勾股定理的复习课件1
《勾股定理》复习课件ppt

答案5
根据勾股定理和相似三角形的性质,BD² = AB² - AD² = AC² + BC² - (AC + CD)² = 4² + 6² - (4 + 2)² = 20。 所以 BD = √20 = 2√5。
THANKS
感谢您的观看
勾股定理公式
a² + b² = c²,其中a和b是直角三 角形的两条直角边,c是斜边。
勾股定理的证明方法
欧几里得证明法
利用相似三角形的性质和比例关系, 通过一系列的逻辑推理证明勾股定理 。
毕达哥拉斯证明法
利用正方形的性质和勾股定理的关系 ,通过构造两个正方形证明勾股定理 。
勾股定理的应用场景
实际问题求解
要点一
勾股定理在三维空间的应用
要点二
勾股定理在三维空间的应用示例
勾股定理不仅适用于平面图形,还可以应用于三维空间中 的几何体。
在解决三维几何问题时,可以使用勾股定理来计算空间几 何体的边长或体积。
04
勾股定理的解题技
巧和策略
利用勾股定理求边长
总结词
勾股定理是解决直角三角形问题的重要工具 ,通过已知两边长,可以求出第三边长。
详细描述
勾股定理公式为$c^2 = a^2 + b^2$,其中 $c$为斜边长,$a$和$b$为直角边长。已知 $a$、$b$和$angle C = 90^circ$,可以通
过勾股定理求出第三边长$c$。
利用勾股定理证明三角形为直角三角形
总结词
勾股定理也可以用来证明一个三角形是否为直角三角形。
详细描述
勾股定理复习课件理的回顾 • 勾股定理的常见题型解析 • 勾股定理的变式和推广 • 勾股定理的解题技巧和策略 • 勾股定理的练习题和答案解析
北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
北师大版八年级上册数学《勾股定理的应用》勾股定理研讨说课复习课件

3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.
解:因为出发2小时,A组行了12×2=24(km), B组行了9×2=18(km), 又因为A,B两组相距30km, 且有242+182=302, 所以A,B两组行进的方向成直角.
5、有一个水池,水面是一个边长为10尺的正方形。在水池的正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问:这个水池的深度和这根芦苇的长度各是多少?
如图是学校的旗杆,旗杆上的绳子垂到了地面,并多出了一段,现在老师想知道旗杆的高度,你能帮老师想个办法吗?请你与同伴交流设计方案?
A
C
B
5km
12km
2、如图,带阴影的矩形面积是多少?
17厘米
S=17×3=51厘米2
3、一个无盖的长方形盒子的长、宽、高分别是8cm,8cm,12cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,你能帮蚂蚁设计一条最短的路线吗?蚂蚁要爬行的最短行程是多少?
8
12
8
8
8
12
4、如图,一座城墙高11.7m,墙外有一个宽为9m的护城河,那么一个长为15m的云梯能否到达墙的顶端?
经计算AD2+AB2=BD2
AD⊥AB
Ⅱ、李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺。(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
新知归纳
数学思想:
课件八年级数学人教版下册_勾股定理复习课课件

ABCD的面积。
A
D
B C
7.观察下列表格:
列举
3、4、5
……
5、12、13
7、24、25
13、b、c
猜想
32=4+5 52=12+13 72=24+25
北
o
西
A
南东Leabharlann 答:AB=30海里B
5 . 如 图 , 在 四 边 形 ABCD 中 , ∠BAD =900,∠DBC = 900 , AD = 3,AB = 4,BC = 12, 求CD;
D
A
C B
6.已知,如图,四边形ABCD中,
AB=3cm , AD=4cm , BC=13cm ,
CD=12cm,且∠A=90°,求四边形
解答题
3.已知:如图,在Rt△ABC中,∠C=90°, BC=6, AC=8
求:斜边上的高CD.
解:由勾股定理知
AB2=AC2+BC2
C
=82+62=100
∴AB=10
?
由三角形面积公式
B
D
A
½ ·AC ·BC=
½∴C·DA=B4·.8CD
4. 一艘轮船以16海里/时的速度离开港口向 东南方向,另一艘轮船在同时同地以12海 里/时的速度向西南方向航行,它们离开港 口一个半小时后相距多远?
A、24cm B、36cm C、48cm D、60cm 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )
2 ②三个角之比为3:4:5;
2
2
2
在西方又称毕达哥拉斯定理耶!
