高等数学上册教案

高等数学上册教案
高等数学上册教案

【免费下载】高等数学课程教案

授课题目§9.1二重积分的概念与性质 课时安排2教学目的、要求:1.熟悉二重积分的概念,了解二重积分的性质;2.了解二重积分的几何意义。教学重点、难点:二重积分的几何意义教学内容 一、二重积分的概念1.引例与二重积分定义引例:(1).曲顶柱体的体积。(2)已知平面薄板质量(或电荷)面密度的分布时。求总质量(或电荷)。2.二重积分的几何意义 二、二重积分的性质性质1、 ,为非零常数;(,)(,)D D kf x y d k f x y d σσ=????k 性质2、;{(,)(,)}D f x y g x y d σ±??(,)(,)D D f x y d g x y d σσ=±????性质3、若,且(除边沿部分外),则12D D D =+12D D φ= 12(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+?? ????性质4、若,,则:;(,)(,)f x y g x y ≥(,)x y D ∈(,)(,)D D f x y d g x y d σσ≥????性质5、估值定理性质6、(中值定理)设在上连续,则在上至少存在一点,使),(y x f D D ),(ηξA f d y x f D ?ηξ=σ??),(),(三、例题 例1 设是由与所围的区域,则D 24x y -=0=y =σ??D d π2例2 求在区域:上的平均值222),(y x R y x f --=D 222R y x ≤+讨论、思考题、作业:思考题:1.将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处.2.估计积分的值,其中是圆形区域: .??++=D d y x I σ)94(22D 422≤+y x 习题9-1 P79 4(1),(3),5(1)(3)授课类型: 理论课教学方式:讲授教学资源:多媒体 填表说明:每项页面大小可自行调整。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

(完整版)同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理), 并会应用这些性质。 【教学重点与难点】 本章重点是求函数极限的方法(极限运算法则、两个重要极限、无穷小的比较、初等函数的连续性)。难点是数列、函数极限的证明方法。 【教学内容】 第一节映射与函数 一、映射 1.映射概念

《高等数学》教案

《高等数学》授课教案 第一讲高等数学学习介绍、函数 了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函 数的分解。 >函数概念、性质(分段函数)—>基本初等函数—> >初等函数—>例子(定义域、函数的分解与复合、分段函数的图像) 授课提要: 前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。 一、新教程序言 1、为什么要重视数学学习 (1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量; (2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用; (3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术; (4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。 2、对数学的新认识 (1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量; (2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。 (3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。[见教材“序言”] 二、函数概念

1、函数定义:变量间的一种对应关系(单值对应)。 (用变化的观点定义函数),记:)(x f y =(说明表达式的含义) (1)定义域:自变量的取值集合(D )。 (2)值 域:函数值的集合,即}),({D x x f y y ∈=。 例1、求函数)1ln(2x y -=的定义域? 2、函数的图像:设函数)(x f y =的定义域为D ,则点集}),(),{(D x x f y y x ∈= 就构成函数的图像。 例如:熟悉基本初等函数的图像。 3、分段函数:对自变量的不同取值围,函数用不同的表达式。 例如:符号函数、狄立克莱函数、取整函数等。 分段函数的定义域:不同自变量取值围的并集。 例2、作函数???≥<=0,20 ,)(2x x x x x f 的图像? 例3、求函数???-<≥=?)1(),0(),1(0 10 )(2f f f x x x x f 的定义域及函数值,, 四:设y=f(u),u=g(x),且与x 对应的u 使y=f(u)有意义,则y=f[g(x)]是x 的复合函数,u 称为中间变量。 (1)并非任意几个函数都能构成复合函数。 如:2,ln x u u y -==就不能构成复合函数。 (2)复合函数的定义域:各个复合体定义域的交集。 (3)复合函数的分解从外到进行;复合时,则直接代入消去中间变量即可。 例5、设?))(()),((,2)(,)(2x f g x g f x g x x f x 求== 例6、指出下列函数由哪些基本初等函数(或简单函数)构成? (1))ln(sin 2x y = (2) x e y 2-= (3) x y 2arctan 1+= 五、初等函数:由基本初等函数经有限次复合、四则运算而成的函数,且用一 1)一般分段函数都不是初等函数,但x y =是初等函数; (2)初等函数的一般形成方式:复合运算、四则运算。 1、 确定一个函数需要有哪几个基本要素? [定义域、对应法则]

