高中数学必修二第二章_2.1.1_平面课件

合集下载

高中数学必修2第2章212第二课时两点式课件(_1

高中数学必修2第2章212第二课时两点式课件(_1
化,形成用联系的观点看问题的习惯.
1.直线的两点式方程
(1)条件:P1(x1,y1),P2(x2,y2)(x1≠x2,y1≠y2). (2)方程:_y_y2-_-_yy_11_=__xx2_--_x_x1_1 __ 2.直线的截距式方程 (1)条件:A(a,0),B(0,b)且___a_b_≠__0_______ (2)方程:__xa_+__by_=__1______
1.在例1的条件下,求过点B且平行于AC的直线方程. 解:设所求的直线为 l,由于 l 与直线 AC 平行,则这两条直线 的倾斜角相等,所以 kl=kAC=3-0--22=-25, 故直线 l 的方程为 y-2=-25(x-3).
直线的截距式方程 求过定点P(2,3)且在两轴上截距相等的直线方程.
(本题满分 12 分)求过点 A(4,2),且在两坐标轴上的 截距的绝对值相等的直线 l 的方程.
[解] 当直线过原点时 ,它在 x 轴、y 轴上的截距都是 0, 满足题意,此时,直线的斜率为12,所以直线方程为 y=12x.2 分 当直线不过原点时 ,由题意可设直线方程为xa+by=1,又过 点 A,所以4a+2b=1①,4 分 因为直线在两坐标轴上的截距的绝对值相等,所以|a|=|b| ②,
[错因与防范] (1)方程xa+by=1 中的 a 与 b 是直线在 x 轴与 y 轴上的截距,而不是距离,所以由三角形面积为 4,应该有12|a||b| =4. (2)直线的截距是指直线在坐标轴上对应的坐标,因此可为正、 可为负、可为零;而距离是线段的长度,是非负的.截距不是 距离,解题中应注意准确把握两者的区别.
2.求过点 A(3,4),且在坐标轴上截距互为相反数的直线 l 的 方程. 解:(1)当直线 l 在坐标轴上截距互为相反数且不为 0 时,可 设直线 l 的方程为xa+-ya=1.又 l 过点 A(3,4), 所以3a+-4a=1,解得 a=-1.

高中数学 2.1.1 平面 课件 新人教A版必修2

高中数学 2.1.1 平面 课件 新人教A版必修2
第三十页,共55页。
变式训练3:如图,已知平面α、β相交于l,设梯形ABCD中,AD∥BC,
且AB
α,CD β.
求证:AB、CD、l相交于一点.
第三十一页,共55页。
证明:∵梯形ABCD中,AD∥BC,AB、DC是梯形ABCD的两腰,∴AB
、DC必相交于一点,设AB∩DC=M,又∵AB α,CD
第十页,共55页。
3.准确理解公理的含义 公理1是判定直线在平面内的依据.证明一条直线在某一平面内,只
需证明这条直线上有两个不同的点在该平面内.“直线在平 面内”是指“直线上的所有点都在平面内”. 公理2的作用是确定平面,是把空间问题化归成平面问题的重要 依据.并可用来证“两个平面重合”.特别要注意公理2中“不在 一条直线上的三个点”这一条件.
∴P在平面ABC与平面α的交线上. 同理可证Q和R均在这条交线上. ∴P\,Q\,R三点共线.
第二十九页,共55页。
规律技巧:解决点共线或线共点的问题是平面性质的应用.解决点共
线一般地先确定一条直线,再用平面的基本性质,证明其他的点 也在该直线上.直线共点问题的步骤:一先说明直线相交,二让交 点也在其他直线上.
第十七页,共55页。
变式训练1:判断下列说法是否正确?并说明理由.
(1)平面的形状是平行四边形;
(2)任何一个平面图形都是一个平面;
(3)圆和平面多边形都可以表示平面;
(4)因为
ABCD的面积大于
ABCD大于平面A′B′C′D′;
A′B′C′D的面积,所以平面
(5)用平行四边形表示平面,以平行四边形的四条边作为平面的边 界线.
第四十四页,共55页。
7.三条直线相交于一点,可确定的平面有________个. 答案:1或3