13.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( C )
第14章 勾股定理复习 华东师大版数学八年级上册课件1

谢谢
一、知识要点
勾股定理
如果直角三角形两直角边分别为a,b,斜边 为c,那么
a2 + b2 = c2
即直角三角形两直角边的平方和等于斜边的平方。
勾股逆定理
如果三角形的三边长a,b,c满足a2+b2=c2 , 那么这个三角形是直角三角形。
勾股数
满足a2 +b2=c2的三个正整数,称为勾股数。
结论变形
c2=a2 + b2
cb
由上可知:已知直角三角形
a
的任意两边可求第三边 。
填空题
1.在Rt△ABC中,∠C=90°,
①若a=5,b=12,则c=____1_3______; ②若a=15,c=25,则b=___2_0_______; ③若c=61,b=60,则a=__1_1_______; ④若a∶b=3∶4,c=10则SRt△ABC=___2_4____。
2.直角三角形两直角边长分别为5和12,则它
斜边上的高为___6_0_/_1_3___。
3 .如图,所有的四边形都是正方形,所有的三角形都是直角三 角形,其中最大的正方形的边长为7cm,正方形A、 B、 C、 D的面积和是______。
49cm2
4.已知:如图,△ABC中,∠C = 90°,点O为 △ABC的三条角平分线的交点,OF⊥BC,OE ⊥AC,OD⊥AB,点D、E、F分别是垂足,且 BC = 8cm,CA = 6cm,则点O到三边AB,AC和
A、24cm2 B、36cm2 C、48cm2 D、60cm2 6.等腰三角形底边上的高为8,周长为32,则三
角形的面积为( B )
A、56 B、48 C、40 D、32
解答题
1.如图,铁路上A,B两点相距25km,C,D为 两村庄,DA⊥AB于A,CB⊥AB于B,已知 DA=15km,CB=10km,现在要在铁路AB上 建一个土特产品收购站E,使得C,D两村到 E站的距离相等,则E站应建在离A站多少km 处?
北师大版八年级上册数学《一定是直角三角形吗》勾股定理培优说课教学复习课件

1.2 一定是直角三角形吗
XX
构建动场
勾股定理
直角三角形两直角边的平方和等于斜边的平方.如果a,b
和c分别表示直角三角形的两直角边和斜边,那么a2+#43;b2=c2.
∟
b
把勾股定理反过来还成立吗?
a2+b2=c2
a
c
∟
b
如果 一个三角形中,有两边的平方和等于第三边的平方,
所以△ABD是直角三角形,∠A是直角.
在△BCD中,BD2+BC2=25+144=169=CD2,
所以△BCD是直角三角形,∠DBC是直角.
因此,这个零件符合要求.
探究新知
方法点拨
勾股定理与其逆定理的关系:勾股定理是已知直角
三角形,得到三边长的关系,它是直角三角形的重要性质
之一;而勾股定理的逆定理是由三角形三边长的关系判
D.不可能是直角三角形
课堂检测
基 础 巩 固 题
3.若△ABC的三边a,b,c满足 a:b: c=3:4:5,试判断△ABC的形状.
解:设a=3k,b=4k,c=5k(k>0),
因为(3k)2+(4k)2=25k2,(5k)2=25k2,
所以(3k)2+(4k)2=(5k)2,
所以△ABC是直角三角形,且∠C是直角.
a
c
∟
建模:
满足 a2+b2=c2 的
三个正整数,称为
勾股数
b
文字语言:
如果一个三角形的三边长,较小的两边平方和等于较大边的平方,
那么就可以得到这个三角形是直角三角形.
几何语言:
如果一个三角形的三边长a,b,c,满足 a 2 b 2 c 2 ,那么这个三
第一章:勾股定理复习
在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定是以及它的应用.其知识结构如下:在学习勾股定理时应注重知识的形成过程,即勾股定理的探索过程,有意识地培养自己探索新知识的能力.在运用勾股定理时一定要有直角三角形这个前提条件,因此,通过有关具体问题时,有时需添加适当的辅助线以构造直角三角形来帮助解题.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的,但在判定一个三角形是否是直角三角形时应首先确定该三角形的最大边,当其余两边的平方和等于最大边的平方时,该三角形才是直角三角形.勾股定理的逆定理也可用来证明两直线是否垂直,这一点同学们也应牢牢掌握.典例精讲例1 如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 长.方法指导:可设CD 长为xcm ,再寻找等量关系利用方程思想来解,而在直角三角形中,等量关系往往是勾股定理表达式222c b a =+.解:设CD=xcm ,则BD=BC —CD=(8—x )cm . 由题知△ACD 与△AED 关于AD 对称,∴AE=AC=6cm ,DE=CD=xcm ,∠AED=∠C=90°.在Rr △ACB 中,由勾股定理得:cm BC AC AB 10862222=+=+=,∴BE=AB —AE=10—6=4cm .在Rt △BED 中,由勾股定理得:222BE DE BD +=.∴2224)8(+=-x x ,解得x=3cm .方法总结:折叠问题应把握折叠前后两部分图形关于折痕对称,从而可以利用对称的有关性质来帮助解题目.例2 已知:如图△ABC 中,AB=AC=10,BC=16,点D 在BC 上,DA ⊥CA 于A . 求:BD 的长.方法指导:可设BD 长为xcm ,然后寻找含x 的等式即可,由AB=AC=10知△ABC 为等腰三角形,可作高利用其“三线合一”的性质来帮助建立方程.解:设BD 长为xcm .