原子的壳层能量的计算与电子排布
九年级化学原子核外电子排布规律性质

原子核外电子的排布•原子核外电子的排布:在多电子原子中,由于各电子所具有的能量不同,因而分布在离核远近不同的区域内做高速运动。
能量低的电子在离核近的区域内运动,能量高的电子在离核较远的区域内运动。
电子层:电子层在含有多个电子的原子里,电子分别存能量不同的区域内运动。
我们把不同的区域简化为不连续的壳层,也称作电子层,分别用n=1,2,3,4,5.6,7或K、L、M、N、O、P、Q来表示从内到外的电子层•原子结构与元素的性质:原子的核外电子排布对元素的化学性质有着非常重要的影响。
元素的化学性质主要取决于原子的核外最外层电子数。
1.元素的金属性、非金属性(得失电子能力)与最外层电子数的关系(1)稀有气体元素原子最外层电子数为8(He为2),已达稳定结构,既不易失电子也小易得电子,所以化学性质不活泼。
(2)金属元素原子最外层电子数一般小于4,较易失去电子而达到稳定结构,其单质表现还原性。
(3)非金属元素原子最外层电子数一般大于或等于4,较易获得电子而达到稳定结构,其单质多表现氧化性。
2.元素的化合价与原子最外层电子数的关系元素显正价还是显负价及其数值大小与原子的最外层电子数密切相关。
其一般规律可归纳如下表:•核外电子排布的一般规律:(1)原子核外各电子层最多容纳2n2个电子.(2)原子最外层电子数目不超过8个(K层为最外层时不超过2个)。
(3)次外层电子数目不超过18个(K层为次外层时不超过2个,L层为次外层时不超过8个)。
倒数第三层电子数目不超过32个。
(4)核外电子分层排布,电子总是优先排布在能量最低的电子层里,然后由里向外,依次排布在能量逐渐升高的电子层里,即最先排K层,当K层排满后,冉排L 层等。
原子核外电子排布不是孤立的,而是相互联系的。
层数相同而位置不同的电子层中最多容纳的电子数小一定相同,如N层为最外层时,最多只能排8个电子;N层为次外层时,最多只能排18个电子而不是32个电子(2×42=32)。
原子的能级和电子排布

原子的能级和电子排布一、原子的结构原子是由原子核和核外电子组成的。
原子核由质子和中子组成,质子带正电,中子不带电。
核外电子带负电,围绕原子核做圆周运动。
二、能级概念能级是指原子核外电子可能具有的能量状态。
原子核外电子的能量不是连续的,而是分立的,每一个能级对应一定的能量。
电子在原子中处于不同的能级状态,当电子从一个能级跃迁到另一个能级时,会吸收或释放能量。
三、电子排布电子排布是指核外电子在原子轨道上的分布情况。
按照能量的大小,电子会优先填充最低能量的轨道。
电子排布遵循以下原则:1.泡利不相容原理:每个原子轨道上最多只能容纳两个电子,且这两个电子的自旋方向相反。
2.能量最低原理:电子在填充原子轨道时,总是先填充能量最低的轨道。
3.洪特规则:在等价轨道(具有相同能量的轨道)上,电子在排布时将尽可能分占不同的轨道,且自旋方向相同。
四、能级分布原子的能级分布分为若干个壳层,每个壳层又分为若干个子壳层。
壳层用字母表示,子壳层用数字表示。
例如,第一壳层(K层)只有一个1s子壳层,第二壳层(L层)有两个2s和2p子壳层,以此类推。
五、主量子数和角量子数主量子数(n)表示电子所处的壳层,角量子数(l)表示电子所处的子壳层。
主量子数决定了电子所处的能量水平,角量子数决定了电子在子壳层上的运动状态。
六、自旋量子数自旋量子数(s)表示电子自旋状态,有±1/2两个值。
电子自旋量子数的确定,遵循泡利不相容原理。
七、原子轨道原子轨道是电子在原子中可能出现的空间区域。
按照量子力学的理论,原子轨道具有一定的形状和大小。
