人教a版数学【选修1-1】作业:第二章《圆锥曲线与方程》章末检测(a)(含答案)
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》检测(有答案解析)

一、选择题1.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出,如图①,一个光学装置由有公共焦点1F 、2F 的椭圆Γ与双曲线Ω构成,现一光线从左焦点1F 发出,依次经Ω与Γ反射,又回到了点1F ,历时1t 秒;若将装置中的Ω去掉,如图②,此光线从点1F 发出,经Γ两次反射后又回到了点1F ,历时2t 秒;若218t t =,则Γ与Ω的离心率之比为( )A .3:4B .2:3C .1:2D .22.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( ) A .13B 3C .12D .223.已知双曲线22221x y a b -=的两个焦点分别为21(,0)(,0)(0)F c F c c ->,过点2,0a P c ⎛⎫ ⎪⎝⎭的直线与双曲线的左右两支分别交于,A B 两点,且122F A F B =-,求双曲线的离心率( ) A 2B 3C 5D 64.设直线l 与圆C :22(2)3x y -+=相切于N ,与抛物线22(0)y px p =>交于,A B 两点,且N 是线段AB 的中点,若直线l 有且只有4条,则p 的取值范围是( ) A .3)B .(1,3)C .(0,3)D .3)5.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若3AB MN =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若16MF OM =,则E 的离心率为( )A 3B .2C 5D 27.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( ) A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =-8.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1169.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .1102+ B .1222+ C 51 D 3110.已知动点(),P x y ()()2222522x y x y a a+-++=+(a 为大于零的常数)﹐则动点P 的轨迹是( ) A .线段B .圆C .椭圆D .双曲线11.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( )A B C .7D .712.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后.反射光线平行于抛物线的轴.已知抛物线22y x =,平行于x 轴的光线在抛物线上点P 处反射后经过抛物线的焦点F ,在抛物线上点Q 处再次反射,又沿平行于x 轴方向射出,则两平行光线间的最小距离为___________.14.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,焦距为2c ,若直线)y x c =-与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.15.已知椭圆C 的两个焦点分别为1(2,0)F -,2(2,0)F ,离心率为12e =,点P 在椭圆C 上,且1230F PF ∠=,则12F PF △的面积为__________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.已知椭圆C :22221(0)x y a b a b+=>>的右焦点(c,0)F ,点P 在椭圆C 上,线段PF与圆22239c b x y ⎛⎫-+= ⎪⎝⎭相切于点Q ,且2PQ QF =,则椭圆C 的离心率为_______.18.如果点12310,,,P P P P ,是抛物线22y x =上的点,它们的横坐标依次为12310,,,,x x x x ,F 是抛物线的焦点,若123105x x x x ++++=,则1210PF P F P F +++=___.19.对抛物线C :24x y =,有下列命题:①设直线l :1y kx =+,则直线l 被抛物线C 所截得的最短弦长为4;②已知直线l :1y kx =+交抛物线C 于A 、B 两点,则以AB 为直径的圆一定与抛物线的准线相切;③过点()()2,P t t R ∈与抛物线有且只有一个交点的直线有1条或3条;④若抛物线C 的焦点为F ,抛物线上一点()2,1Q 和抛物线内一点()()2,1R m m >,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分RQF ∠;其中你认为是正确命题的所有命题的序号是______.20.已知抛物线C : y 2=2px (p >0),直线l :y = 2x + b 经过抛物线C 的焦点,且与C 相交于A 、B 两点.若|AB | = 5,则p = ___.三、解答题21.