过点A 作AE ⊥BC 于E , ∵AB=AC=10,∴△ABC 为等腰三角形, ∴cm x BD BC DC cm x BD BE DE cm BC CE BE )16(,)8(,821-=-=-=-====,在△AEC 中,由勾股定理得:cm CE AC AE 68102222=-=-=.在Rt △AED 中,22222)8(6x DE AE AD -+=+=, 在Rt △DAC 中,2222210)16(--=-=x AC DC AD ,∴222210)16()8(6--=-+x x .解得cm x 27=.方法总结:勾股定理通常与等腰三角形的性质结合起来使用.举一反三 如图:A 、B 两点与建筑物底部D 在一直线上,从建筑物顶部C 点测得A 、B 两点的俯角分别是30°、60°,且AB=20cm ,求建筑物CD 的高.解:m CD 310=例3 甲、乙两船同时从港口A 出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行.2小时后,甲船到达C 岛,乙船到达B 岛,若C 、B 两船相距40海里,问乙船的速度是每小进多少海里?方法指导:可根据题意画出图形,易知△ABC 是直角三角形,利用勾股定理求出AB 距离,从而求出乙船速度.解:由题知△ABC 是直角三角形且∠BAC 为直角.∴24212=⨯=AC ,BC=40. 由勾股定理得3224402222=-=-=AC BC AB (海里).∴乙船速度为:16232=(海里/时).方法总结:凡是实际问题,应根据题意构造直角三角形来求解.举一反三 “中华人民共和国道路交通管理条例”规定,小汽车在城街路上行驶速度不得超过70km/h ,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30m 处,过了2s 后,测得小汽车与速速检测仪间距离为50m ,这辆小汽车超速了吗?解:因为小汽车的速度为:h km h km s m /70/72/20240>==,因此小汽车超速了.例4 如图,海中有一小岛A ,在该岛周围10海里内有暗礁,今有货船由西向东航行,开始在A 岛南偏西45°的B 处往东航行20海里后达到该岛南偏西30°的C 处,之后继续向东航行,你认为货船继续向东航行会有触礁的危险吗?计算后说明理由.方法指导:要想知道有无触礁危险只需算出点A 到BC 的距离,再比较即知.解:过点A 作AD ⊥BC ,垂足为D . 由题知:∠BAD=45°,∠CAD=30°. 设AD=x (海里),则BD=x (海里),CD=(x —20)(海里), 我们知道有一内角为30°的直角三角形三边比值为2:3:1.∴13=CDAD ,即1320=-x x . 解得1032.4713320>≈-=x .故无触礁危险.方法总结:此题若直接用勾股定理也可得关于x 的方程,但是是一元二次的,目前无法解出来,故应熟记特殊直角三角形的三边比值,如等腰直角三角形三边比值为2:1:1.举一反三 如图,点A 是一个半径为300m 的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000m 的笔直公路将两村连通.经测得∠ABC=45°,∠ACB=30°,问此公路是否会穿过该森林公园?请通过计算进行说明.解:不会穿过公园.例5 一架方梯长25m ,如图,斜靠在一面墙上,梯子底端离墙7m ,求:(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4m ,那么梯子的底端在水平方向滑动了几米?方法指导:梯子靠在墙上即构成直角三角形,可利用勾股定理来求解.解:(1)如图,在Rt △POQ 中,由勾股定理得:247252222=-=-=OQ PQ PO .即梯子的顶端距离地面24m ;(2)由题知梯子底端移动的距离为OB , 设QB=x ,则OA=OP —AP=24—4=20m , 梯子下滑过程中长度不变即AB=QP=25m , 在Rr △AOB 中,由勾股定理得:m OA AB OB 1520252222=-=-=.∴QB=OB —OQ=15—7=8m . 即梯子底端移动了8m .方法总结:这是一类“梯子下滑问题”,解此类题应把握两点:梯子靠在墙上即构成直角三角形;梯子滑动过程中长度不变.举一反三 如图,一个梯子AB 长2.5m ,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5m ,梯子滑动后停在DE 的位置上,测得BD 长为0.5m ,求梯子顶端A 下落了多少m ?解:梯子顶端A 下落了0.5m . 例6 若△ABC 的三边分别为a 、b 、c ,且满足c b a c b a 108650222++=+++,那么△ABC 是何种形状?解:由c b a c b a 108650222++=+++得0)2510()168()96(222=+-++-++-c c b b a a ,即0)5()4()3(222=-+-+-c b a , ∴a=3,b=4,c=5.∵22225c b a ==+,由勾股定理逆定理知△ABC 是直角三角形.方法总结:要判断三角形形状,应寻找三边关系或三角之间的关系再作出判断. 举一反三 若a 、b 、c 为△ABC 的三边,且满足0222=---++ca bc ab c b a .探索△ABC 的形状,并说明理由.解:等边三角形. 例7 如图,CD 是△ABC 的AB 边上的高,且有DB AD CD ⋅=2.求证:△ABC 是直角三角形.方法指导:先依题意画图,再利用勾股定理的逆定理来证. 解:在Rt △ACD 中,由勾股定理得:DB AD AD AC CD ⋅=-=222.∴AB AD AC ⋅=2,同理,AB BD BC ⋅=2,222)(AB AB BD AD AB BD AB AD BC AC =⋅+=⋅+⋅=+.由勾股定理逆定理知:△ABC 是直角三角形.