同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在0x 连续)()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x -→-= 右极限:)(lim )(0 0x f x f x x + →+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2) a z y n n n n ==→∞ →∞lim lim a x n n =∞→lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

高等数学电子教案

第四章不定积分 教学目的: 1、理解原函数概念、不定积分的概念。 2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二) 与分部积分法。 3、会求有理函数、三角函数有理式和简单无理函数的积分。 教学重点: 1、不定积分的概念; 2、不定积分的性质及基本公式; 3、换元积分法与分部积分法。 教学难点: 1、换元积分法; 2、分部积分法; 3、三角函数有理式的积分。

§4 1 不定积分的概念与性质 一、教学目的与要求: 1.理解原函数与不定积分的概念及性质。 2.掌握不定积分的基本公式。 二、重点、难点:原函数与不定积分的概念 三、主要外语词汇:At first function ,Be accumulate function , Indefinite integral ,Formulas integrals elementary forms. 四、辅助教学情况:多媒体课件第四版和第五版(修改) 五、参考教材(资料):同济大学《高等数学》第五版

一、原函数与不定积分的概念 定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有 F '(x )=f (x )或dF (x )=f (x )dx , 那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数. 例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数. 又如当x ∈(1, +∞)时, 因为x x 21)(=', 所以x 是x 21的原函数. 提问: cos x 和x 21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有 F '(x )=f (x ). 简单地说就是: 连续函数一定有原函数. 两点说明: 第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数. 第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数). 定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作 ?dx x f )(. 其中记号?称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量. 根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即 ?+=C x F dx x f )()(. 因而不定积分dx x f )(?可以表示f (x )的任意一个原函数. 例1. 因为sin x 是cos x 的原函数, 所以 C x xdx +=?sin cos . 因为x 是x 21的原函数, 所以 C x dx x +=?21.

高等数学 电子教案(下)

高等数学电子教案(下) 《高等数学》 2008 ,2009 学年第二学期 教师姓名: 李石涛 授课对象:1.化学工程与工艺0801,0803,应用化学0801,0802 2.高分子材料工程0801,0802;环境工程0801,0802 授课学时: 128/64 选用教材《高等数学》史俊贤主编 大连理工大学出版社 2006/2 基础部数学教研室 沈阳工业大学教案 第 1 周授课日期 09.2.18 授课章节:第六章 6.1 定积分元素法 教学目的: 1、理解定积分元素法的基本思想, 2、掌握用定积分表达和计算一些几何量,平面图形的面积、平面曲线 的弧长, 教学重点:平面图形的面积、平面曲线的弧长教学难点:平面图形的面积教学内容纲要: 一、定积分的元素法, 二、平面图形的面积、教 学三、平面曲线的弧长、 实采用的教学形式:讲授施 过教学方法:启发式教学

程教学步骤: 设 1、复习定积分的概念~引出定积分的元素法, 计 2、举例讲解平面图形的面积 3、举例讲解平面曲线的弧长 课后复习及作业或思考题: 1、复习定积分的元素法。 2、课后习题6-2 1、2、4、5。 教学后记: 时间: 沈阳工业大学教案 第 1 周授课日期 09.2.20 授课章节:6.2 定积分在几何学上的应用 教学目的: 1、理解定积分元素法的基本思想, 2、掌握用定积分表达和计算一些几何量,旋转体的体积及侧面积、平行截面面积为 已知的立体体积, 教学重点:旋转体的体积、平行截面面积为已知的立体体积教学难点:旋转体的体积、平行截面面积为已知的立体体积 教学内容纲要: 一、旋转体的体积、 二、平行截面面积为已知的立体体积, 教 学采用的教学形式:讲授 实教学方法:启发式教学施

高等数学电子教案(大专版)

