病毒载体概述

合集下载

病毒载体是什么?

病毒载体是什么?

病毒载体是什么?
质粒与噬菌体都有严格的宿主选择性,只能在相应的菌体中生存和繁殖,所以它们远不能完成载体在基因工程中所承担的全部使命。

动物细胞没有质粒,如果要向动物细胞导入外源基因,通常需要用到DNA病毒或RNA病毒。

病毒具有高效入侵细胞的能力,能将自身的基因组转移到细胞中,掠夺细胞的“生物合成机器”生产它自己的DNA、RNA和蛋白质,因此它是功能强大的基因转移载体。

动物病毒载体,如腺病毒载体、杆状病毒载体等,是比较理想的真核基因工程载体。

虽然对它们的研究和应用远没有质粒那样成熟,但它们具有潜在的应用前景。

载体的名词解释生物学

载体的名词解释生物学

载体的名词解释生物学生物学中,载体(Vector)是指用来传递、繁殖和表达外源DNA(或RNA)分子的工具。

在分子生物学和基因工程领域,载体扮演着至关重要的角色。

本文将探讨载体在生物学中的定义、种类、应用以及相关的研究进展。

一、载体的定义载体是指一种生物分子,能够携带外源DNA或RNA分子。

它为这些分子提供一个合适数量及合适的环境,使其稳定存在,并能进行复制、传递和表达。

载体可以是DNA、RNA或蛋白质,也可以是一个细胞、病毒、质粒等。

二、载体的种类1. DNA载体DNA载体是最常见且最重要的载体类别之一。

其中,质粒是最常用的DNA载体。

质粒是一种环状DNA分子,能够自主复制并存在于细胞质中。

质粒可以在接受外源DNA后进行基因复制,从而将外源DNA稳定的传递给目标细胞。

此外,噬菌体也是常见的DNA载体,它是一种病毒,能够感染细菌,并在细菌内复制自身。

2. RNA载体RNA载体主要指RNA病毒,它是一种只能通过RNA复制和传递基因的病毒。

RNA载体包括正义病毒和反义病毒。

正义病毒将其RNA转录成DNA并插入宿主细胞染色体中,从而实现基因传递。

反义病毒则利用RNA复制酶来生成更多的RNA病毒。

三、载体的应用1. 外源基因表达载体在基因工程中广泛应用于外源基因表达。

研究人员可以将感兴趣的基因插入载体中,然后将其导入目标细胞。

通过选择适当的载体和表达元件,外源基因可以被成功地表达出来。

这对于探究基因功能、生物制剂的生产以及疾病治疗等方面都具有重要意义。

2. 基因治疗载体在基因治疗中扮演着关键的角色。

基因治疗是一种利用外源基因修复或替代患者体内缺乏或异常基因的方法。

通过将修复好的基因插入载体中,并将其导入患者体内,可以实现基因的传递和修复,从而治疗患者的遗传性疾病。

3. 基因传递载体还可以用于基因传递研究。

通过将感兴趣的基因插入载体中,研究人员可以将其引入目标细胞,并观察和研究基因的功能和表达。

这对于揭示基因功能及相关生理机制具有重要意义。

病毒载体概述

病毒载体概述

病毒载体概述引言基因导入体系(gene delivery system)是基因治疗的焦点技巧,可分为病毒载体系统和非病毒载体系统.本章重要阐述用于人类基因治疗的病毒载体系统.用于基因治疗的病毒载体应具备以下根本前提:1.携带外源基因并能包装成病毒颗粒;2.介导外源基因的转移和表达;3.对机体不致病.然而,大多半野生型病毒对机体都具有致病性.是以须要对其进行改革后才干用于人体.原则上,各类类型的病毒都能被改革成病毒载体.但是因为病毒的多样性及与机体庞杂的依存关系,人们至今对很多病毒的生涯周期.分子生物学.与疾病产生及成长的关系等的熟悉还很不周全,从而限制了很多病毒成长成为具有实用性的载体.近20年来,只有少数几种病毒如反转录病毒(包含HIV病毒).腺病毒.腺病毒陪同病毒.疱疹病毒(包含单纯疱疹病毒.痘苗病毒及EB病毒).甲病毒等被成功地改革成为基因转移载体并开展了不合程度的运用.第一节病毒载体产生的道理病毒载体的产生树立在对病毒的生涯周期和分子生物学熟悉的基本之上.研讨病毒载体起首要对病毒的基因组构造和功效有充分的懂得,最好能获得病毒基因组全序列信息.病毒基因组可分为编码区和非编码区.编码区基因产生病毒的构造蛋白和非构造蛋白;根据其对病毒沾染性复制的影响,又可分为必须基因和非必须基因.非编码区中含有病毒进行复制和包装等功效所必须的顺式感化元件.各类野生型病毒颗粒都具有必定的包装容量,即对所包装的病毒基因组的长度有必定的限制.一般来说,病毒包装容量不超出自身基因组大小的105~110%.基因重组技巧的成长使病毒载体的产生成为可能.最简略的做法是,将恰当长度的外源DNA拔出病毒基因组的非必须区,包装成重组病毒颗粒.比方,本实验室曾将4.5kb的lacZ基因表达盒(CMV-lacZ-polyA)拔出HSV1病毒的UL44(糖蛋白C)基因的XbaI位点中,病毒基因组的其余部分不转变,构建成重组病毒HSV1-lacZ100(吴小兵等,1998).因为UL44基因产品对于HSV病毒在造就细胞中产毒性沾染长短必须的,是以,该重组病毒可以在细胞中增殖传代.用这种重组病毒沾染细胞,能将lacZ基因带入细胞并高效表达.用同样的办法,将AAV-2病毒的rep和cap基因片断(4.3kb)拔出HSV1病毒的UL2(编码尿嘧啶DNA糖基化酶)或UL44(编码糖蛋白C)基因中,构建成具有供给重组AAV载体复制和包装所需的全体帮助功效的帮助病毒rHSV-rc(伍志坚等,1999).然而,如许的重组病毒作为基因转移载体有很多缺点.起首,很多野生型病毒经由过程在细胞中产毒性复制而导致细胞裂解逝世亡;或带有病毒癌基因而使细胞产生转化.是以必须经由改革使其成为复制缺点性病毒并且删除致癌基因后才干用于基因治疗.其次,拔出外源DNA的长度受到很大限制,尤其对于基因组本身较小的病毒如腺病毒陪同病毒(AAV,4.7kb).反转录病毒(8~10kb).腺病毒(36kb),假如不去除病毒基因,可供外源DNA拔出的容量就十分小.是以,必须删除更多的病毒基因以腾出地位拔出较大的外源DNA. 