方法总结:证明直角三角形或两直线的垂直关系通常用勾股定理逆定理来解决.举一反三 如图,已知在△ABC 中,∠C=90°,D 为AC 上一点,22BD AB -与22DC AC -有怎样的关系?试证明你的结论.解:相等(提示:可证明22222BC CD BD AC AB =-=-,再作移项变形.)综合练习(时间90分钟,满分120分) 一、填空题(3分×10=30分)1.在△ABC 中,∠C=90°,a ,b ,c 为∠A ,∠B ,∠C 的对边. (1)c=25,b=24,那么a=_________. (2)a=30,b=16,那么c=_________.2.在△ABC 中,a ,b ,c 为∠A ,∠B ,∠C 的对边.(1)3,222==b a ,那么当c=___________时,∠B=90°. (2)15,622==c a ,那么当b=____________时,∠C=90°.3.在△ABC 中,∠C=90°,AB=40,AC=24.则斜边AB 上的高是__________.4.在△ABC 中,a ,b ,c 为∠A ,∠B ,∠C 的对边,如果a ,b ,c 满足2))((b c a c a =-+,那么△ABC 是以____________为斜边的直角三角形.5.如图,每个小正方形的边长是1,在图中画出: (1)一个面积为2的直角三角形. (2)一个面积为2的正方形.6.如图,△ABC 中,BC=12,AB=10,△ABC 的面积是48.那么BD=__________.7.一个三角形的一个外角等于和它相邻的内角,如果此三角形的两条边长分别是5,2,那么以第三条边为半径的圆的面积是___________(保留π).8.边长为2的正三角形的面积为__________,边长为a 的正三角形面积为___________. 9.如果梯子的底端离建筑物9m ,那么15m 长的梯子可以到达建筑物的高度是_________. 10.为得到湖两岸A 点和B 点间的距离,一个观测者在C 点设桩,使∠ABC 为直角(如图),并测得AC 长20m 、BC 长16m ,A ,B 两点间的距离是_________.二、选择题(7分×3=21分) 11.有下列命题:(1)如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数; (2)如果直角三角形的两边长是3,4,那么斜边必是5;(3)如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形; (4)一个等腰直角三角形的三边长为a ,b ,c (a>b>c ),那么1:1:2::222=c b a .其中正确的是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(2)(4)12.如图,△ABC 中,AB=AC ,AD ⊥BC ,垂足是D ,AB=13,BD=5,则△ABC 的面积是( ) A .65 B .120 C .60 D .3613.如图,△ABC 中,∠ACB=90°,AC=BC ,如果△ABC 的面积是8,那么腰长是( ) A .4 B .2 C .8 D .1614.如图,B 在A 的北偏西α方向的6m 处,C 在A 的北偏东β方向的8m 处,并且︒=β+α90,那么B 、C 两点相距( )A .6mB .8mC .10mD .12m15.如图,在Rt △ABC 中,∠C=90°,D 为AC 上的一点,且有DA=DB=5,又△DAB 的面积是10,那么DC 的长是( )A .4B .3C .5D .4.516.在△ABC 中,AB=AC ,如果AB=17,BC=16,则BC 边上的中线长是( ) A .8 B .15 C .10 D .617.如图,在Rt △ABC 中,∠B=90°.以AC 为直径的圆恰好过点B .AB=8,BC=6,则阴影部分的面积是( )A .24100-πB .48100-πC .2425-πD .4825-π三、阅读理解题(5分)18.阅读下列解题过程,并回答问题.已知a ,b ,c 为△ABC 的三边,且满足442222b a c b c a -=-,试判定△ABC 的形状.解:∵442222b a c b c a -=-, ①∴))(()(2222222b a b a b a c -+=-. ② ∴222b a c +=, ③ ∴△ABC 是直角三角形.(1)上述解题过程,从哪一步开始出现错误?请写出代号___________. (2)错误的原因为__________. (3)本题正确结论为____________.四、解答题(64分) 19.(8分)下面同学对各题的解答是否正确?为什么? (1)在Rt △ABC 中,∠B=90°,a=3,b=4,求c ;(2)已知直角三角形两条直角边为40和9,求第三边的长;(3)已知△ABC 中,AB=10,AC=17,BC 边上的高AD=8,求BC 的长. 解:(1)由勾股定理得:222c b a =+,∴5,2543222==+=c c . (2)由勾股定理得:222c b a =+,∴1681940222=+=c , ∴c=41,答:第三边的长为41. (3)根据勾股定理:6481022222=-=-=AD AB DB ,∴DB=8;22581722222=-=-=AD AC DC ,∴DC=15.故BC=15+8=24. 20.(8分)有一个三角形两边长分别为4和5,要使三角形为直角三角形,则第三边为多少?21.(8分)给出一组式子:222222222222261024,17815,1068,543=+=+=+=+.(1)你能发现关于上式中的一些规律吗?(2)请你运用所发现的规律,给出第5个式子. (3)请你证明你所发现的规律. 22.