高中数学必修2第二章点直线平面之间的位置关系211平面及其表示法(含习题课)PPT课件

高中数学必修2第二章点直线平面之间的位置关系211平面及其表示法(含习题课)PPT课件

1,2,3(1)(2)
21
补充练习金太:阳教育网
l 1、A为直线 l上的点,又点A不在平面
与 的公共点最多有 _______1个.
品质来自专业 信赖源于诚信
内,则
2、四条直线过同一点,过每两条直线作一个平
面,则可以作_____1_或___4_或___6个不同的平面 .
22
金太阳教育网
品质来自专业 信赖源于诚信
2
金实太阳教例育网引入
品质来自专业 信赖源于诚信
观察活动室里的地面,它呈现出怎样的形象?
3
一.平面金太的阳教育概网 念:
品质来自专业 信赖源于诚信
光滑的桌面、平静的湖面等都是我们
熟悉的平面形象,数学中的平面概念是现
实平面加以抽象的结果。
二.平面的特征:
平面没有大小、厚薄和宽窄,平面在空 间是无限延伸的。
文字语金言太阳:教育网 公理1.如果一条直线上两点品信质赖在来源自于专诚一业信 个平面内,那么这条直线在此平
面内(即这条直线上的所有的点
23
点、线金、太阳面教之育网间的位置关系及语言表达
品质来自专业
信赖源于诚信
文字语言表达 图形语言表达 符号语言表达
点A在直线a上 点A不在直线a上
A
a
A
a
A∈a A∈a
点A在平面α上 点A不在平面α上 直线a在平面α内
α
A
α
α
A
a a
A∈α A∈ α

a b∩α=A
直线a在平面α外 α
A α
a∩α=φ 或 a∥α24
B A
B
CαA
C
公理2.过不在同一直线上的三点,有且只有一个平面.

高中数学必修二第二章第一节课件

高中数学必修二第二章第一节课件
如图2 1 21,已知两点Px1, y1 , Qx2, y2 ,如果 x1 x2,那么直线PQ 的斜率 slope为
k y2 y1 x1 x2 .
x2 x1
如果x1 x2,那么直线PQ的斜率不
存在(图2 1 22).
图2 1 2
y
l
第 2章 平面解析几何初步
如 果 代 数 与 几 何 各 自 分开 发 展, 那 它 的 进 步 将 十 分 缓 慢,而 且 应 用 范 围 也 很 有 限.但 若 两 者 互 相 结 合 而 共同 发 展, 则 就 会 互 相加 强, 并 以 快速 的 步 伐 向 着 完 美 化 的 方 向 猛 进.
点的集合是一条曲线.
我 们 知 道, 直 线 和 圆 是 基 本 的 几 何图 形.那 么 如何建立它们的方程? 如何通过方程来研究它们的性质?
2.1 直线与方程
高二(19)
直 线 是 最 常 见 的 图 形, 过 一 点 沿 着 确 定 的 方 向 就 可 以 画 出 一 条 直 线.
为 什 么?
在直角坐标系中, 对于一条与x 轴相交的直线,把 x 轴所在 的 直 线 绕 着 交 点 按 逆 时针 方 向 旋 转 到 和 直 线 重合 时 所 转
过的最小正角称为这条直线的倾 斜 角(inclination),并规定:
y B
A
O

N
图2 1 51
与 x 轴 平 行 或 重 合 的 直 线 的倾 斜 角 为00 . 由定义可知,直线的倾斜角 的取值范 围是00 1800 . 当 直 线 的 斜 率 为 正 时, 直 线 的 倾 斜 角
x 为锐角图2 1 51,此时,
k y BN tan .