《高等数学》教案 第一讲 函数与极限 1.函数的定义 设有两个变量x ,y 。对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。记作y=f(x),x ∈D 。其中x 叫自变量,y 叫因变量。 函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。 例1:设f(x+1)=2x 2+3x-1,求f(x). 解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2 ∴f(x)=2x 2 – x – 2 定义域:使函数有意义的自变量的集合。因此,求函数定义域需注意以下几点: ①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0 例2 求函数y= 6—2x -x +arcsin 7 1 2x -的定义域. 解:要使函数有定义,即有: 1|7 12|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或 于是,所求函数的定义域是:[-3,-2] [3,4]. 例3 判断以下函数是否是同一函数,为什么? (1)y=lnx 2与y=2lnx (2)ω=u 与y=x 解 (1)中两函数的 定义域不同,因此不是相同的函数. (2)中两函数的 对应法则和定义域均相同,因此是同一函数. 2. 初等函数 (1)基本初等函数 常数函数:y=c(c 为常数) 幂函数: y=μ x (μ为常数) 指数函数:y=x a (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数) 三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx (2)复合函数 设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量. 例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0, ∴sinx ≥0,x ∈[2k π,π+2k π] 例5:分析下列复合函数的结构

高等数学B教案第八章

第八章空间解析几何与向量代数 教学目的: 1、理解空间直角坐标系,理解向量的概念及其表示。 2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。 3、理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运 算的方法。 4、掌握平面方程和直线方程及其求法。 5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平 行、垂直、相交等)解决有关问题。 6、会求点到直线以及点到平面的距离。 7、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲 面及母线平行于坐标轴的柱面方程。 8、了解空间曲线的参数方程和一般方程。 9、了解空间曲线在坐标平面上的投影,并会求其方程。 教学重点: 1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算; 2、两个向量垂直和平行的条件; 3、平面方程和直线方程; 4、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件; 5、点到直线以及点到平面的距离; 6、常用二次曲面的方程及其图形; 7、旋转曲面及母线平行于坐标轴的柱面方程; 8、空间曲线的参数方程和一般方程。 教学难点: 1、向量积的向量运算及坐标运算,数量积和向量积的运算; 2、平面方程和直线方程及其求法; 3、空间曲线在坐标面上的投影 4、点到直线的距离; 5、二次曲面图形; 6、旋转曲面及柱面的方程。

§8.1 向量及其线性运算 一、教学目的与要求: 1.理解空间直角坐标系,理解向量的概念及其表示。 2.掌握向量的线性运算、掌握单位向量、方向余弦、两向量的夹角、向量的坐标表达式以及用坐标表达式进行向量运算的方法。 二、重点(难点):向量概念、向量的运算 三、教学方式:讲授式教学结合多媒体 讲授内容: 一、向量概念 向量:既有大小,又有方向,这一类量叫做向量. 在数学上,用一条有方向的线段(称为有向线段)来表示向量.有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向. 向量的符号: 以A为起点、B为终点的有向线段所表示的向量记作 → AB.向量可用粗体字母表示,也可用上加箭 头书写体字母表示,例如,a、r、v、F或→a、→r、→v、→F. 自由向量:由于一切向量的共性是它们都有大小和方向,所以在数学上我们只研究与起点无关的向量,并称这种向量为自由向量,简称向量.因此,如果向量a和b的大小相等,且方向相同,则说向量a和b是相等的,记为a =b.相等的向量经过平移后可以完全重合. 向量的模:向量的大小叫做向量的模. 向量a、→a、→AB的模分别记为|a|、| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作0或→0.零向量的起点与终点重合,它的方向可以看作是任意的. 向量的平行:两个非零向量如果它们的方向相同或相反,就称这两个向量平行.向量a与b平行,记作a // b.零向量认为是与任何向量都平行. 当两个平行向量的起点放在同一点时,它们的终点和公共的起点在一条直线上.因此,两向量平行又称两向量共线. 类似还有共面的概念.设有k(k≥3)个向量,当把它们的起点放在同一点时,如果k个终点和公共起点在一个平面上,就称这k个向量共面. 二、向量的线性运算 1.向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a的起点到b 的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 三角形法则 平行四边形法则:

高等数学电子教案7.