(8分)在△ABC 中,已知a=15,b=17,c=8,求△ABC 的面积. 23.(8分)如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,D 为垂足,DE ⊥BC ,E 为垂足,已知AC=6,AB=10.求(1)CD 的长;(2)DE 的长.24.(8分)如图,△ABC 中,AD ⊥BC ,D 为垂足,AE 为BC 边上的中线,已知AB=5,BC=12,△ABC 的面积是24.求(1)AD 的长;(2)判断△ABE 的形状,并说明理由.25.(8分)如图,在△ABC 中,∠ACB=90°,CD 为AB 边上的高.试说明22222AB CD BD AD =++.26.(8分)如图,在△ABC 中,AM 是BC 边的中线,AE 为BC 边上的高.试判断22ACAB +与22BM AM +的关系,并说明理由.参考答案1.(1)7 (2)34 2.(1)1 (2)3 3.19.2 4.a 5.略 6.6 先由面积公式4821=⋅=∆AD BC S ABC ,求出AD=8. 7.π21或π29 先说明此三角形为直角三角形,但因为谁是斜边没有确定,故有两种情况.8.243;3a 9.12cm 10.12cm 11.C 12.C 13.A 821=⨯⨯=∆BC AC S ABC ,则4,1622====BC AC BC AC . 14.C ︒=β+α90,得∠BAC=90°,由勾股定理可求得BC=10. 15.B ∵△ADB 的AD 边上的高为BC ,∴BCAD S ADB ⋅=∆21.即BC ⨯⨯=52110,∴BC=4.在Rt △BCD 中求得CD=3. 16.B 17.C 18.(1)③ (2)22ba -可能为0. (3)△ABC 为直角三角形或等腰三角形 19.几个题的解法均有问题.(1)错误的原因是没有弄清哪个角是直角,盲目地运用勾股定理,当∠B=90°,应该有222b c a =+. (2)没有确定所求得的边是直角边,还是斜边.(3)考虑不完整,忽视了高AD在△ABC外部的情况. 20.3或41 21.(1)22222]1)1[()]1(2[]1)1[(++=++-+n n n (2)222371235=+ (3)按完全平方公式展形,进行证明即可. 22.∵22217815=+,∴222c a b +=,∴△ABC 为直角三角形,∴608121=⨯⨯=∆ABC S . 23.(1)4.8.先求出BC=8.则由面积公式可求出CD . (2)3.84 在△ACD 中求得AD=3.6,所以BD=6.4,在△BCD 中运用面积公式求DE ,即DB CD BC DE ⨯⨯=⨯⨯2121.则484.68.4=⨯=DE . 24.(1)4 由面积公式2421=⨯⨯AD BC ,得4122124=⨯=AD . (2)等腰三角形.在Rt △ABD 中,AB=5,AD=4,则BD=3,因为E 为BC 的中点,∴BE=6,DE=3,AE=5=AB .△ABE 为等腰三角形.25.左边2222222222)()(BC AC CD BD CD AD CD CD BD AD +=+++=+++===2AB 右边26.)(22222BM AM AC AB +=+.222222222)()(2MC EM EM BM AE EC AE BE AE AC AB ++-+=+++=+22222222MC MC EM EM EM EM BM BM AE +⋅+++⋅-+=. ∵MC BM =, ∴2222222222222)(2222BM AM BM EM AE BM EM AE AC AB +=++=++=+)(222BM AM +=.期中测试题(时间90分钟,满分120分)一、选择题(3分×10=30分)1.已知xy=1,则)1)(1(y y x x +-的值为( ) A .22x B .22y C .22x y - D .22y x -2.有理数a ,b 在数轴上的对应点如图所示,则代数式b a ba +-的值为( )A .正数B .负数C .零D .不能确定3.若分式34922+--x x x 的值为零,则x 的值为( )A .3B .3或—3C .—3D .04.化简ab a b a +-222的结果是( )A .a b a 2-B .a b a -C .a b a +D .b a ba +-5.若x<2,则|2|2--x x 的值为( )A .—1B .0C .1D .26.xy y x 1022+中,x ,y 都扩大10倍,则分式的值( )A .扩大10倍B .缩小10倍C .保持不变D .缩小5倍7.如果反比例函数的的图象经过点(3,2),那么下列各点中在此函数图象上的点是( )A .)23,2(-B .)32,9( C .)32,3(- D .)23,6( 8.一个矩形的面积是6,则这个矩形的一组邻边长x 与y 的函数关系图象大致是( )9.若直角三角形的三边长分别为2,4,x ,则x 可能的值有( )A .1个B .2个C .3个D .4个10.一等腰直角三角形的周长为2P ,其面积为( ) A .P )222(+ B .P )22(-C .2)223(P -D .2)221(P -二、填空题(3分×10=30分)11.在分式11||+-x x 中,x=______________时,分式无意义,当x=____________时,分式的值为零.12.当4,21-==y x 时,________)(2=-÷-xy y x x xy .13.若去分母解方程x x x --=-3323,出现增根,则增根为_____________. 14.在分式123-x 中,当x=_____________时,分式的值为1;当x 的值____________时,分式值为正数.15.已知32572=+-y x x y ,且0≠y ,则________=y x .16.