非线性动力学系统一般形式及其广义哈密顿体系下的几何积分方法
第七章 非线性动力学与混沌 讲义

2. 线性化方程组的解及其稳定性
12
111 21 1
122 222
试探解:1 Aet ,2 Bet
11
21
12
22
A B
0
ij
( fi x j
)0
11 12 0 21 22
2 T 0
T 11 22
系数矩阵的迹
11 22 12 21 系数行列式的值
特征根
❖ 刘式达,刘式适,《非线性动力学和复杂 现象》,气象出版社,1989
§7.1 引言
一. “非线性动力学”的表观含义
数学上:
f (x) ax b
f
(x)
ax2
bx
c
线性 非线性
定义:力或微分方程含有坐标或速度的非线性项的系 统,称为非线性动力学系统,反之称为线性动力学系统。
例:
mx kx 2x2
1. 定态解 xi 0 i 1,2, , n
x2
平衡点,奇点
x1
2. 发散解
xi 之一或几个随时间无限地偏离初值 x2
爆炸,散射
x1
3. 振荡解
既不趋于无穷大,也不终止于某一点,而是在一定区域内不断变化。
❖ 周期振荡
❖ 准周期振荡
x2 闭合曲线
x1
x2 非闭合曲线
x1
❖ 混沌
相轨迹没有确定的形状周 期、貌似随机的运动。
1,2 T
T 2 4 2
特征矩阵
A1 B1
A2 B2
1 c1 A1e1t c2 A2e2t
2
c1B1e1t
c2 B2e2t
渐进稳定
临界情况 不稳定
1,2 T
T 2 4 2
非线性动力学定性理论方法

非线性动力学定性理论方法非线性动力学定性理论方法是一种研究动力系统行为的方法,用于研究非线性动力系统的稳定性、周期性、混沌性等特性。
在非线性动力学定性理论中,主要有相图分析法、频谱分析法、Lyapunov指数法、Poincaré截面法等多种方法。
相图分析法是研究非线性动力系统的最常用方法之一。
相图是描述动力系统状态变化规律的图形,其中横坐标表示系统的状态变量,纵坐标表示状态变量的导数或变化率。
相图可以通过绘制状态变量和导数之间的关系曲线得到。
相图分析法通过分析相图的形状和特征,可以判断系统的稳定性、周期运动和混沌运动等特性。
频谱分析法是一种通过分析系统输出信号的频谱特性来研究非线性动力系统的方法。
在频谱分析中,通过将系统的输出信号用傅立叶变换或小波变换等方法,将信号分解成一系列的频谱分量。
通过分析频谱的峰值位置、能量分布等特征,可以判断系统是否存在周期运动或混沌运动等特性。
Lyapunov指数法是研究非线性动力系统稳定性的一种方法。
Lyapunov指数可以用来描述系统状态的指数变化率,即用来刻画系统状态的稳定性或者混沌性。
通过计算Lyapunov指数,可以得到系统状态的变化趋势,从而判断系统是否稳定或者出现混沌行为。
Poincaré截面法是一种通过截取动力系统的轨迹与特定平面的交点,来研究非线性动力系统行为的方法。
在Poincaré截面法中,通过选择合适的截面,可以将系统的运动轨迹转化为一系列的离散点。
通过分析离散点的分布和变化规律,可以判断系统是否存在周期运动或混沌运动等特性。
以上介绍的是非线性动力学定性理论的一部分方法,这些方法在研究非线性动力系统的行为特性方面具有重要的应用价值。
通过相图分析、频谱分析、Lyapunov 指数计算和Poincaré截面分析等方法,可以全面地了解非线性动力系统的稳定性、周期性和混沌性等特性,为非线性动力系统的建模、控制和应用提供了重要的理论基础。
非线性动力学方程的求解方法