第七章微分方程 教学目的: 1.了解微分方程及其解、阶、通解,初始条件和特等概念。 2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4.会用降阶法解下列微分方程: ()() n y f x =,(,) y f x y ''' +和(,) y f y y ''' = 5.理解线性微分方程解的性质及解的结构定理。 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9.会解微分方程组(或方程组)解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 2、可降阶的高阶微分方程 ()() n y f x =,(,) y f x y ''' +和(,) y f y y ''' = 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微 分方程; 教学难点: 1、齐次微分方程、伯努利方程和全微分方程; 2、线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。 青岛科技大学数理学院高等数学课程建设组

青岛科技大学数理学院高等数学课程建设组 4、欧拉方程 §7. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程.含有未知函数的导数或微分的方程叫做微分方程。历史悠久(与微积分同时诞生),应用广泛。 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程. 解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程) x dx dy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件: x =1时, y =2, 简记为y |x =1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解) ? =xdx y 2, 即y =x 2+C , (3) 其中C 是任意常数. 把条件“x =1时, y =2”代入(3)式, 得 2=12+C , 由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.02 2-=dt s d . (4)

高等数学(下册)电子教案

第四章常微分方程 §4.1 基本概念和一阶微分方程 甲内容要点 一.基本概念 1.常微分方程 含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。 2.微分方程的阶 微分方程中未知函数的导数的最高阶数称为该微分方程的阶 3.微分方程的解、通解和特解 满足微分方程的函数称为微分方程的解; 通解就是含有独立常数的个数与方程的阶数相同的解; 通解有时也称为一般解但不一定是全部解; 不含有任意常数或任意常数确定后的解称为特解。 4.微分方程的初始条件 要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。 5.积分曲线和积分曲线族 微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。 6.线性微分方程 如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。不含未知函数和它的导数的项称为自由项,自由项为零

的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。 二.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dx dy 通解 ()()??+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解 ()()()()C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln (2) ()()0,0≠≠++=b a c by ax f dx dy 令u c by ax =++, 则()u bf a dx du += ()c x dx u bf a du +==+?? (3) ??? ? ??++++=222111c y b x a c y b x a f dx dy

高等数学电子教案

高等数学电子教案 【篇一:高等数学下册电子教案】 第四章常微分方程 4.1 基本概念和一阶微分方程 甲内容要点 一.基本概念 1.常微分方程 含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。 2.微分方程的阶 微分方程中未知函数的导数的最高阶数称为该微分方程的阶 3.微分方程的解、通解和特解 满足微分方程的函数称为微分方程的解; 通解就是含有独立常数的个数与方程的阶数相同的解; 通解有时也称为一般解但不一定是全部解; 不含有任意常数或任意常数确定后的解称为特解。 4.微分方程的初始条件 要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。 5.积分曲线和积分曲线族 微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。 6.线性微分方程 如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。不含未知函数和它的导数的项称为自由项,自由项为零的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。 二.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: dydydx=p(x)q(y)(q(y)≠0) 通解?p(x)dx+c ?q(y)=

(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:m1(x)n1(y)dx+m2(x)n2(y)dy=0 通解?m1(x) m2(x)dx+?n2(y)n1(y)dy=c (m2(x)≠0,n1(y)≠0) 2.变量可分离方程的推广形式 (1)齐次方程 y x dy dxdy?y?=f ? dx?x? 令则=u, =u+xdu dx=f(u) ?f(u)-u dy dxdu=?dxx+c=ln|x|+c (2)=f(ax+by+c)(a≠0,b≠0) 令ax+by+c=u, 则du dx=a+bf(u) ?a+bf(u)=?dx dydu=x+c ?a1x+b1y+c1? ? =f (3) ?dx?a2x+b2y+c2? ①当?=a1 v?? a1+b1?a1u+b1v?u?属于齐次方程情形 ?=f v?a2u+b2v? ?a+b 2?2u?? b1 b2 b1=0情形,令a2a1= 令u=a1x+b1y, 则du 属于变量可分离方程情形。 三.一阶线性方程及其推广 1.一阶线性齐次方程 dy dx+p(x)y=0 -?p(x)dx 它也是变量可分离方程,通解公式y=ce 2.一阶线性非齐次方程 dy dx+p(x)y=q(x) ,(c为任意常数)

高等数学课后习题答案第六章

习题6-2 1. 求图6-21 中各画斜线部分的面积: (1) 解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 6 1 ]2132[)(1022310=-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(101 0=-=-=?x x e ex dx e e A , 解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e . (3) 解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为