已知椭圆2222:1(0)x y E a b a b +=>>过点1,2P ⎛ ⎝⎭,离心率2e =. (1)求椭圆E 的方程;(2)过点(0,3)M 的直线l 与椭圆E 相交于A ,B 两点. ①当直线OA ,OB 的斜率之和为34时(其中O 为坐标原点),求直线l 的斜率k ; ②求MA MB ⋅的取值范围.22.设动点(),M x y (0x ≥)到定点()2,0F 的距离比它到y 轴的距离大2. (Ⅰ)求动点M 的轨迹方程C ;(Ⅱ)设过点F 的直线l 交曲线C 于A ,B 两点,O 为坐标原点,求AOB 面积的最小值.23.(1)已知等轴双曲线22221(0,0)y x a b a b-=>>的上顶点到一条渐近线的距离为1,求此双曲线的方程;(2)已知抛物线24y x =的焦点为F ,设过焦点F 且倾斜角为45︒的直线l 交抛物线于A ,B 两点,求线段AB 的长.24.已知四点12341,,1,,(1,1),(0,1)22P P P P ⎛⎛-- ⎝⎭⎝⎭中恰有三点在椭圆2222:1x y C a b+=上,其中0a b >>. (1)求,a b 的值;(2)若直线l 过定点(2,0)M 且与椭圆C 交于,A B 两点(l 与x 轴不重合),点B 关于x 轴的对称点为点D .探究:直线AD 是否过定点,若是,求出该定点的坐标;若不是,请说明理由.25.过平面上点P 作直线11:2l y x =,21:2l y x =-的平行线分别交y 轴于点M ,N 且228OM ON +=.(1)求点P 的轨迹C 方程;(2)若过点()0,1Q 的直线l 与轨迹C 交于A ,B 两点,若AOB S △l 的方程.26.荷兰数学家舒腾(F.van Shooten ,1615-1660)设计了一种画椭圆的工具,如图1所示,两根等长的带槽的直杆AC 和BF 的一端各用钉子固定在点A 和B 上(但分别可以绕钉子转动),4AC BF ==,另一端用铰链与杆FC 连接,2FC AB ==,AC 和BF 的交点为E ,转动整个工具,交点E 形成的轨迹为椭圆Γ.以线段AB 中点O 为原点,AB 所在的直线为x 轴建立如图2的平面直角坐标系.(1)求椭圆Γ的标准方程;(2)经过B 点的直线l 交椭圆Γ于不同的两点M N 、,设点P 为椭圆的右顶点,当PNM △的面积为27时,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设122F F c =,设椭圆Γ的长轴长为12a ,双曲线Ω的实轴长为22a ,设光速为v ,推导出112a vt =,利用椭圆和双曲线的定义可得出1243a a =,由此可计算得出Γ与Ω的离心率之比. 【详解】设122F F c =,设椭圆Γ的长轴长为12a ,双曲线Ω的实轴长为22a , 在图②中,1CDF 的周长为111212124CF DF CD CF CF DF DF a vt ++=+++==,所以,1148a vt =,可得112a vt =,在图①中,由双曲线的定义可得2122AF AF a -=,由椭圆的定义可得1212BF BF a +=, 22AF BF AB =-,则2121111222AF AF BF AB AF a BF AB AF a -=--=---=,即()111222a AB AF BF a -++=,由题意可知,1ABF 的周长为111AB AF BF vt ++=,即112111322222a a a a vt a =-=-=, 所以,1243a a =. 因此,Γ与Ω的离心率之比为122112:::3:4c ce e a a a a ===. 故选:A. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.2.B解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.3.B解析:B 【分析】先根据题意画出图形,再根据122F A F B=-,得到21F AF B B P ∽,根据相似比得到222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭,即可求出离心率. 【详解】 解:如图所示:122F A F B =-,12//F A F B ∴,12AF B BF P ∴∽,且122F PF P=, 即222a a c c c c ⎛⎫+=⨯- ⎪⎝⎭, 两边同时除以a 得2a c c a c a a c ⎛⎫+=⨯- ⎪⎝⎭, 即122e e e e+=-, 又1e >,解得:3e = 故选:B. 【点睛】关键点点睛:本题解题的关键是利用三角形相似比得到,a c 的关系式,进而求得离心率.4.B解析:B根据l 有且只有4条,易知直线l 的斜率不存在时,有两条,得到直线l 斜率存在时,有两条,根据N 是线段AB 的中点,利用点差法得到0ky p =,再根据直线l 与圆C :22(2)3x y -+=相切于N ,得到0012y x k=--,结合得到02x p =-,2203y p =-再根据点N 在抛物线内部求解. 