反比例函数)0(≠=k x k y 的图象经过点P ,如图所示.根据图象可知,反比例函数的解析式为____________.17.某蓄电池的电压为定值,如图所示的是该蓄电池电流I (A )与电阻R (Ω)之间的函数关系图象,则其函数解析式是______________.18.近视眼镜的度数y (度)与镜片焦距x (m )成反比例关系,已知400度近视眼镜片的焦距为0.25m ,则眼镜度数y 与镜片焦距x 之间的函数关系式为___________.19.如图,已知△ABC 中,∠ACB=90°,以△ABC 的各边为边在△ABC 外作三个正方形,321,,S S S 分别表示这三个正方形的面积,225,8131==S S ,则___________2=S .20.如图,为了求出湖两岸A ,B 两点之间的距离,观测者从观测点A ,B 分别测得∠BAC=90°,∠ABC=30°,又测得BC=160m ,则A ,B 两点之间的距离为__________m (结果保留根号).三、解答题(60分)21.先化简,再求值.(5分×2=10分)(1))2122(24--+÷--x x x x ,其中43-=x .(2)11123213222+++--+÷-+x x x x x x x ,其中132-=x .22.解分式方程.(5分×2=10分)(1)1613122-=-++x x x (2)416312546---=-x x x .23.(8分)在Rt △ABC 中,∠C=90°,6=+BC AC ,AB=2,求这个三角形的面积.24.(8分)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在距A 站多少千米处?25.(8分)如图,已知Rt △ABC 的顶点A 是一次函数y=x+m 与反比例函数x m y =的图象在第一象限内的交点,且3=∆AOB S .该一次函数与反比例函数的解析式是否能完全确定?如能确定,请写出它们的解析式;如不能确定,请说明理由.26.列方程解应用题.(8分×2=16分)(1)某厂原计划在规定期限内生产通信设备60台支援抗洪,由于改进了操作技术,每天生产的台数比原计划多50%,结果提前两天完成任务,求改进操作技术后每天生产通信设备多少台.(2)为了方便广大游客到昆明参加“世博会”,铁道部门临时增开了一列南宁—昆明的直达快车,已知南宁—昆明两地相距828km ,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通列车平均速度的1.5倍.直达快车比普通列车晚出发2h ,比普通列车是4h 到达昆明.求两车的平均速度.参考答案1.D 2.A 3.C 4.B 5.A 6.C 7.B 8.D 9.B 10.C 11.—1;1 12.1 13.x=3 14.2;大于21 15.174- 16.x y 2= 17.R I 36= 18.x y 100= 19.144 20.380 21.(1)原式3341-=+-=x (2)原式2312=+=x 22.(1)x=1为增根,原方程无解 (2)x=2. 23.将6=+BC AC 两边平方,得22)6()(=+BC AC ,即6222=⋅++BC AC BC AC .∴4222==+AB BC AC .∴4+2AC ·BC=6.∴AC ·BC=1.∴2121=⨯⨯=∆BC AC S ABC . 24.设AE=x km ,由勾股定理,得2222)25(1015x x -+=+,解得x=10. 25.设B (a ,0),则),(a m a A ,其中a>0,m>0.在Rt △ABO 中,a OB a m AB ==,.则321=⨯⨯=∆a m a S ABO .∴m=6.所以一次函数的解析式为y=x+6.反比例函数的解析式为x y 6=.26.(1)设原计划每天生产通信设备x 台,那么改进操作技术后每天生产1.5x 台,依题意,得25.16060=-x x ,解得x=10.经检验,x=10是原方程的解.当x=10时,1.5x=15. (2)设普通列车的平均速度为x km/h ,则直达快车的平均速度为1.5x km/h ,依题意,得x x x 5.18286828-,解得x=46.经检验,x=46是原方程的解.∴x=46,1.5x=69.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
第十七章 勾股定理 章末复习 课件(共23张PPT) 2024-2025学年人教版八年级数学下册
巩固练习
1.如图,一个圆柱形油罐,要从A点环绕油罐建梯子,正好到A 点的正上方B点,请你算一算梯子最短需多少米? ( 已知油罐 的底面周长是12米,高是5米).
解:如图,将油罐侧面展开,
此时AB= 122 52 =13(m).
2.如图,已知在△ABC中,AB=17 , AC=10 , BC边上的高AD=8, 求:(1)BC边的长;(2)△ABC的面积.
A
思考:如何判定一个三角形是直角三角形呢?
1.有一个内角为直角的三角形是直角三角形.
2.两个内角互余的三角形是直角三角形.
3.如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角
形是直角三角形.
A
勾股定理的逆定理
c
几何语言:∵a2+b2=c2, b
∴△ABC是直角三角形.
C
a
B
典型例题
S阴影=S△CAD-S△ABC
=
1 2
AC·AD-
1 2
AB·BC
=24
互逆命题
勾股定理
题设:一个三角形 是直角三角形.
勾股定理 的逆定理
题设:一个三角形 的三边长a,b,c
满足a2+b2=c2.
结论:两条直角边的平 方和等于斜边的平方.
(a2+b2=c2)
结论:这个三角形 是直角三角形.
若两个命题的题设、结论正好相反,则这两个命题叫 做互逆命题.