高中数学必修2第2章211直线的斜率课件(31张)_1

高中数学必修2第2章211直线的斜率课件(31张)_1

(2)设直线 l 过坐标原点,它的倾斜角为 α,如果将直线 l 绕坐 标原点按逆时针方向旋转 45°,得到直线 l1,那么 l1 的倾斜角 为__当__0_°__≤__α_<__1_3_5_°__时__,__倾___斜__角__为__α_+__4_5_°__,__当__1_3_5_°__≤__α___ _<__1_8_0_°__时__,__倾___斜__角__为__α_-__1_3_5_°________ (3)已知直线 l1 的倾斜角 α1=15°,直线 l1 与 l2 交点为 A,直线 l1 和 l2 向上的方向之 间所成的角为 120°,如图所示,则直线 l2 的倾斜角为__1_3_5_°___. (链接教材 P79 倾斜角定义)
[解析] (1)上述说法中,⑤正确,其余均错误,原因是: ①与 x 轴垂直的直线倾斜角为 90°,但斜率不存在; ②举反例说明,120°>30°,但 tan 120°=- 3<tan 30°= 33; ③平行于 x 轴的直线的倾斜角为 0°; ④如果两直线的倾斜角都是 90°,那么两直线的斜率都不存在, 也就谈不上相等.
2.已知点 A(1,2),若在坐标轴上有一点 P,使直线 PA 的倾斜 角为 135°,则点 P 的坐标为____(_3_,0_)_或__(_0_,3_)_____. 解析:由题意知 kPA=-1,设 x 轴上点(m,0),y 轴上点(0,n), 由m0--21=n0--12=-1,得 m=n=3.
[解] 如图,由斜率公式可知 kPA=1-1--23=-4,kPB=11----23=34. 要使直线 l 与线段 AB 相交,则直线 l 的斜率 k 的取值范围是
(-∞,-4]∪34,+∞.
[感悟提高] (1)本题关键是利用图形找到斜率变化的区间;画 出图形,借助图形可以看出,若直线 l 与线段 AB 有公共点, 则倾斜角应介于直线 PA,PB 的倾斜角之间,故斜率的变化范 围也随之确定. (2)借助图形,用运动变化的观点看问题,是这类题的一般解 法.本题容易把直线 l 的倾斜角介于直线 PA,PB 的倾斜角之 间与斜率介于二者之间混为一谈,得出错误答案为-4≤k≤34, 因此应注意倾斜角为 90°的“跨越”.

2021_2022年高中数学第二章点直线平面之间的位置关系1

2021_2022年高中数学第二章点直线平面之间的位置关系1
• 因为b∥c,所以由公理2可知直线b与c确定一个平面β,同理 可知l⊂β.
• 因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公
理2的推理2知:经过两条相交直线,有且只有一个平面,所
以平面α与平面β重合,所以直线a,b,c和l共面.
• 规律总结:(1)证明点线共面的主要依据:公理1、公理2及其 推论.
• [证明] 如右图所示,
• ∵PA∩PB=P, • ∴过PA,PB确定一个平面α. • ∴A∈α,B∈α. • ∵A∈l,B∈l, • ∴l⊂α. • ∴PA,PB,l共面.
3. 证明多点共线问题
• 例题3 已知△ABC在平面α外,AB∩α=P,AC∩α=R,
BC∩α=Q,如图.求证:P、Q、R三点共线.
自主预习
1.平面
描述
几何里所说的“平面”是从生活中的一些物体抽象出 来的,是无限___延__展_____的
通常把水平的平面画成一个__平__行__四__边__形__,并且其锐 角画成45°,且横边长等于其邻边长的___2__倍,如图 1所示;如果一个平面被另一个平面遮挡住,为了增强 立体感,被遮挡部分用__虚__线___画出来,如图2所示
练习1
(1)若点 M 在直线 a 上,a 在平面 α 内, 则 M,a,α 间的关系可记为________.
(2) 根 据 右 图 , 填 入 相 应 的 符 号 : A________平面 ABC,A________平面 BCD, BD________平面 ABC,平面 ABC∩平面 ACD =________.
• (2)公理2中“有且只有一个”的含义要准确理解,这里的“有 ”是说图形存在,“只有一个”是说图形唯一,强调的是存在 和唯一两个方面,因此“有且只有一个”必须完整地使用,不 能仅用“只有一个”来代替,否则就没有表达出存在性.确定 一个平面中的“确定”是“有且只有”的同义词,也是指存在 性和唯一性这两个方面,这个术语今后也会常常出现.