【详解】设()()()112200,,,,,A x y B x y N x y , 因为l 有且只有4条,当直线l的斜率不存在时,有两条,即2=±x 所以直线l 斜率存在时,有两条, 因为AB 在抛物线上,所以21122222y px y px ⎧=⎨=⎩,两式相减得()2212122y y p x x -=-,因为N 是线段AB 的中点, 所以1202y y y +=, 所以12121202y y p pk x x y y y -===-+, 即0ky p =,因为直线l 与圆C :22(2)3x y -+=相切于N , 所以0012y x k=--,即002x ky p -=-=-, 所以02x p =-,代入抛物线22y px =,得()222y p p =-,因为点N 在抛物线内部,所以()2022y p p <-,因为点N 在圆上,所以2200(2)3x y -+=,即2203p y +=, 所以2203y p =-,所以()220322y p p p =-<-,即2430p p -+<,解得13p <<,【点睛】方法点睛:解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.5.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】 由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y pxp y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k ++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k , 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N kk ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN ===,∵AB =,∴222(1)p k k += 整理得23k =,∵0k >,∴k =∴倾斜角为60︒.【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.C解析:C 【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程. 【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0, 设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y , 联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-,故选:C . 【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.8.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭, 故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 9.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c ⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得e =舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.10.C解析:C 【分析】由a 为大于零的常数,可知5a a+的最小值,再根据两点间距离公式得几何意义以及椭圆定义判断轨迹. 【详解】的几何意义为点(),P x y 与点(0,2)A 间的距离,的几何意义为点(),P x y 与点(0,2)B -间的距离,且4AB =又由a为大于零的常数,可知54a a +≥=>, 当且仅当5aa=,即a =54aa=+>,即动点P到点A与到点B的距离之和为定值,且大于AB,所以动点P的轨迹为椭圆,故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,应注意定义中的常数大于|F1F2|,避免了动点轨迹是线段或不存在的情况.11.C解析:C【分析】由已知得直线l的方程可得c,设()11,A x y()22,B x y代入椭圆的方程做差可得22ba18=,然后利用222b c a=-可得2a,再利用椭圆定义可得答案.【详解】易得直线l的方程为113(2)1442y x x=++=+,当0y=时,6x=-,所以6c=,设()11,A x y,()22,B x y,则22112222222211x ya bx ya b⎧+=⎪⎪⎨⎪+=⎪⎩,则2222212122x x y ya b--+=,整理得222212121222212121y y y y y yba x x x x x x-+-=-=-⋅-+-2221136448aa--=-⨯==,解得a=,则FAB的周长为4a=.故选:C.【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.C解析:C【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.【分析】作出图像设题中问题即为求的最小值设直线联立用韦达定理表示即可得解【详解】根据题意作出图像如图所示设题中问题即为求的最小值设由得所以所以当时最小为2故答案为:2 解析:2【分析】作出图像,设1122(,),(,)A x y B x y ,题中问题即为求12||y y -的最小值,设直线,联立,用韦达定理表示即可得解. 【详解】根据题意作出图像,如图所示,设1122(,),(,)A x y B x y ,题中问题即为求12||y y -的最小值.设1:2AB x ty =+, 由2122x ty y x⎧=+⎪⎨⎪=⎩,得2210y ty --=,所以12122,1y y t y y +==-. 