3 32 ]2)3[(1 32=--=?-dx x x A . (4) 解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为 3 32 |)313()32(31323 12=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1) 22 1 x y =与x 2+y 2=8(两部分都要计算); 解: 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A 34238cos 16402+=-=?ππ tdt . 3 4 6)22(122-=-=ππS A . (2)x y 1 =与直线y =x 及x =2;

解: 所求的面积为 ?-=-=2 12ln 2 3)1(dx x x A . (3) y =e x , y =e -x 与直线x =1; 解: 所求的面积为 ?-+=-=-1021 )(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:

高等数学上册教案设计

高等数学教案 一、课程的性质与任务 高等数学是计算机科学与技术;信息管理与信息系统两个专业的一门重要的基础理论课,通过本课程的学习,也是该专业的核心课程。要使学生获得“向量代数”与“空间解析几何”,“微积分”,“常微分方程与无穷级数”等方面的基本概论、基本理论与基本运算;同时要通过各个教学环节逐步培训学生的抽象概括能力、逻辑推理能力、空间想象能力和自学能力。在传授知识的同时,要着眼于提高学生的数学素质,培养学生用数学的方法去解决实际问题的意识、兴趣和能力。 第一章:函数与极限 教学目的与要求18学时 1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2.解函数的奇偶性、单调性、周期性和有界性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形。 5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6.掌握极限的性质及四则运算法则。 7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 第一节:映射与函数 一、集合 1、集合概念

具有某种特定性质的事物的总体叫做集合。组成这个集合的事物称为该集合的元素 表示方法:用A ,B ,C ,D 表示集合;用a ,b ,c ,d 表示集合中的元素 1)},,,{321 a a a A = 2)}{P x x A 的性质= 元素与集合的关系:A a ? A a ∈ 一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。 常见的数集:N ,Z ,Q ,R ,N + 元素与集合的关系: A 、B 是两个集合,如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作B A ?。 如果集合A 与集合B 互为子集,则称A 与B 相等,记作B A = 若作B A ?且B A ≠则称A 是B 的真子集。 空集φ: A ?φ 2、 集合的运算 并集B A ? :}A x |{x B A B x ∈∈=?或 交集B A ? :}A x |{x B A B x ∈∈=?且 差集 B A \: }|{\B x A x x B A ?∈=且 全集I 、E 补集C A : 集合的并、交、余运算满足下列法则:

高等数学电子教案

第二节 数列的极限 教学目的:使学生理解数列极限的定义及性质,并能用定义证明一些简单数列的极 限。 教学重点:数列极限的定义及性质。 教学过程: 一、复习数列的定义: 定义:数列是定义在自然数集上的函数,记为 3,2,1), (==n n f x n ,由于全体 自然数可以从小到大排成一列,因此数列的对应值也可以排成一列: n x x x ,,21,这就是最常见的数列表现形式了,有时也简记为{}n x 或数列n x 。 数列中的每一数称为数列的项,第n 项n x 称为一般项或通项。 【例1】 书上用圆内接正126-?n 边形的面积来近似代替该圆的面积时,得到数列 ,,,21n A A A (多边形的面积数列) 【例2】长一尺的棒子,每天截去一半,无限制地进行下去,那么剩下部分的长构 成一数列: ,21,21,21,2132n ,通项为n 2 1 。 【例3】 ; ,)1(,,1,12; 1,31,21,111 ---n n )()( ; ,1 ,,34,23,24; ,2,,6,4,23 n n n +)()( 都是数列,其通项分别为n n n n n 1 ,2,)1(,11+--。 注:在数轴上,数列的每项都相应有点对应它。如果将n x 依次在数轴上描出点的位 置,限我们能否发现点的位置的变化趋势呢?显然,??? ?????????n n 1,21是无限接近于0的; {}n 2是无增大的;{}1)1(--n 的项是在1与1-两点跳动的,不接近于某一常数;? ? ? ???+n n 1无限接近常数1。

