2018最新人教版七年级上数学总复习资料最全
2018人教版七年级数学上册期末复习资料

数学七年级上知识点总结——
制作
版权所有
第 七 页 共 七 页
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, 13.有理数乘方的法则:(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;
第 二 页 共 七 页 数学七年级上知识点总结—— 制作
.
版权所有
第 六 页 共 七 页 数学七年级上知识点总结—— 制作
版权所有
(2)若∠1+∠2=180°,则∠1 与∠2 互为补角.其中∠1 是∠2 的补角,∠2 是∠1 的补角. (3)余(补)角的性质:等角的补(余)角相等. 10、方向角 (1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a 是重要的非负数,即 a ≥0;若 a +|b|=0 a=0,b=0;
2 2 2
(4)据规律
底数的小数点移动一位,平方数的小数点移动二位.
n
15.科学记数法:把一个大于 10 的数记成 a×10 的形式,其中 a 是整数数位只有一位的数,这 种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。
a≥0 a 是正数或 0 a 是非负数;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0; (2)注意: a-b+c 的相反数是-a+b-c;a-b 的相反数是 b-a;a+b 的相反数是-a-b; (3)相反数的和为 0 a+b=0 a、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值: (1)正数的绝对值等于它本身,0 的绝对值是 0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
人教版2018-2019七年级数学上册_总复习ppt课件

运算律 a b ba
a b c a (b c)
ab ba abc a (bc)
a(b c) ab ac
有理数混合运算的运算顺序 先算乘方,再算乘除,最后算加减。如果有括号就 先算括号里面的。 同级运算从左到右进行。
ppt精品课件
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是整数数位只有一位的 数,n是比原整数数位小1的正整数),如236000000=2.36×108;2450000=-2.45×106 2、将用科学计数法表示的数还原,如:1.52×104=15200
把一些数放在一起,就组成一个数的集合,简称数集(set of number)。 所有正数组成的集合,叫 做正数集合; 所有负数组成的集合叫做负数集合; 所有整数组成的集合叫整数集合; 所有分数组成的集合叫分数集合; 所有有理数组成的集合叫有理数集合; 所有正整数和零组成的集合叫做自然数集。
1.2有理数
任何一个有理数都可以用数轴上的点表示。
(1)有理数的分类
(2)、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 数轴的三要素 、 正方向 、 。单位长度
ppt精品课件
(3)相反数:只有符号不同的两个数叫做互为相反数。 如2与-2,-5与5,a与-a等。
①通常用a和-a表示一对相反数 ②若a与b互为相反数,则a+b=0 ③互为相反数的两个数的绝对值相等,即|-a|=|a| ④若|a|=|b|,则a=b,或a=-b(a与b互为相反数)
ppt精品课件
4.整式的加减就是合并同类项的过程。 5.整式去括号变化规律: (1).如果括号外的因数是正数,去括号后原括号内各项的符号与原 来的符号相同;如:+(x-3)=x-3 (2).如果括号外的因数是负数,去括号后原括号内各项的符号与原 来的符号相反。如:-(x-3)=-x+3 6.整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类 项.
(完整word版)2018最新人教版七年级上数学总复习资料最全

人教版七年级数学上册知识大图第一章:有理数一、有理数的基础知识 1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{} 整数集合{} 负整数集合{} 正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a ,则a 是 ;若0<a ,则a 是 ;若b a <,则b a -是 ;若b a >,则b a -是 ;(填正数、负数或0) 2、有理数的概念及分类整数和分数统称为有理数。
人教版2018年七年级上数学总结温习提纲(供参考)

2018年七年级上册数学总结温习提纲第一章有理数正数与负数①正数:大于0的数叫正数。
(依照需要,有时在正数前面也加上“+”)②负数:在以前学过的0之外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:弄清相反意义的量:南北;东西;上下;左右;上升下降;高低;增加减少等有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
有理数分类:两种分类方式:正整数正整数整数零正有理数a、有理数负整数b、有理数正分数(按概念分类)(按符号分类)零正分数负整数分数负有理数负分数负分数2、数轴(1)概念:通经常使用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,那个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都能够用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
有理数的加减法①有理数加法法那么:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得那个数。
加法的互换律和结合律②有理数减法法那么:减去一个数,等于加那个数的相反数。
有理数的乘除法①有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
人教版七年级上数学总复习资料