为了增长病毒载体拔出外源DNA的容量,除了可以删除病毒的非必须基因外,还可以进一步删去部分或全体必须基因,这些必须基因的功效由帮助病毒或包装细胞系反式供给.病毒载体大体上可分为两种类型:重组型病毒载体:这类载体是以完全的病毒基因组为改革对象.一般的步调是选择性地删除病毒的某些必须基因尤其是立早基因或早期基因,或掌握其表达;缺掉的必须基因的功效由互补细胞反式供给;用外源基因表达单位替代病毒非必须基因区;病毒复制和包装所需的顺式感化元件不变.这类载体一般经由过程同源重组办法将外源基因表达单位拔出病毒基因组中.如在传统的重组腺病毒构建办法中,将外源基因表达盒(exogenous gene expression cassette)拔出穿梭质粒(如pXCX2或pFGdX1)的腺病毒同源序列中,与帮助质粒(含有腺病毒基因组的质粒如JM17或pBHG)共转染293细胞,通细致胞内的同源重组获得含有外源基因的重组腺病毒(Graham FL and Prevec L 1995).无病毒基因的病毒载体(gutless vectors):这类载体在不合的病毒载体系统中的称谓不合.对于腺病毒,一般称为mini-Ad;在HSV载体系统,一般称为扩增子(amplicon)载体或质粒型载体.重组AAV载体也属于无病毒基因的病毒载体.这类载体系统往往由载体质粒和帮助体系构成.重组载体质粒重要由外源基因表达盒.病毒复制和包装所必须的顺式感化元件及质粒骨架构成.帮助体系包含病毒复制和包装所必须的所有反式感化元件.在帮助体系的感化下,重组载体质粒(包含或不包含质粒骨架)以特定情势(单链或双链,DNA第二节病毒载体的包装体系将外源基因包装到病毒壳粒中,是病毒载体临盆的焦点技巧.一般地,病毒载体的制备包含以下要素:宿主细胞固然如今已有可能对有些病毒载体(如AAV载体)进行体外(无细胞)包装(Zhou XH et al . 1998; Ding L et al. 1997),但是这种包装体系仍然须要细胞提取物,并且包装效力相当低,远远达不到可临盆程度.至今为止,病毒载体的包装主如果在对该病毒迟钝的宿主细胞中进行的.宿主细胞不单供给了病毒复制和包装的情形前提,很多细胞成分还直接介入了病毒复制和包装的进程.病毒复制和包装所必须的顺式感化元件和外源基因的表达盒一般地,病毒复制和包装所必须的顺式感化元件和外源基因的表达盒由细菌质粒携带,构成病毒载体质粒,是被包装的对象.因为病毒复制方法的不合,有些病毒载体如单纯疱疹病毒扩增子(HSV amplicon)载体在包装时,全部载体质粒都被包装进入病毒颗粒中;而有些病毒载体如反转录病毒.腺病毒陪同病毒载体的质粒骨架部分其实不被包装到病毒颗粒中,只有病毒复制和包装所必须的顺式感化元件和外源基因表达盒被包装到病毒颗粒中.构建重组型病毒载体时,病毒复制和包装所需的顺式感化元件消失于病毒基因组中(病毒基因组可以由具有沾染性的病毒颗粒供给,也可以质粒情势供给).先将外源基因表达盒拔出穿梭质粒携带的病毒同源序列中;将重组穿梭质粒转染至细胞中,再用帮助病毒超沾染;或将重组穿梭质粒与病毒基因组质粒共转染细胞;重组质粒与病毒基因组在细胞中进行同源重组而产生表达外源基因的重组病毒. 重组腺病毒(Graham FL and Prevec L 1995)和重组单纯疱疹病毒(Pyles RB et al. 1997;Kramm CM et al. 1997)的传统制备办法都是采取这种方法.为了使病毒载体的临盆更为便利,病毒复制和包装所必须的顺式感化元件和外源基因的表达盒除了可以用质粒携带以外,也可以用另一种病毒(往往是帮助病毒)或临盆细胞来携带.帮助元件包含病毒复制和包装所必须的所有反式感化元件.这些元件一般包含病毒基因转录调控基因.病毒DNA合成和包装所需的各类酶类的基因.病毒的外壳蛋白基因等.帮助元件的表示情势可以多种多样.经常运用的情势有:①帮助质粒(helper plasmid),如用于产生重组腺病毒的质粒JM17,用于重组AAV包装的帮助质粒pAAV/Ad(Rolling F and Samulski J 1995)等;②帮助病毒(helper virus),如用于HSV 扩增子载体包装的帮助病毒HSV1 tsK株;③包装细胞系如用于反转录病毒载体包装的PA317细胞.这些表示情势之间可以互相转化或归并.例如,帮助病毒可以转化为帮助质粒:传统的AAV载体临盆体系经常运用腺病毒作为帮助病毒.研讨发明,并不是腺病毒的所有基因对AAV病毒的产生都是必须的,只须要腺病毒E1a,E1b, E2a, E4和VA RNA 5种基因就行了.是以,将这5种基因置于同一个质粒中,构建成的这种新的帮助质粒就完全可以替代本来的帮助病毒(Xiao X et al. 1998; Grimm D et al. 1998 ),不单进步了包装效力,并且防止了产品中腺病毒污染的问题.上述几种要素的不合组合,便产生了各类各样的病毒载体包装计谋.根据病毒载体临盆体系的构成身分的若干,可将其分成以下几种:单构成身分临盆体系(one-component system):所有的构成成分都分散在临盆细胞中.经典的反转录病毒临盆体系就是由产病毒细胞(VPC)构成,重组反转录病毒由VPC细胞不竭排泄至造就上清中.这种临盆体系操纵最为简略,但是往往产量不高或不稳固.采取这种计谋,须要将重组病毒产生所须要的所有元件都稳固地置于临盆细胞中.因为很多病毒基因产品本身对细胞有损坏感化或不克不及在细胞中稳固表达,是以这种计谋在很多病毒载体的临盆中难以实行.双构成身分临盆体系(two-component system)这种临盆系同一般由"一株病毒/一株细胞"构成.典范的例子是重组腺病毒临盆体系.先用共转染的办法获得重组腺病毒毒种,再由该毒种和临盆细胞(如293细胞)构成一个双构成身分的临盆体系使病毒大量扩增.多构成身分临盆体系(multi-component system)是由两种以上的构成身分构成的临盆体系.