常见的原子轨道有s轨道、p轨道、d轨道和f轨道等。
能级图是表示原子能级和电子排布的图形。
能级图可以帮助我们直观地了解原子的电子排布情况,以及电子在能级跃迁时吸收或释放的能量。
原子的能级和电子排布是原子结构的重要组成部分。
通过了解原子的能级和电子排布,我们可以更好地理解原子的性质和反应。
掌握原子的能级和电子排布,对学习化学和物理学具有重要意义。
初步认识核外电子排布的规律-沪科版高一化学上册教案

初步认识核外电子排布的规律-沪科版高一化学上册教案一、引言在化学中,我们经常使用电子排布的规律来预测元素的化学性质。
对于高中化学的学生来说,核外电子排布的规律是基础中的基础。
本文档主要介绍沪科版高一化学上册中,对核外电子排布规律的初步认识。
二、电子排布的基本概念2.1 原子原子是物质的基本单位,它是由电子、质子和中子组成的。
其中,电子和质子是原子的基本组成部分,中子则是与质子一同构成原子核的部分。
2.2 电子排布电子排布是指电子在原子中的空间分布情况和能级排布规律。
电子排布是化学变化的基础,不同的元素由于电子排布的不同而表现出各自独特的物理和化学特性。
2.3 能级对于原子而言,电子的能级是指在原子内具有一定能量的电子所能到达的能级。
通常情况下,原子的能级是啮合式排布。
原子中的电子根据能量的高低,从低能到高能地填充能级。
三、电子排布的规律3.1 布居原理按照布居原理,原子中的电子将首先填充低能级轨道。
在确定了低能级轨道的填充顺序后,才轮到高能级轨道中的电子。
同时,在相同的能级状态下,尽量使电子自旋方向相反,以便各电子的运动同步进行。
3.2 费尔米图形式费尔米图形式是根据电子相对能量的大小将电子填充过程表示出来的图示。
它有助于理解电子排布的规律和特点。
费尔米图形式可以显示电子的自旋方向、电子的能级、电子的数量以及电子的状态。
通过费尔米图形式,我们可以清晰地看到各电子的能量大小顺序、各子壳内电子数目以及各壳层中的电子位置等。
四、结论沪科版高一化学上册教案中对核外电子排布的规律进行了初步的介绍。
本文档主要涉及了电子排布的基本概念,电子排布的规律,以及费尔米图形式。
掌握这些内容对于理解和应用化学知识都有着重要的作用。
在以后的学习中,我们可以通过更多的实践来加深对核外电子排布规律的认识。
电子结构与原子的能级分布

电子结构与原子的能级分布原子是构成物质的基本单位,而电子结构则是决定原子性质的关键因素之一。
电子结构不仅决定着原子的化学性质,也对于原子的能级分布产生重要影响。
本文将探讨电子结构与原子的能级分布之间的关系,并探讨一些与此相关的重要概念和理论。
一、原子结构原子由质子、中子和电子组成,其中质子和中子位于原子核内部,而电子则分布在原子核外围的轨道中。
原子的质量主要由质子和中子贡献,而原子的化学性质则主要由电子决定。
二、电子的能级及分布电子在原子中沿着不同的轨道运动,每个轨道都对应不同的能级。
能级越高,电子的能量越大。
根据量子力学理论,每个轨道最多容纳一定数量的电子,这个数量由一条著名的规则所决定,即泡利不相容原理。
泡利不相容原理指出,在同一个原子中,每个轨道最多只能容纳两个自旋方向相反的电子。
这意味着一个轨道中只能同时存在两个电子。
如果一个轨道中已经存在两个电子,我们称之为“满层”。
满层的特点是非常稳定,不容易发生反应。
三、壳层和亚层为了更好地描述电子的分布,我们引入了壳层和亚层的概念。
壳层代表着电子轨道的主要能级,通常用字母来表示,如K、L、M等;而亚层则代表了壳层下的更精细的能级划分,通常用字母加上数字(s、p、d、f)来表示,如2s、2p、3d等。