2019版高中数学第二章平面直角坐标系中的基本公式2.1.1数轴上的基本公式课件

2019版高中数学第二章平面直角坐标系中的基本公式2.1.1数轴上的基本公式课件
思路点拨:依据数轴上两点间的距离公式首先判定不等式或方程表示的点集,然后 在数轴上表示出来. 解:如图 (1)d(x,2)<1表示到点A(2)的距离小于1的点的集合.所以d(x,2)<1表示线段BC(不 包括端点); (2)|x-2|>1表示到点A(2)的距离大于1的点的集合,所以|x-2|>1表示射线BO和射 线CD(不包括端点); (3)|x-2|=1表示到点A(2)的距离等于1的点的集合,所以|x-2|=1表示点B(1)和点 C(3).
(C)AB=AO+OB
(D)AB+AO+BO=0
解析:A正确,因为AB=AO+OB=OB-OA; B正确,因为AO+OB+BA=AB+BA=0; C正确,因为AO+OB=AB; D不正确,因为AB+AO+BO不一定为0,故选D.
4.数轴上A、B两点间的距离是5,点A的坐标是1,则点B的坐标是
.
解析:设B点的坐标为x, 则|x-1|=5,所以x=6或-4. 答案:6或-4
类型二 数轴上的基本公式的应用 【例2】 已知数轴上A,B两点的坐标分别为x1=a+b,x2=a-b.求AB,BA,d(A, B),d(B,A).
解:AB=x2-x1=(a-b)-(a+b)=-2b; BA=x1-x2=(a+b)-(a-b)=2b或BA=-AB=2b; d(A,B)=|x2-x1|=2|b|;d(B,A)=|x1-x2|=2|b|.
方法技巧 (1)记住公式,理解符号的含义是解题的关键;(2)明确向量的 长度及数量的区别与联系;(3)注意区别:|AB|=d(A,B)=|xB-xA|,AB=xB-xA.
变式训练2-1:已知A,B,C是数轴上任意三点: (1)若AB=5,CB=3,求AC; (2)若A(-2),BC=1,AB=2,求C点的坐标;

人教版高中数学必修二课件-第二单元

人教版高中数学必修二课件-第二单元

公理1:若一条直线的两点在一个平面内, 则这条直线上所有的点都在这个平面内, 即:这条直线在这个平面内。
即: A∈且B∈ AB
A AB B
作用:用于判定线在面内
A
B

结论2 :空间中线与面的位置关系
直线a在平面 内 记作:a
直线a在平面外

3.记法: B ①平面α、平面β、平面γ(标记在边上) ②平面ABCD、平面AC或平面BD
A
B
A
巩固: 判断下列各题的说法正确与否,在正 确的说法的题号后打 ,否则打 . 1、一个平面长 4 米,宽 2 米; ( )
2、平面有边界;
3、一个平面的面积是 25 cm 2; 4、平面是无限延展、没有厚度的 ;
记作:a
强调: 空间中点与线(面)只有∈和 关系 空间中线与面只有 与 的关系 推导符号“”的使用: 条件1 结论 条件结论 条件2

思考2:固定一扇门需要几样东西?
回答:确定一个平面需要什么条件?
公理2:过不在同一条直线上的三点,有 且只有一个平面。
B
A
C
A、B、C不共线 A、B、C确定一个平面 作用:用于确定一个平面.
1
(2)若直线过焦点则可考虑利用第二定义,将弦长转 化为弦的端点到相应准线距离的和与离心率的 乘积,在应用时要注意区分两种情形: ① 如果两点在同一支上,那么| AB |=| AF1 | | BF1 | (见图一) ② 如果两交点分别在两支上,那么| AB |=|| AF1 | | BF1 || (见图二)
点A是线段
的中点? PP 1 2
这样的直线 弦长|
l如果存在,求出它的方程及
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


公理1.如果一条直线上两点在一个平面 ,那么这条直线上的所有的点都在这 个平面内(即直线在平面内)。
图形表示: 符号表示:
α l B
A
A l , B l , 且A , B , l
作用:判定直线在平面内的依据,同时说明 了平面的无限延展性。
公理2.过不在同一直线上的三点, 有且只有一个平面.
推论:1、一条直线和直线外 一点能确定一个平面; 2、两条相交直线能确定 一个平面; 3、两条平行直线能确定 一个平面。
B

. A . C
思考
思考1:如图,把三角板的一个角立在课桌 面上,三角板所在的平面与桌面所在的平 面是否只相交于一点B?为什么?
思考2:如果两条不重合 的直线有公共点,则其 公共点只有一个。如果两个不重合的 平面有公共点,其公共点有多少个? 这些公共点的位置关系如何?
所以AB,BC,CA三直线共面.
要证多线共面,先确定一个平面, 再证明其他直线也在这个平面内.
练习2
已知 : A, B, C l , D l ,
求证:直线AD,BD,CD共面.
D

证明: D l.
l
A
B
C
l与D确定平面 .