传统的AAV载体临盆体系就是由载体质粒,帮助质粒,帮助病毒和临盆细胞4种身分构成.这种计谋的缺点是影响身分多,操纵庞杂,产量不轻易稳固,晦气于大范围临盆. 以上各类临盆体系也可以互相转化.我们实验室经由过程将上述AAV载体临盆体系的4种身分进行两两归并,即将帮助质粒和帮助病毒归并成一种重组的帮助病毒,将载体质粒和临盆细胞归并成AAV前病毒细胞株,成功地将其转化成一种双构成身分的新型高效临盆体系(伍志坚等,1999).一般来说,成长新的包装计谋主如果为了以下几种目标:(1)削减临盆体系中的构成身分,简化操纵进程;(2)进步临盆效力,下降临盆成本;(3)防止或下降野生型病毒的产生;(4)防止运用难以与产品病毒分别的帮助病毒.第三节病毒载体的纯化办法重组病毒的纯化与基因工程产品的纯化既有很多共性,又有明显的不合之处.病毒可以看作是一个具有特定构造的生物大分子,一般都由位于中间的核酸和包裹于其外的蛋白外壳构成.有些病毒还具有脂质膜和糖蛋白或糖脂.很多分别纯化蛋白质的办法如离心和梯度离心.盐析.柱层析.超滤.透析等办法都可用于病毒的纯化.然而,因为病毒构造的庞杂性,纯化时不克不及采取蛋白质变性和复性的办法,因为一旦病毒蛋鹤产生变性,或病毒构造产生损坏,在体外就很难再重建成有沾染性的病毒颗粒.是以,在病毒的纯化进程中必须保持病毒的构造不受损坏,并且监测其沾染活性.病毒的纯化一般分为以下几个步调:初始物(start material)的收集或制备根据病毒产生方法的不合而采纳不合的方法.对于不导致细胞病变和逝世亡的病毒如反转录病毒,可不竭收集产毒细胞(VPC细胞)的造就上清作为初始物;对于在临盆病毒进程中宿主细胞产生病变和逝世亡的病毒如腺病毒,在病毒产生达到岑岭时,收集造就上清,并裂解细胞以释放细胞内的病毒.造就上清和细胞裂解液都可作为纯化的初始物.在实验室的小范围制备中,往往采取将造就上清与细胞一路反复冻融3~4次的办法制备细胞裂解液作为初始物.对于初始物体积大于500ml的较大范围的制备,则须要斟酌采取不合初始物的损益率.假如收集时大部分(90%以上)目标病毒仍消失于细胞中,为了削减操纵大体积初始物带来的便利,可以斟酌废弃上清中含有的目标病毒,而经由过程低速离心收集细胞,重悬于较小体积的缓冲液中进行细胞裂解制备细胞裂解液.对于腺病毒和AAV病毒的大范围制备都可以采取这种方法.假如经由过程延伸造就时光可以使大部分的目标病毒释放到造就液中,也可以只收集造就上清而弃去细胞,从而省去反复冻融的步调.除了用反复冻融办法裂解细胞外,还可以根据目标病毒的生物学性质采取其它不影响其沾染性的办法,如超声法.化学法(如在AAV病毒制备顶用脱氧胆酸或氯仿)等.初始物的浓缩当初始物体积较大时,要斟酌对其进行浓缩后再分别纯化.浓缩时最好同时能获得初步纯化对于后果. 在不影响目标病毒的沾染性的前提下,可选用盐析.超滤.透析等办法进行浓缩.盐析法不但可以用来浓缩初始物,同时也能达到必定的分别纯化后果.最经常运用的盐是硫酸铵;很多病毒如腺病毒.AAV病毒和单纯疱疹病毒用聚乙二醇/氯化钠体系沉淀可获得很好的后果并且不影响病毒的沾染性.目标病毒的分别纯化氯化铯密度梯度离心法至今仍是分别纯化各类病毒的最经常运用办法.主如果根据不合病毒具有特点性的浮力密度,使其与细胞裂解液中的其它成分分别开来.收集到目标病毒特异的组分后,用透析法除去个中的氯化铯,获得纯化的病毒.用这种办法有时可获得极高纯度的病毒.今朝在临床实验中运用的重组腺病毒大都是用这种办法进行纯化的.然而,这种办法也消失明显的弊病,主如果费时且操纵难度较大,反复性较差;并且氯化铯对人体有毒性.是以跟着基因治疗研讨和运用的成长,用这种办法纯化的重组病毒可能不克不及顺应人体内运用的请求.第五节安然性检测总的来说,病毒载体系体例剂的安然性检测重要涉及以下几个方面(Aderson RW 1996):有复制才能的病毒(replication competent virus, RCV)RCV一般产生于重组病毒临盆进程中基因重组事宜.因为RCV具有复制才能,在临盆进程中一旦消失,就可能呈现优势发展,从而影响载体病毒的产量;别的,含有RCV的成品用于人体内可能导致轻微的病毒沾染或急性/慢性病毒血症.RCV是对用于基因治疗的病毒载体系体例剂安然性检测的特有项目.检测RCV的办法因不合的病毒载体而异.对于反转录病毒载体,检测有复制才能的反转录病毒(RCR)的办法主如果PG4 S+L- 剖析法;也可采取其它的变通办法.对于腺病毒载体,检测有复制才能的腺病毒(RCA)重要采取空斑剖析办法及PCR办法.帮助病毒对于临盆进程须要帮助病毒介入的病毒载体如AAV病毒载体,因为这些帮助病毒本身具有复制才能并对机体细胞有损坏性,是以检测病毒制剂中的帮助病毒如腺病毒或单纯疱疹病毒的残存量十分重要.其它成分的污染检测指标包含细菌.霉菌.支原体.内毒素等及在纯化进程中所用试剂如氯化铯等的残存量.第六节病毒载体的成长偏向基因治疗研讨的快速成长对基因导入体系提出了越来越高的请求.病毒载体的成长也日新月异,包含对已有病毒载体的不竭改良和完美,和越来越多的其它病毒被改革成为新的病毒载体.病毒载体的成长偏向可归纳成以下几个方面:轻便.高效的病毒载体包装体系:斟酌到包装的高效性和操纵的轻便性,越来越多的病毒载体临盆体系将采取双构成身分体系.这种体系轻易用于病毒载体的大范围临盆(Liu XL et al.1999; Conway JE et al. 1999 ).无病毒基因的病毒载体(gutless viral vector):去除病毒载体中所有的病毒基因,只保存其复制和包装所必须的顺式感化元件,是病毒载体的重要成长偏向.这种计谋可最大限度地扩展载体的容量和削减病毒对细胞的直接毒性和病毒蛋白表达引起的免疫毒性. 腺病毒的微载体(mini-Ad).AAV载体.HSV扩增子载体都是无病毒基因的病毒载体.这一成长偏向须要解决的重要问题是树立高效.安然(无帮助病毒污染)的包装体系.