亚层的容量规则如下:- s亚层最多容纳2个电子- p亚层最多容纳6个电子- d亚层最多容纳10个电子- f亚层最多容纳14个电子壳层和亚层的容量规则使得我们可以清晰地描述原子中电子的分布情况。
四、电子排布的规则电子在原子中的排布遵循一系列的规则,主要有:1. 能级顺序规则:电子首先填充能级最低的轨道,然后逐渐向能级较高的轨道填充。
这意味着2s轨道会先于2p轨道被填充。
2. 能量最低规则:在同一个亚层中,s轨道的能级最低,p轨道次之,d轨道再次之,f轨道最高。
所以在填充电子时,会按照先填充s轨道,再填充p轨道,以此类推。
3. 泡利不相容原理规则:每个轨道最多容纳两个自旋方向相反的电子。
原子结构知识:原子的壳层结构

原子结构知识:原子的壳层结构原子是构成物质的基本单位,由一个中心的原子核和围绕其运动的电子构成。
在量子力学理论中,原子的电子分布在不同的壳层上,每个壳层可以容纳一定数量的电子。
原子的壳层结构对于解释原子的化学性质和物理性质至关重要,因此我们有必要深入了解原子的壳层结构及其性质。
1.原子的壳层结构原子的壳层结构由一系列能量不同的壳层构成,这些壳层依次编号为K、L、M、N、O、P等。
每个壳层内又包含不同的亚壳层,分别用s、p、d、f等字母来表示。
这些壳层和亚壳层的能级顺序是确定的,而且每个壳层和亚壳层也有一定的容纳电子数。
2.壳层的命名壳层的命名是根据德国物理学家C.G. Moseley的工作而得到的。
他发现原子的核电荷数Z与原子的光谱线关系密切,根据他的工作,原子核电荷数Z也就是原子序数也就是元素周期数。
3.壳层的能级原子的壳层能级随着壳层的增加而变化。
一般情况下,第一层K的能级最低,依次为L、M、N等。
在同一壳层内,不同亚壳层的能级也有所不同,通常s亚壳层的能级最低,依次为p、d、f等。
4.壳层的容纳电子数每个壳层可以容纳一定数量的电子,这个数量是按照一定规律排布的。
第一壳层K能容纳2个电子,第二壳层L能容纳8个电子,第三壳层M能容纳18个电子,第四壳层N能容纳32个电子,第五壳层O 能容纳50个电子,以此类推。
5.壳层的电子排布在填充壳层的电子时,遵循“先满足低能级,再填充高能级”的原则,即按照泡利的排斥原理,不同自旋的电子首先占据同一个轨道,并且每条轨道最多容纳两个电子,且二者的自旋量子数应相反。
其次是哈特里-福克定则,也就是说,同壳层的电子排布时首先填充s轨道然后填充p轨道。
6.壳层的化学性质壳层结构对原子的化学性质产生了重要影响。
原子的壳层结构决定了原子的电子结构、原子的化学键合方式、原子的物理性质等。
例如,稀有气体的原子壳层结构十分稳定,因此它们不易与其他元素发生化学反应。
而某些元素由于壳层结构的特殊性质,能够形成特定的化合物和离子,从而展现出特殊的化学性质。
原子核外电子的分层排布

阳离子:Na+、Mg2+、Al3+、NH4+、H3O+
阴离子:N3-、O2-、F-、OH-、NH23. 核外有18个电子的粒子
分子或原子:Ar、HCl、H2S、PH3、SiH4、
H2O2、F2 阳离子:K+、Ca2+ 阴离子:P3-、S2-、HS-、Cl-
六、原子核外电子排布相同的粒子间规律
四、相对稳定结构
相对稳定结构即最外层电子数为8(若K层 为最外层为2) 没有达到稳定结构的原子都有达到稳定结构 的趋势 当最外层电子数<4时,易失电子,电子数 越少越易失 当最外层电子数>4时,易得电子,电子数 越多越易得
五、常见粒子总结
2. 核外有10个电子的粒子 分子或原子:Ne、HF、H2O、NH3、CH4
6 P
7 Q
电子层(n) 符号 离核远近 能量高低
1 2 3 4 5 6 7
K L M N O P Q
近 低
远 高
三、核外电子排布的规律