所以22121212||()444y y y y y y t -=+-=+当0t =时,12||y y -最小为2. 故答案为:2.14.【分析】由题意利用直角三角形的边角关系可得再利用椭圆的定义及离心率的计算公式即可得出【详解】设直线的倾斜角为则在直角三角形中令则由椭圆定义得椭圆的离心率故答案为:【点睛】熟练掌握直角三角形的边角关系 31【分析】由题意1290F MF ∠=,利用直角三角形的边角关系可得21,MF MF ,再利用椭圆的定义及离心率的计算公式即可得出. 【详解】设直线3()y x c =-的倾斜角为α,则tan 3α=0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则211,MF MF ===由椭圆定义得122||||1a MF MF =+=∴椭圆的离心率212c e a ===.1. 【点睛】熟练掌握直角三角形的边角关系、椭圆的定义、离心率的计算公式是解题的关键,属于基础题.15.【分析】由椭圆定义得由余弦定理得结合可得的值从而得答案【详解】由已知得所以由椭圆定义得由余弦定理得即则的面积为故答案为:【点睛】本题考查了椭圆的简单的性质关键点是利用余弦定理和三角形的面积公式解题考解析:24-【分析】由椭圆定义得128F P PF +=,由余弦定理得22212121212cos 2F P PF F F F PF F P PF +-∠=⨯,结合可得12F P PF ⨯的值,从而得答案. 【详解】 由已知得12,2c e ==,所以4a =, 由椭圆定义得12248F P PF +=⨯=, 由余弦定理得222121212123cos cos302F P PF F F F PF F P PF +-∠===⨯, 即()2121212216F P PF FP PF P PF +-⨯-=⨯,12F P PF⨯=, 则12F PF △的面积为12111sin 3024222S F P PF =⨯⨯=⨯=- 故答案为:24- 【点睛】本题考查了椭圆的简单的性质,关键点是利用余弦定理和三角形的面积公式解题,考查了学生分析问题、解决问题的能力.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E解析:17 【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE 设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =, ∴离心率175c e a ==. 故答案为:175【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.【分析】根据数形结合分析可得并根据勾股定理可得计算离心率【详解】如图首先画出函数图象又且且根据椭圆的定义可知由勾股定理可知即整理为即故答案为:【点睛】方法点睛:本题考查椭圆离心率的取值范围求椭圆离心 解析:53【分析】根据数形结合分析,可得'PF PF ⊥,并根据勾股定理,可得()()22222244b a b c a b +-==-,计算离心率.【详解】如图,首先画出函数图象,1233EF OF OE c c c =-=-=,2131'23c EF EF c c ∴==+, 又2PQ QF =,'//PF QE ∴,且1'3QE PF =,且'PF PF ⊥, 3bQE =,'PF b ∴=, 根据椭圆的定义可知2PF a b =-,由勾股定理可知22212'PF PF F F +=,即()()22222244b a b c a b+-==-整理为222224444b a b ab a b ++-=-,即23b a =, 2251c b a a ∴=-=.5【点睛】方法点睛:本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.10【分析】利用抛物线上的点到焦点的距离把整体代入中即可求解【详解】解:由抛物线的定义可知抛物线上的点到焦点的距离在中所以故答案为:10【点睛】关键点点睛:利用抛物线的焦半径公式整体代入中是解决本题解析:10 【分析】利用抛物线()220y px p =>上的点()000,P x y 到焦点,02p F ⎛⎫⎪⎝⎭的距离002p P F x =+,把123105x x x x ++++=整体代入1210PF P F P F +++中即可求解.【详解】解:由抛物线的定义可知,抛物线()220y px p =>上的点()000,P x y 到焦点,02p F ⎛⎫⎪⎝⎭的距离002p P F x =+,在22y x =中,1p =,所以12121031055510PF P F P F x x x x p +++=+++++=+=.故答案为:10 【点睛】关键点点睛:利用抛物线的焦半径公式整体代入1210PF P F P F +++中是解决本题的关键.19.①②④【分析】①将抛物线与直线联立消去利用根与系数关系求出再由弦长公式即可求出弦长进而可求出弦长的最小值即可判断①的正误;②利用中点坐标公式求出以为直径的圆的圆心的纵坐标判断圆心到直线的距离与半径的解析:①②④ 【分析】①将抛物线与直线联立消去y ,利用根与系数关系求出12x x +,12x x ,再由弦长公式即可求出弦长,进而可求出弦长的最小值,即可判断①的正误;②利用中点坐标公式,求出以AB 为直径的圆的圆心的纵坐标,判断圆心到直线的距离121y y ++与半径||2AB r =的大小关系,即可判断②的正误; ③将2x =代入24x y =,可得()2,1P 在抛物线上,此时当直线的斜率不存在时,只有一个交点,当直线与抛物线相切时,也只有一个交点,故与抛物线只有一个交点的直线有可能有2条,可判断③错误;④设1l 的方程为()12y k x -=-,将直线与抛物线联立消去y ,利用判别式即可求出k ,进而可求出直线1l 的倾斜角,即可判断④的正误. 