可调控表达外源基因的病毒载体:在很多疾病的基因治疗中,实现外源基因的可调控表达十分重要.如糖尿病的基因治疗,外源的胰岛素基因的表达最好能受血糖程度的调控;肾性贫血的基因治疗,EPO基因的表达最好能受血氧含量的调控等.今朝所研讨的表达调控体系重要包含各类药物引诱的表达"开关".个中四环素掌握体系(Tet-on和Tet-off)是人工设计的一种基因表达调控模式.这个体系在体外和动物体内实验中都表示出优越的表达调控感化(Fotaki ME et al.1997; Miller N and Whelan J 1997).然而,因为个中的反式感化蛋白(tTA或rtTA)是异种蛋白,在机体内可能引起毒性感化和免疫反响,是以用于人体前还需斟酌其安然性和长期有用性.比来Binley K等(1999)报导了用缺氧反响元件(hypoxia response element ,HRE)腺病毒载体中外源基因的表达.缺氧可激活bHLH/PAS 家族转录因子的表达,它们可结合HRE焦点序列上,诱发其下流基因的表达.自我扩增型载体(self-amplifying vector)(Herweijer H and Wolff JA 1997):今朝的基因转移办法基因转移的效力仍相对较低,尤其是在体内.为了进步外源基因表达总程度,除了进步基因转移效力外,另一种办法是尽量进步外源DNA在细胞中的表达程度.用自我扩增型的表达载体是达到此目标的办法之一.这些载体是以正链RNA病毒Sindbis病毒和Semliki Forest 病毒为基本的.用目标基因代替病毒的外壳蛋白编码序列,导入靶细胞中,病毒的复制蛋白大量复制重组的基因组,mRNA程度的大量增长导致高程度的转导基因表达.自我扩增型载体的表示情势可所以RNA,DNA和重组病毒.特异性复制型性病毒载体(specifically replicating vector):指可在某种特点的组织中产毒性复制,而在其它组织中不增殖的病毒载体.这类病毒载体重要用于特异性裂解肿瘤细胞.如腺病毒突变株Onyx-015是55KdalE1B基因功效缺掉的腺病毒突变株,可以选择性地在p53基因突变的肿瘤细胞中增殖,而在正常组织细胞中不增殖.用这种突变株结合化疗治疗恶性肿瘤II 期临床成果令人鼓舞(Kirn D et al. 1998),已进入III期临床实验,从此,很多人工改革的腺病毒突变体被用于肿瘤治疗研讨中.如将腺病毒E1基因的表达用甲胎蛋白(AFP)启动子掌握,使得该病毒只能在甲胎蛋白阳性的肝癌细胞中增殖导致细胞逝世亡.也可以将这种病毒的基因组分开装在两个互补的缺点性腺病毒载体上(Alemany R et al. 1999),个中一个载体除了腺病毒复制和包装所必须的顺式感化元件外,只含有E1区基因,个中E1A基因的表达受AFP启动子的掌握;另一个载体为E1区缺掉的重组腺病毒.这两个载体同时沾染AFP阳性的肝癌细胞时,病毒可不竭增殖而引起细胞逝世亡;对于AFP阴性的细胞,E1A基因不表达,因而病毒不克不及增殖.相似的设计在HSV载体系统也有报导.除了用甲胎蛋白作为反式激活因子外,各类其它组织特异性表达的蛋白和调控序列都可被用来掌握病毒的增殖.嵌合型病毒载体(hybrid viral vector):是指将不合病毒的基因元件进行组合,形成的重组杂合病毒.如腺病毒与AAV病毒的杂合体病毒,既具有腺病毒的沾染性和基因组特点(双链线状DNA),又具有AAV病毒的染色体整合性(Lieber A et al. 1999).各类病毒基因元件组合形成新的杂合载体的报导层见叠出,如单纯疱疹病毒扩增子与AAV病毒杂合载体(Johnston KM et al. 1997).腺病毒与EB病毒复制子杂合载体(Tan BT et al. 1999)腺病毒与反转录病毒杂合载体(Caplen NJ et al. 1999)等,不一而足.这些杂合载体使重组病毒的特点多样化,以顺应不合基因转移目标的须要.靶向性病毒载体(targeted viral vector):是指能特异性地结归并沾染某种细胞的病毒载体.靶向性病毒载体的产生重要有两种办法.一种办法是将病毒颗粒与某一靶向分子(Harari OA et al.1999 )或特异性抗体(Bartlett JS et al. 1999)偶联;另一种办法是经由过程转变病毒外壳蛋白的构造,使其对细胞的亲嗜性产生转变(Reynolds P et al.1999;Krasnykh VN et al. 1996 ).用各类其它病毒构成新型病毒载体:略.参考文献Aderson RW. 1996. Forum'96: Gene Therapy. P21-24Alemany R, Lai S, Lou YC et al. 1999. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther. 6:21-25Bartlett JS, Kleinschmidt J, Boucher RC et al. 1999. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by bispecific F(ab'γ)2 antibody. Nature Biotechnology. 17:181-186Caplen NJ, Higginbotham JN, Scheel JR, Vahanian N et al. 1999Adeno-retroviral chimeric viruses as in vivo transducing agents. Gene Ther. 6:454-459Conway JE, Rhys CMJ, Zolotuklin I et al. 1999. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 rep and cap. Gene Ther. 6:986-993 Ding L, Lu S and Munshi NC. 1997. In vitro packaging of an infectious recombinant adeno-associated virus 2. Gene Ther. 4:1167-1172Fotaki ME,Pink JR, Mous J 1997. Tetracycline-responsive gene expression in mouse brain after amplicon-mediated gene transfer. Gene Ther. 4:901-908Gene Ther. 6:1336-1339Graham FL and Prevec L. 1995. Methods for construction of adenovirus vectors. Molecular Biotechnology. 3:207-220Grimm D, Kern A, Rittner K et al. 1998. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9:2745-2760)Harari OA, Wickham TJ, Stocker CJ et al. 1999. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin. Gene Ther. 6:801-7Johnston KM. Jacoby D. Pechan PA et al. 1997. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum Gene Ther. 8:359-370Kirn D, Hermiston T and McCormick F. 1998. ONYX-015: Clinical data are encouraging. Nature Med. 4:1341-1342Kramm CM, Chase M, Herrlinger U et al. 1997. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum. Gene Ther. 8:2057-2068 Krasnykh VN, Mikheeva GV. Douglas JT et al. 1996. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol. 70:6839-6846.Lieber A, Steinwaerder.DS, Carlson CA et al. 1999. Integrating adenovirus-adeno-associated virus hybrid vectors devoid of allviral genes J Virol. 73:9314-9324Liu XL, Clark KR, Johnson PR. 1999. Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Ther. 6:293-299Miller N and Whelan J. 1997. Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum. Gene Ther. 8:803-815Pyles RB, Warnick RE, Chalk CL et al.1997 A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Hum. Gene Ther. 8:533-544Reynolds P, Dmitriev I, Curiel D. 1999. Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters thedistribution of transgene expression of the systemically administered vector.Rolling F and Samulski J. 1995 AAV as a viral vector for human gene therapy. Molecular Biotechnology. 3:9-15Summerford C and Samulski J. 1999 Viral receptors and vector purification : new approaches for generating clinical-grade reagents. Nature Med. 5:587-588Tan BT, Wu L, Berk AJ. 1999. An adenovirus-Epstein-Barr virus hybrid vector that stably transforms cultured cells with high efficiency. J Virol . 73: 7582-7589Xiao X, Li J, Samulski J. 1998. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 72:2224-2232Zhou XH and Nicholas Muzyzca. 1998. In vitro packaging of adeno-associated virus DNA. J Virol. 72:3241-3247.伍志坚,吴小兵,侯云德. 1999. 具有AAV载体包装功效的重组HSV的产生. 科学传递. 44(5):506-509吴小兵,董小岩,伍志坚等. 1998. 以粘粒为基本产生重组单纯疱疹病毒HSV1-lacZ的研讨. 病毒学报. 14:359-364。