能量最低原理(先排内层,排满后再排外层) 原子核外各电子层最多容纳2n2个电子 原子最外层电子数目不能超过8个(K层为最外 层时不超过2个) 次外层电子数目不能超过18个(K层为次外层时 不超过2个),倒数第三层不能超过32个 注意:主族排布完全符合上述规律,副族次外 层可以不排满
元素周期律
第一课时 原子核外电子的排布
一、电子层
在含多个电子的原子里,电子分别在能量不同 的区域内运动。我们把不同区域简化为不连续 的壳层,也称作电子层。 2. 分别用n=1、2、3、4、5、6、7来表示从内到外 的电子层。(或用K、L、M、N、O、P、Q表示)
核外电子排布式

核外电子排布式
核外电子排布式,也称电子构型,是描述一个原子中每个电子的分布位置和能级的一种方式。
在化学中,它是预测元素化学性质和反应的重要工具。
电子构型可以使用不同的方法来表示。
以下是两种最常见的方法:
1. 填充原理
填充原理基于保护壳层和最高占据能级原理,从原子核外层(能量最低的电子壳层)的1s电子开始,依次填充每一层的能级,直到所有的电子都填满。
例如,氧的电子构型为:1s²2s²2p⁴。
这意味着氧原子有8个电子,其中2个在1s能级,2个在2s能级,4个在2p能级。
2. 带点数的能级表示法
在这种表示法中,电子分布在各个能级上,每个能级代表一个水平或子能量。
每个具有特定能量的能级用数字和字母表示,如1s、2p、3d等。
每个能级可容纳不同数量的电子,最多容纳的电子数由能级的带点数决定。
例如,氧的电子构型为:1s²2s²2p⁴。
这可以表示为2-6。
2代表氧原子的第二能级,6代表从1s开始的总电子数。
电子构型与元素的原子序数有关,因此可以预测元素的化学性质和反应。
例如,元素的电子结构可以告诉我们它对电子轻松丢失或获得的可能性,这是一个元素是否会发生化学反应的关键因素。
总之,核外电子排布式是描述原子中电子分布位置和能级的一种方式,它对化学性质和反应的预测非常重要。
填充原理和带点数的能级表示法是最常用的表示方式。
元素周期表中元素的电子排布规律

元素周期表中元素的电子排布规律元素周期表是化学中不可或缺的工具,它将所有已知的化学元素按照一定的规律进行排列。
在元素周期表中,每个元素都有其特定的电子排布规律。
本文将介绍元素周期表中元素的电子排布规律,并探讨其背后的科学原理。
1. 电子排布的基本规律在元素周期表中,每个元素被分配了一个原子序数,即元素的编号。
元素的原子序数代表了元素的核外电子数,同时也代表了元素的周期号和主族号。
根据电子排布的基本规律,电子首先填充在最低能级的轨道上,然后按照一定的规则填充在较高能级的轨道上。
2. 电子壳层的概念元素的电子排布是在不同的壳层中进行的。
电子壳层由不同的能级组成,具有不同的能量。
最内层的壳层称为K壳层,接着是L壳层、M壳层等。
根据元素周期表的结构,可以知道在同一周期中,壳层的数目是递增的。
3. 电子填充顺序元素的电子填充顺序遵循一定的规则。
对于K壳层,最多只能容纳2个电子;L壳层最多容纳8个电子;M壳层最多容纳18个电子;N壳层最多容纳32个电子。
按照这个规律,我们可以推导出元素的电子填充顺序。
4. 电子填充顺序的规律在填充顺序中,首先填充K壳层的电子,然后填充L壳层,之后是M壳层,一直填充到N壳层。
对于每个壳层,电子依次填充在不同的亚壳层上,亚壳层的能量递增。
填充的规则为:1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p。
5. 具体例子以氧元素为例,氧元素的原子序数为8,表示氧原子的核外电子数为8。
根据电子填充顺序,我们可以得知氧原子的电子排布为1s² 2s²2p⁴。