知识框图 勾股定理
互逆定理
勾股定理的逆定理
直角三角形边 长的数量关系
直角三角形的判定
复习回顾
回顾思考:
1.直角三角形三边的长有什么特殊的关系? 2.赵爽证明勾股定理运用了什么思想方法? 3.已知一个三角形的三边长,怎样判断它是不是直角三 角形? 你作判断的依据是什么? 4.证明勾股定理的逆定理运用了什么方法? 5.一个命题成立,它的逆命题未必成立. 请举例说明.
八年级数学上册 第一章 勾股定理单元复习课件
内容 总结 (nèiróng)
第一章 C.10或14
No 勾股定理(ɡōu ɡǔ dìnɡ lǐ)。C.a2+c2=b2 D.c2-a2=b2。A.100 D.100或28。A.锐角三角形 B.钝角三角形。C.直角三角形
B.28。 D.等腰三角形
Image
12/13/2021
第十九页,共十九页。
解:作AD⊥MN于点D,并作AB=AC=200 m交MN于点B,C.因为AD=120 m,所以BD= 160(m),BC=160×2=320(m)=0.32(km),t=0.32÷72×3600=16(s).答:A处受噪音影响 的时间是16 s
第十六页,共十九页。
16.如图,一根长度为50 cm的木棒的两端系着一根长度为70 cm的绳子,现准备在绳子上 找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个(yī ɡè)直角三角形,且 木棒所在边为直角边,这个点将绳子分成的两段各有多长?
ቤተ መጻሕፍቲ ባይዱ
C.a2+c2=b2 D.c2-a2=b2
第二页,共十九页。
2.已知一个(yī ɡè)直角三角形的两边长分别为6和8,则第三边长的平方是( )
D
A.100
B.28
C.10或14 D.100或28
第三页,共十九页。
3.(郑州二中月考)如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,现
7.下列说法中,错误的是( D ) A.在△ABC 中,若∠C=∠A-∠B,则△ABC 为直角三角形 B.在△ABC 中,若∠A∶∠B∶∠C=5∶2∶3,则△ABC 为直角三 角形 C.在△ABC 中,若 a=35 c,b=45 c,则△ABC 为直角三角形 D.在△ABC 中,若 a∶b∶c=3∶2∶4,则△ABC 为直角三角形
北师大版八年级数学上册《勾股定理》复习课教学课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件 北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
三、典例分析
例1、(1)已知直角三角形的两条直角边为 6cm和8cm,斜边是___1_0_c_m__, 则斜边上的高是 _4__.8_c_m__。 (2)若直角三角形的三边长分别为3、 6、x, 则x2=___4__5_或_2_7___。(分类思想)
新北师大版
八年级上册第一章 勾股定理复习
一、导课
商高,西周初数学家。商高在公元前 1000年发现勾股定理并完成证明。此发现 早于毕达哥拉斯定理五百到六百年。勾股定 理是中国数学家的独立发现,在中国早有记 载。勾股定理,我们把它称为世界第一定理。 勾股定理是我们数学史的奇迹,我们已经比 较完整地研究了这个先人给我们留下来的宝 贵的财富,这节课,我们将通过回顾与思考 中的几个问题更进一步了解勾股定理的应用。
六、当堂检测
1.在Rt△ABC中,∠C=90°,
2. ①若a=5,b=12,则c=___1_3_______; 3. ②若a=15,c=25,则b=__2_0________; 4. ③若c=61,b=60,则a=__1_1_______; 5.下列各组数中为勾股数的一组是( D )
A、7、12、13;B、1.5、2、2.5 C、3、4、7 D、8、15、17 3. 有一块田地的形状和尺寸如图所示,试求它的面积。
勾股定理的逆定理是判定一 个三角形是否是直角三角形 的一种重要方法,它通过 “数转化为形”来确定三角 形的可能形状,
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
北师大版八年级数学上册第一章《勾 股定理 》复习 课 课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互逆定理:
如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆 定理, 其中一个叫做另一个的逆定理.
3
2.如图,铁路上A、B两点相距25km, C、 D为两村庄,DA•垂直AB于A,CB垂直 AB于B,已知AD=15km,BC=10km,现 在要在铁路AB上建一个土特产品收 购站E,使得C、D两村到E站的距离 相等,则E站建 在距A站多少千米处?
折叠三角形
例1、如图,一块直角三角形的纸片,两 直角边AC=6㎝,BC=8㎝。现将直角边 AC沿直线AD折叠,使它落在斜边AB上, 且与AE重合,求CD的长.
命题:1、无理数是无限不循环小数的
逆命题是 无限不循环小数是无理数。
2、等腰三角形两底角相等 的逆命题:有两个相等角的三角形是等腰三角形。
勾股数
满足a2 +b2=c2的三个正整数,称为勾股数
1、在直角三角形ABC中,∠C=90°,
(1)已知a:b=3;4,c=25,求 a和b
(2)已知∠A=30°,a=3, 求b和c
勾股定理:
直角三角形的两直角边为a ,b , 斜边为 c ,则有
a2+ b2=c2
Rt△ 直角边a、b,斜边c
形
Rt△
逆定理:
a2+b2=c2 互
逆
数
命
a2+b2=c2 题
三边a、b、c
三角形的三边a,b,c满足a2+b2=c2,则这个三角形 是直角三角形; 较大边c 所对的角是直角.