疫苗研发中的病毒载体技术

疫苗研发中的病毒载体技术

疫苗研发中的病毒载体技术新冠病毒的爆发让全球陷入了一场前所未有的危机当中,疫苗成为了人们最为关注的话题之一。

在这场疫情下,病毒载体技术成为了备受关注的关键疫苗研发技术。

什么是病毒载体技术?病毒载体技术,是将目标抗原基因和病毒基因组进行重组,从而将目标抗原表达在病毒表面并刺激免疫反应的一种技术手段。

具体而言,就是将病毒作为载体,将目标抗原的基因组加入病毒基因组中,经过相关工艺生产疫苗,上市后即可作为疫苗接种。

以新冠疫苗为例,当前已有的疫苗大多采用了病毒载体技术。

这些疫苗通过将新冠病毒的抗原基因进行重组,将这些基因插入到另外一个已知能够安全的病毒上,通过制备病毒疫苗刺激免疫系统应对新冠病毒而产生的保护性免疫。

病毒载体技术能够有效提升疫苗的有效性病毒载体技术在疫苗研发中,可以大大提升疫苗的有效性。

这是因为在病毒载体技术下,新冠病毒的抗原基因会由病毒本身来表达出来。

而病毒的基因组,能很好的将抗原基因与病毒结合在一起,并能够通过病毒自身的生物反应基础来制备疫苗,从而使得疫苗楹特别安全和有效。

此外,病毒载体技术还能够将多个抗原基因进行合并,以刺激更加强大的免疫系统反应,从而在疾病预防和治疗方面发挥着越来越重要的作用。

比如,在SARS的全球大范围大流行期间,首次使用了病毒载体技术,成功研发出了对SARS的冠状病毒的疫苗。

这也说明了该技术在抗击全球传染病方面的潜在应用性。

重要的生产工艺流程病毒载体技术在疫苗研发流程中,需要进行病毒重组和制备过程。

在进行病毒重组时,科学家们需要先进行核酸重组,将目标抗原基因与病毒基因进行重组,得到新的暂时性重组物。

随后,科学家们需要通过慢慢提升筛选程序,得到最终的重组病毒,这样就能够让其完美表达目标病原体的识别位点并成功制备出疫苗。

制备疫苗的过程,需要严格遵循生产流程,在一个安全的环境中,利用病毒来进行疫苗制剂的制备。

在这个过程中,制造工程师和质量保障人员需要协同合作,确保生产过程中的物质流动和工艺优化符合标准,疫苗的生产批次均匀,并且有足够的放大因素以及所需要的存储条件,以确保疫苗能够安全有效地被运输至各个角落,并能够抵抗各种外在的环境影响。

病毒载体-2014-10

病毒载体-2014-10

Moloney murine leukaemia virus (Mo-MLV)
• amphotrophic virus • The essential regions include the 5' & 3' LTRs & the packaging sequence lying downstream of the 5' LTR. • Transgene expression can either be driven by the promoter/enhancer region in the 5' LTR, or by alternative viral (e.g. cytomegalovirus, Rous sarcoma virus) or cellular (e.g. beta actin, tyrosine) promoters
优点
• Broad range of infectivity and high titer • Infection does not require an actively dividing host cell • Expressed human proteins are properly folded and modified • Large insert size • AdEasy vector is non-insertional
• selectable markers, such as neomycin & beta galactosidase, can be included • The available carrying capacity for retroviral vectors is approximately 7.5 kb • Altering the env gene or its product has proved a successful means of manipulating the cell range

病毒载体研究进展-精选文档

病毒载体研究进展-精选文档
病毒载体概述(1) 要求:1、携带外源基因并能包装成感染性病毒颗粒
2、介导外源基因转移和表达 3、对机体不致病
容量:自身基因组大小的105%~110%
类型:1、重组型病毒载体
可复制型 复制缺陷型
2、无病毒基因的病毒载体
复制缺陷型
组成:1、病毒复制和包装元件
2、病毒基因 3、插入的外源基因或元件 4、病毒外壳/外膜
Helper virus
rep cap Helper plasmid
host cell
Vector plasmid
图3 腺病毒伴随病毒包装系统示意图
多因素系统
双因素系统
Helper virus +helper plasmid
Host cell +vector DNA
rep cap
Recombinant helper virus (rHSV-repcap)
proviral cell
图4 双因素系统生产重组AAV病毒示意图
无病毒基因的病毒载体
被包装的DNA/RNA中不含任何病毒编码基因,只保留其复制和 包装所必需的顺式作用元件。获得的重组病毒颗粒具有野生型病 毒的外壳/外膜和感染性,但不表达病毒蛋白。
腺伴随病毒载体:
ITR
gene pA
ITR
反转录病毒载体:
I n v iv o 基 因 治 疗 ; 肿 瘤 基 因 治 疗 ; 疫 苗 。
A AV 病 毒 载 体 单 链 DNA 病 毒 ~5kb
I n v iv o 基 因 治 疗 ; E x v iv o 基 因 治 疗 ; 遗 传 病 基 因 治 疗 ; 获 得 性 慢 性 疾 病 的 基 因 治 疗 。 神 经 系 统 疾 病 的 基 因 治 疗 ; 肿 瘤 的 基 因 治 疗 。

病毒载体概述

病毒载体概述

病毒载体概述引言基因导入系统(gene delivery system )是基因治疗的核心技术,可分为病毒载体系统和非病毒载体系统。

本章主要论述用于人类基因治疗的病毒载体系统。

用于基因治疗的病毒载体应具备以下基本条件:1、携带外源基因并能包装成病毒颗粒;2、介导外源基因的转移和表达;3、对机体不致病。

然而,大多数野生型病毒对机体都具有致病性。

因此需要对其进行改造后才能用于人体。

原则上,各种类型的病毒都能被改造成病毒载体。

但是由于病毒的多样性及与机体复杂的依存关系,人们至今对许多病毒的生活周期、分子生物学、与疾病发生及发展的关系等的认识还很不全面,从而限制了许多病毒发展成为具有实用性的载体。

近20年来,只有少数几种病毒如反转录病毒(包括HIV病毒)、腺病毒、腺病毒伴随病毒、疱疹病毒(包括单纯疱疹病毒、痘苗病毒及EB病毒)、甲病毒等被成功地改造成为基因转移载体并开展了不同程度的应用。

第一节病毒载体产生的原理病毒载体的产生建立在对病毒的生活周期和分子生物学认识的基础之上。

研究病毒载体首先要对病毒的基因组结构和功能有充分的了解,最好能获得病毒基因组全序列信息。

病毒基因组可分为编码区和非编码区。

编码区基因产生病毒的结构蛋白和非结构蛋白;根据其对病毒感染性复制的影响,又可分为必需基因和非必需基因。

非编码区中含有病毒进行复制和包装等功能所必需的顺式作用元件。

各种野生型病毒颗粒都具有一定的包装容量,即对所包装的病毒基因组的长度有一定的限制。

一般来说,病毒包装容量不超过自身基因组大小的105〜110 %。

基因重组技术的发展使病毒载体的产生成为可能。

最简单的做法是,将适当长度的外源DNA插入病毒基因组的非必需区,包装成重组病毒颗粒。

比如,本实验室曾将 4.5kb的lacZ基因表达盒(CMV-lacZ-polyA )插入HSV1病毒的UL44 (糖蛋白C)基因的XbaI位点中,病毒基因组的其余部分不改变,构建成重组病毒HSV1-lacZ100 (吴小兵等,1998 )。