【详解】①联立方程241x yy kx ⎧=⎨=+⎩,消去y 可得2440x kx --=,216160k ∆=+>恒成立,设两交点坐标分别为()11,A x y ,()22,B x y , 所以由根与系数的关系得124x x k +=,124x x ⋅=-,故AB ==2444k =+≥,当0k =时,AB 取得最小值4,所以最短弦长为4,故①正确,②由①可知124x x k +=,则21212242y y kx kx k +=++=+,故以AB 为直径的圆的圆心坐标为()22,21k k +,半径2222ABr k ==+, 抛物线24x y =的准线方程为1y =-,故圆心到准线1y =-的距离2221122d k k r =++=+=, 所以以AB 为直径的圆一定与抛物线的准线相切,故②正确,③将2x =代入24x y =,解得1y =,所以当1t =时,即()2,1P 在抛物线上, 当直线的斜率不存在时,方程为2x =,此时只有一个交点()2,1,当直线斜率存在且只与抛物线只有一个交点时,当且仅当该直线为切线时满足条件, 所以过点()2,P t 只与抛物线只有一个交点的直线有可能有2条,故③错误, ④因为抛物线的焦点为()0,1F ,又()2,1Q ,()2,R m , 所以三角形FQR 为直角三角形且过()2,1Q 的切线斜率一定存在, 设1l 的方程为()12y k x -=-,代入24x y =,可得24840x k k -+-=,由()2164840k k ∆=--=可得1k =,即直线1l 的倾斜角为45︒,因为直线2l 过点Q 且与1l 垂直,所以一定平分RQF ∠,故④正确. 故答案为:①②④ 【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组; (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.20.2【分析】法1:首先利用直线过焦点得再利用直线与抛物线方程联立利用根与系数的关系表示计算求得;法2:由已知求得的值再利用弦长公式求的值【详解】法1:由题意知直线即直线经过抛物线的焦点即直线的方程为设解析:2 【分析】法1:首先利用直线过焦点,得b p =-,再利用直线与抛物线方程联立,利用根与系数的关系表示12AB x x p =++,计算求得p ;法2:由已知tan 2θ=,求得sin θ的值,再利用弦长公式22sin pAB θ=,求p 的值. 【详解】法1:由题意知,直线:2l y x b =+,即22b y x ⎛⎫=+⎪⎝⎭.直线l 经过抛物线()2:20C y px p =>的焦点,22b p∴-=,即b p =-.∴直线l 的方程为2y x p =-. 设()11,A x y 、()22,B x y ,联立222y x p y px=-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232p x x +=,又5AB =,12552x p p x ∴++==,则2p =. 法2:设直线的切斜角为θ,则tan 2k θ==,得sin θ=,∴22225sin p pAB θ===,得2p =.故答案为:2 【点睛】结论点睛:当直线过抛物线的焦点时,与抛物线交于,A B 两点,AB 称为焦点弦长,有如下的性质:直线与抛物线交于()()1122,,,A x y B x y ,①221212,4p y y p x x =-=;②12AB x x p =++;③11AF BF +为定值2p ;④弦长22sin p AB θ= (θ为直线AB 的倾斜角);⑤以AB 为直径的圆与准线相切;⑥焦点F 对,A B 在准线上射影的张角为90.三、解答题21.(1)2212x y +=;(2)①3k =-;②808,9⎡⎫⎪⎢⎣⎭.【分析】(1)把点代入方程结合离心率列方程组求解即可;(2)①设直线l 方程为,代入椭圆E 的方程可得,结合判别式与韦达定理,利用直线OA ,OB 的斜率之和为34进而求出直线斜率即可;②当直线l 的斜率不存在时,直线l 的方程为0x =,求得8MA MA ⋅=,当直线l 的斜率存在时,由(2)①得28821MA MB k ⋅=++,从而求得范围.【详解】解:(1)由题意得222221,2c a a b c ⎧=⎪⎨⎪=+⎩,解得222a c =,22b c =.设椭圆E 的方程为222212x y c c +=,又因为点1,2P ⎛⎫ ⎪ ⎪⎝⎭在椭圆E 上, 所以222211122c c+=,22222,1c a b ===,所以椭圆E 的方程为2212x y +=;(2)①设直线l 方程为:3y kx =+,代入椭圆E 的方程可得,()222112160kx kx +++=因为直线l 与椭圆E 有两个交点,所以216640∆=->k ,即24k >. 设()11,A x y ,()22,B x y ,则1221221k x x k +=-+,1221621x x k ⋅=+, 11223,3y kx y kx =+=+.