第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-, 正整数集合{ } 整数集合{ }负整数集合{ } 正分数集合{} 例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a ,则a 是 ;若0<a ,则a 是 ;若b a <,则b a -是 ;若b a >,则b a -是 ;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。
2018年秋人教七年级数学上期末专题复习动点题之数轴专题

初中七年级上动点题之数轴专题1、思考下列问题并在横线上填上答案.思考下列问题并在横线上填上答案.(1)数轴上表示-3的点与表示4的点相距________个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是______.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是_____.(4)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_________.(5)数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过_________秒三个点聚于一点,这一点表示的数是________,点C在整个运动过程中,移动了_______个单位.2、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分3、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm (如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF 的值.4、甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,5、如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B 点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N 为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.6已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=________ AB.(3)在(2)的条件下,N是直线AB上一点,且AN-BN=MN,求MNAB的值.7如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s 的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ-BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有CD=12AB,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM-PN的值不变;① MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.8、已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)2.(1)求线段AB、CD的长;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:① PA-PBPC是定值;① PA+PBPC是定值,请选择正确的一个并加以证明.9、如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N 为PB的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.10、在长方形ABCD中,AB=CD=10cm、BC=AD=8cm,动点P从A点出发,沿A①B①C①D路线运动到D停止;动点Q从D出发,沿D①C①B①A路线运动到A 停止;若P、Q同时出发,点P速度为1cm∕s,点Q速度为2cm∕s,6s后P、Q同时改变速度,点P速度变为2cm∕s,点Q速度变为1cm∕s.(1)问P点出发几秒后,P、Q两点相遇?(2)当Q点出发几秒时,点P点Q在运动路线上相距的路程为25cm?11、如图,点C是线段AB的中点,点D、E分别是线段AC、CB的中点.(1)若线段AB=10cm,求线段AC和线段DE的长度;(2)若线段AB=a,求线段DE的长度.(3)若甲、乙两点分别从点A、D同时出发,沿AB方向向右运动,若甲、乙两点同时到达B点,请你写出一组符合条件的甲、乙两点运动的速度.12如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.13、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
最新人教版七年级上数学总复习资料最全

一、有理数的基础知识1、三个重要的定义人教版七年级数学上册知识大图第一章:有理数(1)正数:像1、2.5、这样大于0 的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0 小的数叫做负数;(3)0 即不是正数也不是负数,0 是一个具有特殊意义的数字,0 是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0 的数叫做正数;小于0 的数叫做负数”去识别。
② 正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0 既不是正数也不是负数;例2 把下列各数填在相应的大括号中8,3,0.125,0,41, 6 ,30.25,正整数集合整数集合负整数集合正分数集合例3 如果向南走50米记为是50 米,那么向北走782 米记为是, 0 米的意义是。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量 2 克,记作+2 克,那么 5 克表示知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例 5 若a 0,则a 是;若a 0 ,则a 是;若a b ,则a b 是;若a b ,则a b 是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。
有理数的分类如下:(1)按定义分类:(2)按性质符号分类:有理数正整数整数0负整数正分数分数负分数正有理数有理数0负有理数正整数正分数负整数负分数概念剖析:① 整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数;②正有理数和0 又称为非负有理数,负有理数和0 又称为非正有理数;③整数和分数都可以化成小数部分为0 或小数部分不为0 的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;例6 若a 为无限不循环小数且a0 ,b 是a 的小数部分,则a b 是()A、无理数B、整数C、有理数D、不能确定例7 若a 为有理数,则 a 不可能是()A、整数B、整数和分数C、q( p 0) D、p3、数轴标有原点、正方向和单位长度的直线叫作数轴。
2018-2019年最新人教版七年级数学上册全册总复习课件 【期末复习必备】