生物医学中的病毒载体技术

生物医学中的病毒载体技术

生物医学中的病毒载体技术在生物医学领域中,病毒载体技术被广泛应用于基因治疗、疫苗开发、基因工程和研究及诊断等方面。

病毒载体是一种携带和传递遗传物质的工具,是一种经过改造的病毒,可以将需要表达的基因载入病毒中转运到目标细胞中,实现基因的治疗和修改,是基因治疗的核心技术之一。

病毒载体技术的应用病毒载体技术在基因治疗中的应用是其最为广泛的领域。

基因治疗是一种通过向患者体内注入携带着具有治疗效果的基因或基因片段的生物材料来治疗疾病的方法。

病毒载体技术可以将需要表达的基因载入病毒中,转运到目标细胞内,并在里面释放出来,从而实现基因的治疗和修改。

病毒载体技术在疫苗开发领域中也得到了广泛的应用。

疫苗是一种预防疾病的生物制剂,病毒载体技术可以将病毒中携带有表达病原酶毒素等蛋白的基因,将其转化为病毒载体表达出来,从而促使机体产生免疫反应,对抗疾病。

病毒载体技术在基因工程和研究领域也有着广泛的应用。

科学家们可以利用病毒载体技术构建新的基因模型,从而研究基因的功能和相互作用,为科学家们深入研究基因提供了便利。

病毒载体技术在疾病诊断中也有着广泛的应用。

如HIV病毒的检测,利用了病毒载体技术将病毒中的基因片段与患者体内的血清反应,从而可以实现对HIV病毒的精确检测,辅助医生做出正确的诊断和治疗决策。

病毒载体技术的发展和优化病毒载体技术的发展可以追溯至上世纪80年代,当时科学家们利用腺病毒作为病毒载体,将外来基因载入细胞中,并在目标细胞中进行表达。

但这种方法存在诸多挑战,如感染杂质症状,免疫反应等。

随后,科学家们又利用了其他病毒载体,如腺相关病毒(AAV)、腺病毒(Adenovirus)等,并进行了大量的优化和改良,以提高其稳定性和效率,降低免疫系统的抵抗力,从而实现更有效的基因治疗和疫苗开发。

随着人类对疾病治疗、预防以及理解基因的需求不断增加,病毒载体技术也在不断地发展和优化。

一方面,科学家们对已有的病毒载体进行了改进,改善其功能,完善其性能;另一方面,科学家们寻求更适合的病毒载体,如双链RNA病毒、退病毒、负链RNA病毒等,以更好地发挥基因治疗和疫苗开发的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、基因表达系统 3、治疗基因
基因治疗产品的知识产权构成
1、治疗基因 2、调控元件 3、改造的外壳/外膜 4、靶向分子 5、包装系统 6、生产和纯化技术 7、制剂和保存技术
产业化的组织和实施:
1、合作开发 2、专业分工 3、政府支持和企业投资 4、利益分配
知识产权和基础研究
基因治疗领域的知识产权主要通过专利系统来保护
存在的问题:1、安全性
2、靶向性 3、有效性
细胞毒性 染色体毒性 免疫毒性 转导靶向性 转录靶向性 转导效率 靶向性 基因表达水平和持续时间 表达的可调控性
常用的病毒载体的特点:
病毒载体 反转录病毒载体 单链 RNA 病毒 8~10kb 腺病毒载体 双链 DNA 病毒 3 6k b 生物学特性 可感染分裂细胞; 整合到染色体中; 表达时间较长; 有致癌的危险; 可感染分裂和非分裂细胞; 不整合到染色体中; 外源基因表达水平高; 表达时间较短; 免疫原性强; A AV 病 毒 载 体 单链 DNA 病毒 ~5kb 可感染分裂和非分裂细胞; 整合到染色体中; 无致病性;免疫原性弱; 可长期表达外源基因; 在骨骼肌、心肌、肝脏、视 网膜等组织中表达较高; H SV 病 毒 载 体 双链 DNA 病毒 1 5 2k b 具有嗜神经性;可逆轴突传 递; 可潜伏感染; 容量大; 可感染分裂和非分裂细胞; In 疗; E x v iv o 基 因 治 疗 ; 遗传病基因治疗; 获得性慢性疾病的 基因治疗。 神经系统疾病的基 因治疗; 肿瘤的基因治疗。 v iv o 基 因 治 In v iv o 基 因 治 疗 ; 肿瘤基因治疗; 疫苗。 适用范围 E x v iv o 基 因 治 疗 ; 肿瘤基因治疗。
转录靶向性(特异性)
组 织 特 异 性 启 动 子
肿 瘤 选 择 性 启 动 子
细 胞 周 期 调 控 启 动 子
肿 瘤 血 管 内 皮 导 向 启 动 子
双 特 异 性 启 动 子
病 毒 增 殖 的 特 异 性 转 录 调 控
可调控表达的病毒载体
细胞的调控元件 病毒的调控元件 人工合成的调控元件
病毒载体研究进展
吴小兵 (‘863’计划生物领域病毒基因载体研发基地)
基因载体系统
病毒载体系统
非病毒载体系统
反 转 录 病 毒 载 体
腺 病 毒 载 体
腺 伴 随 病 毒 载 体
单 纯 疱 疹 病 毒 载 体
慢 病 毒 载 体