互逆命题:
如图:正方体的棱长为5cm,一只蚂蚁 欲从正方体底面上的顶点A沿正方体的 表面到顶点C′处吃食物,那么它需要爬 行的最短路程的长是多少?
D′
C′
A′
B′
D
C B
16
例2:如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点
A 爬 到 点 B 处 吃 食 , 要 爬 行 的 最 短 路 程 ( 取 3 ) 是
D
C
B
A
方程思想
直角三角形中,当无法已知两边求第三 边时,应采用间接求法:灵活地寻找题中 的等量关系,利用勾股定理列方程。
1.小东拿着一根长竹竿进一个宽为3米 的城门,他先横拿着进不去,又竖起来 拿,结果竹竿比城门高1米,当他把竹 竿斜着时,两端刚好顶着城门的对角, 问竹竿长多少?
x (x+1)
A
A
A'
C
BC
B B'
16、你能在数轴上画出表示 17 的点和
- 15 的点吗?
在数轴上表示出 的点吗?
234 5 6
分类思想
1.直角三角形中,已知两边长是直角边、 斜边不知道时,应分类讨论。
2.当已知条件中没有给出图形时,应认真 读句画图,避免遗漏另一种情况。
分类思想
1.已知:直角三角形的三边长分别是 3,4,X,则X2= 25 或7
AD
C
A
9.如图,两个正方形的面积分别
为64,49,则AC= 17 .
64 D
B
49 C
15、数学与生活:
一架长为10m的梯子AB斜靠在墙上。
(1)若梯子的顶端距地面的垂直距离为8m ,则梯子 的顶端A与它的底 端B哪个距墙角C近?
(2)在(1)中如果梯子的顶端下滑1m,那么它的底 端是否也滑动1m?
A
6
6E x
4
x 8-x C
D D
第8题图
B
例2、如图,小颍同学折叠一个直角三角形 的纸片,使A与B重合,折痕为DE,若已知 AB=10cm,BC=6cm,你能求出CE的长吗?
D
B
A
C
E
练习:三角形ABC是等腰三角形
AB=AC=13,BC=10,将AB向AC方向
对折,再将CD折叠到CA边上,折痕CE,
2.三角形ABC中,AB=10,AC=17,BC边上 的高线AD=8,求BC
A
17
8
10
B
C
方程 思想
例: 有一个水池,水面是 一个边长为10尺的正方形,在 水池的中央有一根新生的芦 苇,它高出水面1尺,如果把 这根芦苇垂直拉向岸边,它 的顶端恰好到达岸边的水面, 请问这个水池的深度和这根 芦苇的长度各是多少?
(B )
A.20cm B.10cm C.14cm D.无法确定
周长的一半
2O
蛋糕 B
C6
B
8
A
8 A
如图,一圆柱高9cm,底面半径2cm,一只蚂蚁从距底面
1厘米点A爬到对角B处吃食,要爬行的最短路程( 取
3)是(
)
A.20cm B.10cm C.14cm D.无法确定
B A
C
B
A
例3,如图是一个三级台阶,它的每一级的长宽和高分别为 20dm、3dm、2dm,A和B是这个台阶两个相对的端点, A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿 着台阶面爬到B点最短路程是多少?
(3)已知∠A=45°,c=8,求 a和b
2、直角△的两边长为8和10,求第三 边的长度. 6或 164
3、已知等边三角形的边长为2厘米,
则它的高为 ,面积为
.
4、判断以线段a、b、c为边的△ABC 是不是直角△
(1)a= 7 ,b= 3 ,c=2
(2)a=9 b=8 C=6
5.请完成以下未完成的勾股数: (1)8、15、_1_7_____;(2)10、26、2_4____.
求三角形ACE的面积
A
A
A
12-x 8
12
13
x E x
D1 5
B D C D5 C D5 C
折叠四边形
例1:折叠矩形ABCD的一边AD,点D落在
BC边上的点F处,已知AB=8CM,BC=10CM, 求 1.CF 2.EC.
10
D
A
8-X
8 10
E
8-X X
B
6
F4 C
例2:折叠矩形纸片,先折出折痕 对角线BD,在绕点D折叠,使点A 落在BD的E处,折痕DG,若AB=4, BC=3,求AG的长。
6.△ABC中,a2+b2=25,a2-b2=7,又c=5,则最大边上的高是
_2_.4_____.
7长度分别为 3 , 4 , 5 , 12 ,13 的五根木棒能搭成(首尾连接)直
角三角形的个数为( B )
A 1个 B 2个 C 3个
D 4个
8、在△ABC中,∠C=90°,AC=3,CB=4.
(1)求△ABC的面积 ⑵求斜边AB ⑶求高CD
D
C
E
AG
B
例3:矩形ABCD中,AB=6,BC=8, 先把它对折,折痕为EF,展开后再沿 BG折叠,使A落在EF上的A1,求第二
次折痕BG的长。 提示:先证明正三角形AA1B
C
B
A1
E
F
D
G
A
展开思想
1. 几何体的表面路径最短的问题,一般展 开表面成平面。
2.利用两点之间线段最短,及勾股定理 求解。