这意味着氧原子的K壳层填满了2个电子,L壳层填满了8个电子,其中2个电子位于2s轨道,剩下的4个电子位于2p轨道。
6. 能级填充顺序的例外情况在一些特殊的情况下,由于原子的电子排布规律与元素周期表的结构有所冲突,存在一些例外情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子的壳层能量与电子排布李涛(安庆师范学院物理与电气工程学院安徽安庆 246011)指导教师:张青林摘要:各种元素的化学性质和物理性质的变化,显示出高度的规律性,这实际放映了原子结构的情况。
原子的电子排布并不是杂乱无章而是有规律可循,其遵循最低能量定理,泡利不相容原理以及洪定则。
掌握了这些,对原子的核外电子排布就会有一个清醒的认识。
原子壳层能量是随原子序数而变化的,随着原子序数的增加原子逐一增加的,电子填入支壳层的次序可由经验n+0.7L描叙,其中n是主量子数,对应于主壳层,L是角动量量子数,对应于支壳层。
关键词:壳层能量,泡利原理,电子排布,轨道能量交错引言:早在1803年道耳顿根据质量守恒及定比定律提出原子的学说,原子的研究就正式开始,到1912年柯塞尔提出多电子原子中的电子分布主壳层模行,即主量子数相同的电子处于同一主壳层中。
对应于n=1,2,3,4…的主壳层分别用K,L,M,N….来表示在同一主壳层中,不同的轨道角量子数1又分成几个不同的分壳层,常用s,p,d,f,…..表示1=0,1,2,3,…的各种转动态。
1原子壳层能量随原子序数的变化众所周知,随着原子的增加和壳层电子的逐一填充,原子的壳层能量会下降。
对此可在电磁学理论基础上做出定性的解释。
当一正电荷位于球心并有等量负电荷均匀分布于球壳上时,球内形成一沿径向向外的电场,凡原在球壳内的负电荷都会因这一电场的作用而引起能量的下降。
原子序数为Z的原子变为Z+1的原子时,新加入电子的电荷沿径向和角向按一定几率分布,核新增的单位正电荷和新加入的电子在核外一定范围内形成一类似的附加电场,使有一定几率分布处于该场中的原有电子能量下降。
电子处于附加电场中的几率越大和离核越近,则将其移到无穷远时需要更多的功,因而这些电子的能量越低。
显见,当考虑库仑相互作用能时,随着原子序数的增加原子的壳层能量下降。
事实上,影响原子的壳层能量的因素很多,除电子的动能外,还有吸引能和其他电子的排斥作用能,自旋相关效应能,相对论效应能和旋一轨相互作用能,要精确计算这些影响是困难的,所以我们仅准备在原子物理学范畴内定性讨论原子的壳层能量随原子序数Z增加的增加而下降的规律。
根据光谱的实验数据总结和计算得出:在不违背泡利原理和最低能量的情况下,随着原子序数的增加,原子逐一增加的电子填入支壳层的次序可由经验则n+0.7L【1】描述,其中n是主量子数,对应于主壳层;L 是角动量量子数,对应支壳层。
按该经验规则各支壳层如表1所示。
表1 周期表中元素排列的先后,原子逐一增加电子的次序[2】电子填补次序1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6dn+0.7L1.0 2.0 2.7 3.0 3.7 4.0 4.4 4.7 5.0 5.4 5.7 6.0 6.1 6.4 6.7 7.0 7.1 7.4但从X射线表示谱和吸收限的情况【1.2】可知:原子的内支壳层的能量顺序与原子逐一增加电子的能量顺序不同,内支壳层的能量顺序是n越小,能量越低;n相同时,L越小,能量越低。
内支壳层能量的高低次序按从小到大排列如表2所示。
随着原子序数的增加和电子的逐一填充,原子的外支壳层逐渐过渡到内支壳层,支壳层能量次序由表1过渡到表2。