解各种类型的 一元一次方程
3x 2 2x 1 2x 1 (4) 1 2 4 5
2018/9/4 教学课件 38
列一元一次方程解应用题的一般步骤 1.审题:弄清题意和题目中的数量关系及 相等关系. 2.设元:选择题目中适当的一个未知数用 字母表示,并把其它未知量用含字母的 代数式表示; 3.列方程:根据相等关系列出方程; 4.解方程:求出未知数的值; 5.检验:检查求得的值是否正确和符合实 际情形. 6.写出答案(包括单位名称) .
七年级上学期 数学期末
2018/9/4 教学课件 1
考试内容:
关于期末考试
第一章《有理数》 第二章《整式的加减》 第三章 《一元一次方程》 第四章 《图形认识初步》 代数三章比例大约为1:1:1; 几何一章半比例大约为4:1
2018/9/4
易、中、难比约为 7 2 1 代数、几何比例约为 6 4
十位、十分位;百位、百分位; 科学计数法与精确度的问题
2018/9/4 教学课件 22
第二章 整式的运算
数字与字母或字母与字母的积, 像这样的代数式叫单项式. 一个单项式中,字母的所有指数的 和叫做这个单项式的次数. 几个单项式的和叫做多项式 多项式里次数最高项的次数就是 多项式的次数
2018/9/4 教学课件 23
2018/9/4
教学课件
7
2018/9/4
教学课件
8
有没有最大的数? 有没有最小的数? 有没有最大的正数? 有没有最小的正数? 有没有最小的负数? 有没有最大的负数?
2018/9/4 教学课件
非 负 数 非 正 数
9
•有没有最小的正整数? •有没有最大的负整数? •有没有绝对值最大的数? •有没有绝对值最小的数? •什么数的相反数比它大? •什么数的相反数比它小?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1文档来源为:从网络收集整理.word 版本可编辑.人教版七年级数学上册知识大图第一章:有理数一、有理数的基础知识 1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数; 例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-, 正整数集合{} 整数集合{ } 负整数集合{} 正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a 是 ;若0<a ,则a 是 ;若b a <,则b a -是 ;若b a >,则b a -是 ;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。
有理数的分类如下:(1)按定义分类: (2)按性质符号分类:概念剖析:①整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数;②正有理数和0又称为非负有理数,负有理数和0又称为非正有理数;③整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;例6 若a 为无限不循环小数且0>a,b 是a 的小数部分,则b a -是( )A 、无理数B 、整数C 、有理数D 、不能确定 例7 若a 为有理数,则a 不可能是( ) A 、整数 B 、整数和分数 C 、)0(≠p pqD 、π3、数轴标有原点、正方向和单位长度的直线叫作数轴。
数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。
概念剖析:①画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向; ③数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等; ④有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a -的点2文档来源为:从网络收集整理.word 版本可编辑.在原点的左边,与原点的距离是a 个单位长度。
⑤在数轴上求任意两点a 、b 的距离L,则有公式ab L b a L -=-=或,这两个公式选择那个都一样。
例8 在数轴上表示数3的点到表示数a 的点之间的距离是10,则数=a ;若在数轴上表示数3的点到表示数a 的点之间的距离是b ,则数=a 。
例9 a,b 两数在数轴上的位置如图,则下列正确的是( )A 、 a +b <0B 、ab <0 C 、b<0D 、0<-b a 例10 下列数轴画正确的是( )4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。
0的相反数是0,互为相反的两个数,在数轴上位于原点的两则,并且与原点的距离相等。
概念剖析:①“如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数”,不要茫然的认为“如果两个数符号不同,那么其中一个数就叫另一个数的相反数”。
②很显然,数a 的相反数是a -,即a 与a -互为相反数。
要把它与倒数区分开。
③互为相反数的两个数在数轴上对应的点一个在原点的左边,一个在原点的右边,且离原点的距离相等,也就是说它们关于原点对称。
④在数轴上离某点的距离等于a 的点有两个。