非线性动力学方程的求解方法1、概述在工程实际问题中,我们常常面临这样的选择:我们所遇的问题究竟是静力的还是动力的。
静力问题与动力问题,从力学的角度看就是是否考虑与加速度有关的力,而从数学求解方法看则是一个三维边值问题还是一个四维边值-初值问题。
在这个问题的选择上没有固定的原则,一般取决于我们研究者、分析者对工程问题的判断。
一般认为,实际工程大都是处于动力环境之中,因而属于动力问题。
但是,由于时间、经费等方面的原因的限制,我们不可能把所有的问题都按照动力问题的方法来分析。
对于许多具体的问题,与速度和加速度有关的力足够小,但是又影响结构分析结果的,将采用静力假定来模拟这些力。
线性的动力有限元控制方程如式(1-1)所示。
[]}{}]{[}]{[}{R q K q D qM =++ (1-1) 式中[M ][D ][K ]分别为结构的质量、阻尼和刚度矩阵,{R }为荷载列矢量,}{q、}{q 和}{q 分别是加速度、速度和位移列矢量。
式(1-1)的解法大体上可以分为两类:直接积分法和模态叠加法。
直接积分法在对控制方程进行数值积分之前不对方程做任何形式的变换,直接用数值积分的方法在时域上一步一步地对方程进行积分。
模态叠加法是在求解之前对方程进行某种数学变换,使基底降低,或使矩阵的带宽减小,再进行求解。
这两种方法在形式上不同,但是密切相关。
上述每一类求解方法中又有许多具体的解法,每一种解法又有各自的特点。
因此我们在选择一种方法求解一个问题时,要对该方法的收敛性、稳定性、效率、精度和费用等进行一些分析,讨论它对所求问题的有效性,从而使我们能够针对某一特定的问题,选择合适的方法。
直接积分法基于以下两条:(1)不是在求解时间区间内任意时刻t 都满足式(1-1),而是在相隔△t 上的一些离散时刻满足式(1-1)。
(2)对位移、速度和加速度在每一时间区间△t 内变化的形式进行假设,事实上若把式(1-1)看成一个常系数微分方程组,便可以用任何一种有限差分格式通过位移来近似表示速度和加速度,因此不同的差分格式就得到不同的方法。
非线性动力学

t∈R
x∈ Rn
的解,则显然它是不仅是时间的函数,而且也是初值的函数,即解随着初值的改变而改变, 可以将解记为
φ(t, x0 )
当 x0 是 R n 中的某一点时,φ (t, x0 ) 代表了 1 条解轨线,而
{φ(t, x0 ) x0 ∈ D}
则代表了一族轨线。将φ看成是一个映射,即
φ : R× Rn → Rn
运动行为,它在物理上对应了这样的一个观点:在系统的最初阶段,系统由于外界的初始干 扰,将呈现相当复杂的运动形式,但随着时间的延续,运动将进入平稳状态,而这种平稳状 态体现了动态系统的本质结构。
微分方程解的最终形态通常有: (1) 平衡点 (2) 周期解 (3) 拟周期解 (4) 混沌解
6.4.1 平衡点
图 6-7 所示是 2 维线性系统的相轨线,坐标原点是系统的平衡点,图 6-7a、b 中的平衡 点是稳定的,称为稳定结点,图 6-7c 中的平衡点是不稳定的,称为鞍点。
图 6-7 2 维线性系统的相轨线
6.5.2 任意解的稳定性
设 x = ψ (t)是微分方程 x& = F(t, x)
第 6 章 非线性动力学
-0.5
-1
-1.5
0.5
1
1.5
图 6-2 例 1 相图
例2
如图 6-3 所示是微分方程
&y& + 0.2 y& + y = 0
在相平面 (x1, x2 ) ,
x1 = y
x2 = y&
上的轨线图,平衡点为 (0,0),当 t → ∞ 时,解轨线趋于平衡点。
0.6 0.4 0.2
-0.6
-0.4
-0.2 -0.2
几何非线性非保守系统弹性动力学两类变量的广义拟变分原理的应用

素法和其 它近似计算方法 中得到广泛应 用,而且可以方便地求得 非线性非保 守 系统弹性动力学问题 的精确解 。文章
应用几何 非线性 非保 守系统弹性动力学 中的第一类两类变量广义拟余能原理 , 究 了一个典型 的非保 守动力 学系统 研 边值问题 的动态特性 ,并给 出同时求解一个典型的几何非线性非保 守系统的内力和变形两类变量的计算 方法。 关键词 :几何非线性 ;非保 守系统 ;弹性动 力学;拟余能原理
内力 和变形 两类 变量 的计 算方 法 。
性理论变分原理的统一理— 论 ;梁立孚等利用“ 凑合
法” ,推导出有限位移理论的各级变分原理[ 5 1 。郑泉
水提 出 了非 线性 弹性理 论 的泛变分 原理 [ 6 1 。 非保 守 系统 方 面 ,国外 以 Lihl为代 表 ,提 ep o z 出广 义 自共 轭 的概 念 ,建 立 了广 义 的 Ha ln原 mio t 理 ,给 出 了著名 的 Lihl杆模 型 。我 国学 者 也作 e o p z
计算 方法t 9 ] 。 在弹 性动力 学 的变 分原理 方 面罗 恩和邢 京 堂分 别 做 了大量 的工 作[-。 】1 o3 1 刘 殿 魁 等 对 非 保 守 系统 拟 变 分原 理 和 广 义 拟 变 分 原理 在 近 似计 算 中 的应 用 做 了 系统 的研 究 用; 罗 恩对 几 何 非 线 性 保 守 系统 弹性 动 力 学 变 分 原 理 和 广 义变 分 原 理 在 近似 计 算 中的 应 用 做 了系 统 的
第4 期
樊
涛等 :几何非线性非保 守系统 弹性动力学两类变量的广义拟变分原理 的应用
考虑如图 1 所示的悬索桥 , 设其有如图 2的单
。=
(
非线性动力学常微分方程组高精度数值积分方法