比较表1和表2的能量次序不难发现,表2中某些n小L大的支壳层能量次序相对于表1的位置前移了。
这说明,随着原子序数的增加核外电子,各支壳层能量下降的速度是不相同的,那些n越小L越大的支壳层能量平均说来比n大L小的支壳层下降的速度快.例如:填3d支壳层时,3d能量下降快于4s,填4d支壳层时,4d能量下降快于5s ……表2 内支壳层的能量次序(从小到大排列)1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s ……2原子核外电子排布的原理及方法2.1原子核外电子排布电子原理处于稳定状态的原子,核外电子将尽可能的按能量最底原理排布,另外,由于电子不可能都挤在一起,他们还要遵守泡利不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里无一例外的情况发生。
2.1.1最低能量原理电子在原子核外排布时,要尽可能使电子的能量最低。
怎样才能使电子的能量最低呢?比方说,在我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。
这是因为物体越在高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。
电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。
当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。
一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s,p,d,f的次序增高的。
这两种作用的结果可以得出电子在原子核外排布时遵守下列次序:1s,2s ,2p,3s,3p,4s,3d,4p,……2.1.2泡利不相容原理我们已经知道,一个电子的运动状态要从4个方面来进行描述,既它所处的电子层,亚电子层,电子云的伸展方向以及电子的自旋方向。
在同一个原子中没有也不可能有运动状态完全相同的两个电子存在。
根据这个规则,如果两个电子处于同一轨道,那么,这两个电子的自旋方向必定相反。
也就是说,每一个轨道中只能容纳两个自旋方向相反的电子。
根据泡利不相容原理,我们得知:s亚层只有1个轨道,可以容纳两个自旋相反的电子;p亚层有3个轨道,总共可以容纳6个电子;f亚层有5个轨道,总共可以容纳10个电子。
我们还得知:第一电子层(K层)中只有1s亚层,最多容纳两个电子;第二电子(L层)中包括2s和2p两个亚层,总共容纳8个电子;第三带脑子层(M层)中包括3s,3p,3d三个亚层,总共可以容纳18个电子……第n层总共可以容纳2n2个电子。
2.1.3洪特规则从光谱实验结果总结出来的洪特规则有两个方面的含义:一是电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当电子排布处于:全满(s2、p6、d10、f14)半满(s1、p3、d5、f7)全空(s0、p0、d0、f0)时比较稳定。
3原子的电子壳层结构元素的性质决定于原子的结构,也就是原子中电子所处的状态,电子状态的具体内容是下列四个量子数所代表的一些运动情况:1主量子数n=1,2,3,……代表电子运动区域的大小和它的总能量的主要部分,前者按轨道的描述也就是轨道的大小;2轨道角动量量子数l=0,1,2,…(n-1)代表轨道的形状和轨道角动量,这也同电子的能量有关;3轨道方向量子数m l=l,l-1,…,0,…,-l代表轨道在空间的可能取向,换一句话讲,这也代表轨道角动量在某一特殊方向(例如磁场方向)的分量;4自旋方向量子数m s=+1/2,-1/2代表电子自旋的取向,这也代表电子自旋角动量在特殊方向(例如磁场方向)的分量;5电子自旋量子数s=1/2代表自旋角动量,对所有电子是相同的,它就不成为区别电子态的一个参数。