⑤如果数a 和数b 互为相反数,则a +b =0;)0(1≠-=ab ba或)0(1≠-=ab ab; ⑥求一个数的相反数,只要在这个数的前面加上“—”即可; 例如b a -的相反数是a b -;例11 下列说法正确的是( )A 、若两个数互为相反数,则这两个数一定是一个正数,一个负数;B 、如果两个数互为相反数,则它们的商为-1;C 、如果a +b =0,则数a 和数b 互为相反数;D 、互为相反数的两个数一定不相等; 例12 求出下列各数的相反数①4a ②1+a ③b a - ④23c 例13 化简下列各数的符号 ①)5.4(-+ ②)531(-- ③[])2(+-- ④()[]{}2.0---- 知识窗口:①一个数前面加上“—”号,该数就成了它的相反数;②一个数前面的符号确定方法:奇数个负号相当于一个负号,偶数个负号相当于一个正号,而与正号的个数无关。
5、绝对值数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a aa(3)两个负数比较大小,绝对值大的反而小。
概念剖析:①“一个数的绝对值就是数轴上表示该数的点与原点的距离”,而距离是非负,也就是说任何一个数的绝对值都是非负数,即0≥a 。
②互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等。
例14 如果两个数的绝对值相等,那么这两个数是( )A 、互为相反数B 、相等C 、积为0D 、互为相反数或相等 例15 已知ab >0,试求abab b b a a ||||||++的值。
—2C—2D3文档来源为:从网络收集整理.word 版本可编辑.例16 若|x |=-x ,则x 是_________数;例17 若│x +3∣+∣y —2∣=0,则2005)y x +( = ;例18 将下列各数从大到小排列起来0、65-、 43-、0001.0 例19 如果两个数a 和b 的绝对值相等,则下列说法正确的是( )A 、b a =B 、1-=baC 、0=+b aD 、不能确定二、有理数的运算 1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。
例20 计算下列各式①(– 3)–(– 4)+7 ② )()(32312105--+--- ③()3.5-+()2.3-()5.2--()8.4+-(2)有理数加法的运算律:加法的交换律 :a+b=b+a ;加法的结合律:( a +b ) +c = a + (b +c )知识窗口:用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
例21 计算下列各式①2)10()8()3()7(+-+++++- ②)25.0()3211()813(413125.0-+++-++ 2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;概念剖析:减法是加法的逆运算,用法则“减去一个数等于加上这个数的相反数”即可转化。
转化后它满足加法法则和运算律。
例22 计算:59117+--- 例23 月球表面的温度中午是C o101,半夜是C o 153-,中午比半夜高多少度?例24 已知m 是6的相反数,n 比m 的相反数小5,求n 比m 大多少? 3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab =ba ;结合律:(ab )c =a (bc );交换律:a (b +c )=ab +ac 。
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a 和b 互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。
概念剖析:①“两个有理数相乘,同号得正,异号得负”不要误认为成“同号得正,异号得负”②多个有理数相乘时,积的符号确定规律:多个有理数相乘,若有一个因数为0,则积为0;几个都不为0的因数相乘,积的符号由负因数的个数来决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
③有理数乘法的计算步骤:先确定积的符号,再求各因数绝对值的积。
例25 计算下列各式:①)87()5.2(711)25.1(-⨯-⨯⨯- ② )1216141()12(-+-⨯-③)947(5.10)952()25.35(952)75.45(-⨯+-⨯-+⨯- ④)5(252449-⨯4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。
这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。
概念剖析:①除法是乘法的逆运算,用法则“除以一个数,等于乘上这个数的倒数”即可转化,转化后它满足乘法法则和运算律。
4文档来源为:从网络收集整理.word 版本可编辑.②倒数的求法:求一个整数的倒数,直接可写成这个数分之一,即a 的倒数为)0(1≠a a ;求一个真分数和假分数的倒数,只要将分子、分母颠倒一下即可,即m n 的倒数为nm ;求一个带分数的倒数,应先将带分数化为假分数,再求其倒数;求一个小数的倒数,应先将小数化为分数,再求其倒数。