对于数列来说,最重要的是研究其在变化过程中无限接近某一常数的那种渐趋稳定的状态,这就是常说的数列的极限问题。 二、讲授新课——数列的极限 我们来观察? ? ? ???+n n 1的情况。从图中不难发现n n 1+随着n 的增大,无限制地接近1,亦即n 充分大时, n n 1 +与1可以任意地接近,即11-+n n 可以任意地小,换言之,当n 充分大时 11 -+n n 可以小于预先给定的无论多么小的正数ε。例如,取1001= ε,由1001001111>?<=-+n n n n ,即? ?? ???+n n 1从第101项开始,以后的项 ,102103,101102102101== x x 都满足不等式100 1 1< -n x ,或者说,当100>n 时,有100111<-+n n 。同理,若取10000 1=ε,由10000100001111>?<=-+n n n n ,即? ?? ???+n n 1从第10001项开始,以后的项 ,1000210003,100011000210002 10001==x x 都满足不等式10000 1 1< -n x ,或说,当10000>n 时,有10000111<-+n n 。一般地,不论给定的正数ε多么小,总存在一个正整数N ,当N n >时,有ε<-+11 n n 。这就充分体现了当n 越来越大时, n n 1 +无限接近1这一事实。这个数“1”称为当∞→n 时,? ?????+n n 1的极限。 定义:若对0>?ε(不论ε多么小),总?自然数0>N ,使得当N n >时都有ε <-a x n 成立,这是就称常数a 是数列n x 的极限,或称数列n x 收敛于a ,记为a x n n =∞ →lim , 或a x n →(∞→n )。如果数列没有极限,就说数列是发散的。

高等数学电子教案12

第十二章无穷级数 教学目的: 1、理解无穷级数收敛、发散以及和的概念。 2、了解无穷级数基本性质及收敛的必要条件。 3、掌握几何级数和p-级数的收敛性。 4、掌握正项级数的比较审敛法、比值审敛法和根值审敛法。 5、掌握交错级数的莱布尼茨定理,会估计交错级数的截断误差。 6、了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与条件收敛的关系。。 7、理解函数项级数的收敛性、收敛域及和函数的概念,了解函数项级数的一致收敛性概念, 了解函数项级数和函数的性质。 8、掌握幂级数的收敛半径、收敛区间及收敛域的求法,了解幂级数在其收敛区间内的一些 基本性质。 9、会利用幂级数的性质求和 10、了解函数展开为泰勒级数的充分必要条件。 11、会利用基本初等函数的麦克劳林展开式将一些简单的函数间接展开成幂级数。 12、理解函数展开为傅里叶级数的狄利克雷条件。 13、掌握将定义在区间(-π,π)上的函数展开为傅里叶级数的方法。 14、会将定义在区间[0,π]上的函数展开为正弦或余弦级数。 15、会将定义在区间(-l,l)上的函数展开为傅里叶级数。 教学重点: 1、级数收敛的定义及条件 2、判定正项级数的收敛与发散 3、幂级数的收敛半径、收敛区间及收敛域的求法; 4、泰勒级数 5、函数展开成傅立叶级数。 教学难点: 1、级数收敛的定义及条件 2、判定正项级数的收敛与发散 3、幂级数的收敛半径、收敛区间及收敛域的求法;

4、泰勒级数; 5、函数展开成傅立叶级数

§12. 1 常数项级数的概念和性质 一、常数项级数的概念 常数项无穷级数: 一般地,给定一个数列 u 1, u 2, u 3, × × ×, u n , × × ×, 则由这数列构成的表达式 u 1 + u 2 + u 3 + × × ×+ u n + × × × 叫做(常数项)无穷级数, 简称(常数项)级数, 记为∑∞ =1 n n u , 即 3211 ???++???+++=∑∞ =n n n u u u u u , 其中第n 项u n 叫做级数的一般项. 级数的部分和: 作级数∑∞ =1 n n u 的前n 项和 n n i i n u u u u u s +???+++==∑= 3211 称为级数∑∞ =1 n n u 的部分和. 级数敛散性定义: 如果级数∑∞ =1 n n u 的部分和数列}{n s 有极限s , 即 s s n n =∞ →lim , 则称无穷级数∑∞ =1 n n u 收敛, 这时极限s 叫做这级数的和, 并写成 3211???++???+++==∑∞ =n n n u u u u u s ;

相关文档
最新文档