设想原子处在很强的磁场中,电子间的耦合以及每一个电子的自旋同轨道运动的耦合都被解脱,这样,每一个电子的轨道运动和它的自旋的取向都对外磁场各自量子化,因而上述ml和ms都成为描述运动的参数,那么就可以按照上述四个量子数来推断原子中的电子组态。
在原子中具有相同n量子数的电子构成一个壳层。
如果电子数比较多,他们就分成几个层.在一个层中,对不同的l,又分为几个不同的次壳层.现在我们进行每一个壳层和次壳层中可能容纳的最多电子数的推算。
先考虑具有相同n和L量子数的电子所构成的一个次壳层中可以容纳的最多电子数.对一个L,可以有2L+1个m l;对每一个m l,又可以有两个m s,就是m s=+1/2和-1/2.由此,对每一个L,可以有2(2L+1)个不同的状态,这就是说,每一个次壳层中可以容纳的最多电子数是N L=2(2L+1) (1)现在考虑具有相同n量子数的电子所构成的一个次壳层中最多可以容纳几个电子.对一个n,L值可以有n个,就是L=0,1,2,…(n-1). 因此对每一个n,可以有的状态数,也就是可以容纳的最多电子数是N n=102(21)nlv -=+∑=2[1+3+5+…(2n-1)]=2n2(2)这里的结论是在原子处于很强的磁场中的假定下推得的,其中磁场的强弱和有无不影响结论。
现在设磁场不很强,电子之间的耦合仍被解脱,但每个电子的自旋和自己的轨道运动之间仍有耦合,形成一个总角动量p j 。
这时描述电子态的不在是上述四个量子数,而是n,L,j和m j四个量子数。
M j=j,j-1,…,-j,共有2j+1个,代表电子的总角动量的取向,也就是总角动量在某特殊方向的分量.现在再推算每一个次壳层和每一个壳层中可以容纳的最多电子数。
对每一个j,有2j+1个m j,对每一个L,有两个j,即j=L+1/2和L-1/2,所以每一次壳层可以有的状态数也就是可以容纳的最多电子数是N L=[2(L+1/2)+1]+[2(L-1/2)+1]=2(2L+1) (3)这同上面的结论完全相同,那么在每一个壳层中可以容纳的最多电子数也就是不同L的(3)式数值的总和,仍然是2n2了。
由此可知,磁场的强弱不影响各层可以容纳的最多电子数,即使没有磁场,原子中各电子的轨道运动之间的相对取向也会量子化,只有一个电子,它的轨道运动就会产生磁场,这时就为其他电子提供了一个特殊方向,其他电子的轨道运动相对于这个电子的轨道运动的取向就会量子化,又每一个电子自旋相对于本身的轨道运动也可以有两个取向,因此上述m l和m s两个量子数分别代表轨道运动和自旋可能有几个去向的描述仍有效,只是现在代表的是原子中各电子运动的相对取向,但这不影响状态数的计算,因而也不影响关于每一壳层和次壳层可以容纳的最多电子数的结论,在没有磁场的情况下,对外当然不发生取向的问题。
根据上述结论,把各壳层可以容纳的最多电子数开列在表3中,从中可以看到各壳层的最多电子数依次是2,8,18,31,50,72,这显然同周期表中各周期的元素有关,但各周期的元素依次是2,8,8,18,18,32,同各壳层的电子又不完全符合,这两套数值有极相似之处,但也有差别,究竟二者有什么关系,下一节就要讨论,目前可以肯定的是,原子中的电子形成壳层和次壳层,每层有一定的最多电子数,我们已经窥见了原子内部结构一个轮廓。
表3 各壳层可以容纳的最多电子数4原子基态的电子组态原子的基态是原子能量最低的状态,它所有的电子都处在各自可能的最低能量的状态中。