t∈卜,r+^I
J
(8)
略去上式中的高阶项O(Au),于是将非线性系统方 程(2),(4)整理为有常数项的线性化方程
血一A(r)u=G(r)+f(t),t∈hf+h】 (9)
G(r)=g(r)一A(r)¨(r)
(10)
求解连续纷陛化方程(9)与求解线性运动微分 方程(1)的区别是时间t属于r的右端极小邻域内, 即t∈hr+h]内的线性问题,可依此逐步递推求 解线性化方程(9)
关键词 非线性动力学,有限差分法,重构等价非线性微分方程,高阶余项,Duhamel卷积分
近代非线性科学正处于迅猛发展阶段,已成为 20世纪关键科学技术之一.众所周知大多数非线性 动力学常微分方程组的没有解析解,因此采用数值 方法求解,自18世纪Euler首先提出的一阶非线性 常微分方程初值问题的切线法开始,为了进一步寻 求发展具有高精度、高效率的数值计算方法,适用于 高维非线性系统长期发展预测及全局非线性特性分 析,经历了两个半世纪不知有多少学者的努力,从 方法的不断改进到误差分析,发表论文以数千计, 但高维非线性动力学方程组高精度求解这一世界性 难题,无论解析方法或数值算法,都成为当前非线 性系统分析研究中的迫切要求和重要内容,也是非 线性动力学能否进入工程应用的实用阶段的关键问 题.
,(“,t)=g∞)+l(t)
(4)
将非线性项g(u)在r处邻域内展开为Taylor级数
g(u)刮呲)+掣hu+。(”)(5)
其中首次近似的Jacobi矩阵A(r)∈R…和常数
项9(r)分别表示为
瓮扎=撕(r))=竹) (6)
g(u)h=口(u(r))=9(r)
(7)
于是有
也一A(r)tl=,(t)+g(r)一A(r)t‘(f)+o(Au)l
非线性动力学培训课件

粒子群优化算法具有简单、易于实现、全局搜索能力强等优点,但可能存在局部最优解的问题,且对于大规模问题的求解效率可能较低。
粒子群优化算法
03
非线性动力系统的混沌现象
混沌是一种具有高度不确定性、非周期性、非线性、非稳定性的自然现象。
混沌现象的定义
混沌具有敏感的初始条件、拓扑混沌、统计的均匀性、普适性等特征。
非线性动力学在物理、生…
研究非线性动力学在物理、化学、生物、工程等领域的应用,深入探索非线性科学在解决实际问题中的潜力。
高维非线性动力学的数值…
针对高维非线性动力学问题,研究高效的数值模拟方法和算法设计技巧,以提高计算效率和准确性。
非线性动力学的研究前沿和挑战
智能制造与机器人技术的非线性动…
非线性动力学在未来的应用前景和发展趋势
电力工程
研究飞行器的非线性动态行为,如航天器姿态动力学和控制、空间碎片的动力学行为等。
航天工程
社会动力学
研究社会系统的演化和行为,如人口动力学、社会网络分析和人类行为等。
经济动力学
探究经济系统的非线性动态演化,如经济周期、金融危机和国际经济等。
决策科学
探究决策过程中的非线性现象和规律,如群体决策、风险评估和非线性思维等。
非线性动力学涉及到许多基本概念,如平衡点、稳定性、分岔点、混沌等,这些概念在研究非线性系统时具有重要的意义。
基本概念
非线性动力学的定义和基本概念
研究内容
非线性动力学的研究内容包括研究非线性微分方程的定性理论、研究非线性系统的稳定性、分岔、混沌等动力学行为,以及研究非线性动力学的数值方法和计算技术。
非线性动力学方法和思想在其他领域的应用
THANKS
谢谢您的观看
非线性动力学系统深度研究