DNA阳 离 子 脂 质 复 合 物
DNA-
DNA-
DNA/RNA
DNA
Helper virus
rep cap Helper plasmid
host cell
Vector plasmid
图3 腺病毒伴随病毒包装系统示意图
多因素系统
双因素系统
Helper virus +helper plasmid
Host cell +vector DNA
rep cap
Recombinant helper virus (rHSV-repcap)
gag pol env
LTR
LTR
图1 反转录病毒包装系统示意图
双因素生产系统 (two-component system)
Ad Shuttle
E1a,b
E1a,b
293 cell
293 cell
JM17
图2 腺病毒包装系统示意图
多因素生产系统 (multi-component system)
proviral cell
图4 双因素系统生产重组AAV病毒示意图
无病毒基因的病毒载体
被包装的DNA/RNA中不含任何病毒编码基因,只保留其复制和 包装所必需的顺式作用元件。获得的重组病毒颗粒具有野生型病 毒的外壳/外膜和感染性,但不表达病毒蛋白。
腺伴随病毒载体:
ITR ITR
gene pA
反转录病毒载体:
嵌 合 型 病 毒 载 体 ( h y b rid v ira l v ecto r ) :
指将不同病毒的基因元件进行组合,形成的重组杂合病毒。如腺 病 毒 与 A AV 病 毒 的 杂 合 体 病 毒 , 既 具 有 腺 病 毒 的 感 染 性 和 基 因 组 特 性 ( 双 链 线 状 D N A ) 又 具 有 A AV 病 毒 的 染 色 体 整 合 性 ( L ieb er A et a l. , 1999) 各 种 病 毒 基 因 元 件 组 合 形 成 新 的 杂 合 载 体 的 报 道 层 出 不 穷 , 如 。 单 纯 疱 疹 病 毒 扩 增 子 与 A AV 病 毒 杂 合 载 体 ( J oh n ston K M e t a l. 1 9 9 7 ) 、 腺 病 毒 与 E B 病 毒 复 制 子 杂 合 载 体 ( Ta n B T et a l. 1 9 9 9 ) 腺 病 毒 与 反 转 录 病 毒 杂 合 载 体 ( C a p len N J et a l. 1 9 9 9 ) 等 , 不 一 而 足 。 这 些 杂 合 载 体 使重组病毒的特性多样化,以适应不同基因转移目的的需要。
3、资助建立能规模化生产临床级基因载体的中心或基地 4、支持从事基因治疗的公司发展新技术、新产品 5、促进新的基因治疗公司建立。 6、制定规范、高效且符合国情的审批程序。
条 件 增 殖 型 病 毒 载 体 ( co n d itio n a lly rep lica tin g v ecto r ) :
指可在某种特性的组织中产毒性复制,而在其它组织中不增殖的 病毒载体。这类病毒载体主要用于特异性裂解肿瘤细胞。如天然的腺 病 毒 突 变 株 O n yx -0 1 5 是 5 5 K d a l E 1 B 基 因 功 能 缺 失 的 腺 病 毒 突 变 株 , 可 以 选 择 性 地 在 p53 基 因 突 变 的 肿 瘤 细 胞 中 增 殖 , 而 在 正 常 组 织 细 胞 中 不 增 殖 。 用 这 种 突 变 株 联 合 化 疗 治 疗 恶 性 肿 瘤 II 期 临 床 结 果 令 人 鼓 舞 ( K irn D et a l. 1 9 9 8 ) 已 进 入 III 期 临 床 试 验 , 从 此 , 许 多 人 工 改 , 造的腺病毒突变体被用于肿瘤治疗研究中。
病毒载体研究方向
1、病毒包装系统
2、无病毒基因的病毒载体
3、靶向性病毒载体 4、可调控表达的病毒载体 5、嵌合型病毒载体 6、自我扩增载体
病毒载体包装系统 组成:1、宿主细胞
2、辅助元件(辅助质粒、辅助病毒) 3、被包装的DNA/RNA 包含顺式作用元件 单因素生产系统(one-component system)
蛋 白 质 复 合 物
阳 离 子 多 聚 物
嵌 合 物
细胞内包装
细胞外包装
病毒载体概述(1) 要求:1、携带外源基因并能包装成感染性病毒颗粒
2、介导外源基因转移和表达 3、对机体不致病
容量:自身基因组大小的105%~110%
类型:1、重组型病毒载体
可复制型 复制缺陷型
2、无病毒基因的病毒载体
复制缺陷型
LTR
gene
LTR
腺病毒载体:
ITR ITR
gene pA
单纯疱疹病毒载体:
gene gene gene gene gene
pac
ori
无辅助病毒包装系统
Helper plasmid:
E2a E4orf6 VA
adenovirus
E1a,b
aav vector plasmid
ITR ITR
293细胞
对于基因治疗公司最重要的专利是:
1、载体系统; 2、生产过程;3、整体治疗方案 治疗基因和表达系统可以从其它方购买使用权。
专利对学术研究的影响
1、无影响(对非常早期研究) 2、有影响(对临床试验和可能的商业开发)
政府支持对基因治疗产业化的重要作用
1、政策上促进基因治疗的科研、临床和商业开发
2、资助基因治疗核心技术研究和开发
重组病毒的生产和纯化
小量制备和纯化
场所
大量制备和纯化
中试车间
实验室
细胞培养
培养瓶 反复冻融 离心 密度梯度超速离心 缓冲液 低温
转瓶、细胞工厂、发酵罐 机械法或化学法裂解 离心、超滤、萃取 浓缩、柱层析 配方
细胞裂解
病毒分离
病毒纯化
制剂
保存
病毒载体与基因治疗产业化
基因治疗的三个核心部分
1、基因载体系统
细胞特异性转录 细胞启动子 病毒启动子
albumin Tyrosinase or TRP-1 PSA MVM P4 B19 promoter HBV
四环素调控
P1
tTA
tetOp
gene
MBP
MCK GFAP NSE KDR/flt-1 AFP CEA erbB2
JCV
EBV
P1
tTA
tetOp
gene
HRE
MDR1
tetOp
tTA
tetOp
gene
合成的转录因子
ESTRADIOL
GAL4
ER
RU486
VP16
RXR
EcR
VP16
muristerone VP16
GAL4
PR
ZFHD-1 FKB12
p65
FRAP P65
Diphenol indene
rapamycin
GAL4
ER
自 我 扩 增 型 载 体 ( self-a m p lify in g v ecto r ) :
组成:1、病毒复制和包装元件
2、病毒基因 3、插入的外源基因或元件 4、病毒外壳/外膜
相关文档
最新文档