*0.01137/3.14/1.5]^1/2=0.098m取整 d2=100mm 2.5.12将这些管子进行排列有图如下:2.5.13初选固定管板式换热器规格尺寸为:壳径 D450 ㎜管子尺寸Φ25× 2.5mm管程数 Np 3 管长 L 6.0 m管子总数 n 111 管子排列方法正三角形2.5.14实际传热面积及总传热系数:S1=3.14ndL=3.14*111*0.025* (6.0-0.1 )=51.40965m^2若采用此传热面积的换热器,则要求过程的总传热系数为:K1=Q/(S1*△ tm)= 285.2506706 W/(m 2·℃ )3工艺核算3.1 核算总传热系数3.1.1 计算管程对流传热系数iUi=Vi/Ai=4*0.01137/(ni*3.14*di^2)=4*0.01137/(37*3.14/4*0.02^2)=0.979m/s 与假设相一致合适Re i =di*ui*995.7/(0.807*10^-3)= 24359.7142 湍流Pr i =C水 *(0.852*10^-3)/0.613=5.406735751图壳程摩擦系数 f 0与 Re0的关系所以αi =0.023*(水/di)*(Re)0.8*Pri0.3=0.023*0.613/0.02*(24359.7142)^0.8*(5.8)^0.4=4507.304891(W/(㎡·℃ )3.1.2计算壳程对流传热系数0换热器中心附近管排中流体流通截面积为:Ao=hD(1-d0/t)=0.15*0.45*(1-0.025/0.032)= 0.014765625m式中h折流挡板间距,取 150mm ;t管中心距,对25 2.5mm , t 32mm 。

相关文档
最新文档