非线性动力学系统深度研究深度研究非线性动力学系统引言:非线性动力学系统是一类常见的复杂系统,广泛应用于物理、化学、生物学等领域。
与线性系统相比,非线性系统具有更为复杂的行为和动力学特性。
本文将对非线性动力学系统进行深度研究,探讨其定义、模型、稳定性和混沌等关键概念。
一、非线性动力学系统的定义和基本概念非线性动力学系统是指系统中的状态变量和控制参数之间的关系是非线性的系统。
其基本概念主要包括状态变量、动力学方程和相空间等。
1. 状态变量:状态变量是系统的内部变量,它们描述了系统在不同时间的状态。
通常采用向量形式表示,例如(x1, x2, ..., xn)。
2. 动力学方程:动力学方程是描述系统演化规律的数学方程。
对于非线性动力学系统,动力学方程通常是一组非线性微分方程或差分方程。
3. 相空间:相空间描述了非线性动力学系统的所有可能状态的集合。
在相空间中,每个状态被表示为一个点,而系统的演化则对应于在相空间中的运动轨迹。
二、非线性动力学系统的模型与常见例子非线性动力学系统的模型通常采用一组微分方程或差分方程来描述。
下面给出两个常见的非线性动力学系统模型。
1. Lorenz系统:Lorenz系统是一个三维非线性动力学系统,由爱德华·洛伦兹发展而来,主要用于描述大气环流的运动。
Lorenz系统的动力学方程如下:dx/dt = σ(y - x)dy/dt = ρx - y - xzdz/dt = xy - βz其中,x、y、z分别表示系统的三个状态变量,σ、ρ、β分别为控制参数。
2. Van der Pol振荡器:Van der Pol振荡器是一个二阶非线性动力学系统,广泛应用于电子工程和生物学中。
其动力学方程如下:d²x/dt² - μ(1 - x²)dx/dt + x = 0其中,x表示系统的状态变量,μ为控制参数。
三、非线性动力学系统的稳定性分析在研究非线性动力学系统时,稳定性是一个关键问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性动力学系统一般形式及其广义哈密顿体系下的几何积分
方法
几何积分方法无论在提高计算精度还是在保持系统的不变量性质等方面都比传统的积分算法有优势,同时,它还具有向后误差分析的性质,可用于研究数值方法的长期行为,以及进行数值方法的稳定性分析。
本文主要研究了广义Hamilton系统及一般非线性动力学系统的几何积分方法。
首先,提出了求解一般动力学方程的李级数方法,并给出具体实施办法,它是泰勒展开方法的一个推广。
另一方面将动力学微分方程用微分算子的形式表示之后,它的解算子可由它的无穷小生成元的预解式取Laplace逆变换得到,如此再次得到了李级数方法,对于自治系统它是一个李群方法。
另外,提出了基于Laplace变换数值反演的非线性动力学方程的求解方法。
其次,基于李级数方法,提出了广义Hamilton系统及耗散广义Hamilton系统的李群积分法。
广义Hamilton系统形式是动力学系统的一种恰当表述,它揭示了力学系统内蕴的某种对称性质,它的理论研究和实际应用在力学研究中具有十分重要的意义。
本文在守恒系统解析解的理论基础上给出了构造广义Hamilton系统任意高阶显式保群积分格式的方法,同时讨论了算法的具体实施过程。
对耗散广义Hamilton系统,就自治与非自治系统分别进行了讨论:对于自治系统,采用李级数方法并结合分裂合成的技巧直接进行求解;对于非自治系统,基于Magnus级数方法和Fer展开方法来构造其数值解。
文中方法保持了原系统真解的典则性,因而也是稳定的。
如果更关注系统的能量性质,如Hamilton函数性质,文中用离散梯度的方法
给出了广义Hamilton系统及广义Hamilton控制系统的保持其Hamilton函数性质特征不变的数值解法。
同时,本文在伪Poisson流形上研究了广义Hamilton约束系统的求解问题。
把广义Hamilton约束系统变形为无约束的广义Hamilton系统微分方程,提出了保持系统内在结构和约束不变性的李群积分方法,并就约束不变量的误差和稳定性等问题进行了理论分析和数值分析。
另外通过引入拉格朗日乘子采用投影技术对广义Hamilton约束系统直接进行积分,进一步简化了积分过程。
因为本文的讨论对完整与非完整约束不加区分,一样处理,所以也适用于非完整约束的情形。
然而,一般非线性动力学系统并不是都可以表示为(耗散)广义Hamilton系统的形式,即存在所谓广义Hamilton实现问题。
为此,基于经典的Magnus和Fer展开式,在耗散广义Hamilton系统的保结构算法的基础上,主要从两个不同的角度,进一步深入地研究了一般非线性动力学系统的李群积分方法:一个是在算。