A, B, C l ,
l
A, B, C . 又 D , BD, CD, AD ,
符号语言
文字语言(读法)
A
A
a
a
A a A a A
学.科.网
点在直线上 点不在直线上 点在平面内 点不在平面内 直线a、b交于点A
A

A
A
A
b a
a b A
图形
符号语言


a
a
a
文字语言(读法)
a

a
A
a A
l
直线a在平面 内 直线a与平面 无公共点 直线a与平面 交于点 平面 与 相交于直线 l
图形表示:
符号表示:
α A
B C
A, B, C三点不共线 有且只有一个平面 使A , B , C
作用:(1)确定一个平面的依据和方法。
(2)证明点线共面的方法。
公理2:不共线的三点确定一个平面
思考:一条直线和直线外一点能点确定一个平面吗? 两条相交直线能确定一个平面吗?
两条平行直线能确定一个平面吗?
P , 且P
如果两个不重合 的平面有一个公 共点,那么它们 有且只有一条过 该点的公共直线
l , 且P l
思考5:公理3有哪些理论 作用吗?
确定两平面相交的依据, 判断多点共线的依据.
例1、(1)如图,用符号表示下列图形中点、 直线、平面之间的位置关系.
a
α
A
α a P l
平面ABCD
,平面AC,平面BD
平面的表示
两个相交平面的画法和表示 平面和平面相交于一条直线a a 平面平面=直线a 被遮住的部分画虚线
a
二、点、线、面的基本位置关系
1、符号表示: 点A、线a、面α A a, A , a , 2、引用集合关系:
图形
zxxkw

P P
平面ABC.
同理Q、R也为公共点,所以P、Q、R共线. 要证明多点共线,只要证明他们 是两个平面的公共点.
小结:
1.平面的概念; 2.平面的画法、表示方法及两个平面相交的画法; 3.三条公理 公理1.
A 且B 直线AB
公理2. A, B, C不共线 有且只有一平面 , 使A , B , C
l
B β
b
β

(2)根据下列描述作图:

a α ,b α ,c α 且a∩b=A,b∩c=B,c∩a=C
练习1
(1)两个平面的公共点的个数可能有 ( A.0 B.1 C.2 ) D.0或无数 )
(2)三个平面两两相交,则它们交线的条数 (
A.最多4条最少3条 C.最多3条最少2条
B.最多3条最少1条 D.最多2条最少1条
(3)已知空间四点中,无三点共线,则可确定 A.一个平面 C.一个或四个平面 B.四个平面 D.无法确定平面的个数
例2、求证:两两相交 且不过同一点的三条直 线必在同一个平面内.
B A
C
证明: 因为A,B,C三点不在一条直线上, 所以过A,B,C三点可以确定平面.(公理2) 因为A∈,B∈,所以AB .(公理1) 同理BC ,AC ,

B
思考3:根据上述分析可得什么结论?


P
l
公理3:如果两个不重合的平面有一个 公共点,那么它们有且只有一条过该点 的公共直线.
思考4:若两个平面有一条公共直线,则称这 两个平面相交,这条公共直线叫做这两个平 面的交线.平面α 与平面β 相交于直线l,可 记作 l ,那么公理3用符号语言可怎 样表述?
推论1、 A l 有唯一平面 , 使A , l 推论2、a 推论3、 a
b 有唯一平面 , 使a , b b 有唯一平面 , 使a , b
公理3. P , 且P
l , 且P l
2.1 空间点、直线、平面之间的 位置关系
2.1.1 平 面
构成图形的基本元素----D′ A′ D A B B′ C′
点、线、面
点无大小
C
线无粗细
面无厚薄
直线,平面都是无限延伸的
平面的表示
平面的符号表示 D C A B 1. 单个希腊字母: 平面, 平面,平面
2. 四个顶点或对角顶点大写英文字母:
即AD, BD, CD共面.
练习3
已知 : a b, a c M,b c N,
N c
求证:直线a,b,c共面.
b
α
M
a
例3、已知三角形ABC的 三条边AB、BC、AC与平 面α 分别交于P、Q、R. 求证:P、Q、R共线.
A B C R Q
P
证明: P AB 平面ABC P 平面ABC.
相关文档
最新文档