又()1212121233244OA OBx x y y k k k k x x x x ++=+=+=-=⋅ 解得3k =-,经检验成立.所以,直线l 的斜率3k =-; ②当直线l 的斜率不存在时,直线l 的方程为0x =,将0x =代入2212x y +=,解得1y =±,则(0,1)A ,(0,1)B -,8MA MA ⋅=当直线l 的斜率存在时,由(2)①得()()()()22121212216133121k MA MA x x y y k x x k +⋅=⋅+--=+⋅=+()2228211882121k k k ⎡⎤++⎣⎦==+++因为24k>,所以MA MA ⋅的范围为808,9⎛⎫⎪⎝⎭.综上,得MA MB ⋅的取值范围是808,9⎡⎫⎪⎢⎣⎭. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 22.(Ⅰ)28y x =;(Ⅱ)8.(Ⅰ)根据M 的几何性质可得)20x x +=≥,化简后可得抛物线的方程.(Ⅱ)设:2l x ty =+,联立直线方程和抛物线方程,消元后可得面积的表达式,从而可求面积的最小值. 【详解】(Ⅰ)由题设可得)20x x +=≥,整理可得()280y x x =≥.(Ⅱ)设:2l x ty =+, 由228x ty y x=+⎧⎨=⎩可得28160y ty --=,故12y y -==又1282OABS =⨯⨯=≥,当且仅当0t =时等号成立, 故AOB 面积的最小值为8.【点睛】方法点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率、斜率的倒数或点的横、纵坐标等.而目标函数的最值可以通过常见函数的性质、基本不等式或导数等求得.23.(1)22122y x -=;(2)8.【分析】(1)由等轴双曲线的一条渐近线方程为0y x +=,再由点到直线距离公式求解即可; (2)求得直线方程代入抛物线,结合焦点弦长求解即可. 【详解】(1)由等轴双曲线的一条渐近线方程为0y x +=,且顶点(0,)a 到渐近线的距离为1,可得1a b =⎧=,解得a b ⎧=⎪⎨=⎪⎩22122y x -=(2)抛物线24y x =的焦点为(1,0)F直线l 的方程为0tan 45(1)y x -=︒⋅-,即1y x =-. 与抛物线方程联立,得214y x y x =-⎧⎨=⎩, 消y ,整理得2610x x -+=,设其两根为1x ,2x ,且126x x +=. 由抛物线的定义可知,12||628AB x x p =++=+=. 所以,线段AB 的长是8.(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.24.(1)1a b ⎧=⎪⎨=⎪⎩2)直线AD 过定点(1,0)Q .【分析】(1)由于12,1,P P ⎛⎛- ⎝⎭⎝⎭关于原点对称,从而可得12,P P 和4P 在椭圆上,然后将这些点的坐标代入椭圆方程中可求出,a b 的值;(2)由题意可知直线l 的斜率存在,则设直线l 为2(0)x ty t =+≠,与椭圆方程联立成方程组,消去x ,得()222420t y ty +++=,再由根与系数的关系得12122242,22t y y y y t t +=-=++,而直线AD 方程为()()()122112210y y x x x y x y x y ++--+=,代入化简可得答案【详解】因为121,,1,22P P ⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭关于原点对称,由题意得12,PP 和4P 在椭圆上, 将14,P P 的坐标代入22221x ya b +=得:222111211a b b ⎧+=⎪⎪⎨⎪=⎪⎩解得:1a b ⎧=⎪⎨=⎪⎩(2)显然,l 与x 轴不垂直,设l 的方程为:2(0)x ty t =+≠()22222242012x ty t y ty x y =+⎧⎪⇒+++=⎨+=⎪⎩ 设()()1122,,,A x y B x y ,则()22,D x y - 且12122242,22t y y y y t t +=-=++ 直线AD 方程为()()()122112210y y x x x y x y x y ++--+= 令0y =,得()()122112211212121222242214ty y ty y x y x y ty y tx y y y y y y t++++===+=+=+++-,故直线AD 过定点(1,0)Q . 【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是设出直线l 的方程为:2(0)x ty t =+≠,与椭圆方程联立方程组,消元后利用根与系数的关系可得12122242,22t y y y y t t +=-=++,进而可得AD 方程为()()()122112210y y x x x y x y x y ++--+=化简可得答案,属于中档题25.(1)221164x y +=;(2)112y x =±+.【分析】(1)首先设点()00,P x y ,利用平行线的性质求点,M N 的坐标,代入228OM ON +=,求点P 的轨迹方程;(2)由(1)可知,轨迹C 方程221164x y +=,直线:1l y kx =+与椭圆方程联立,利用公式1212AOB S OQ x x =⋅-△表示面积,求直线的斜率. 【详解】(1)设()00,P x y ,显然P 不为原点, 由题设()0012y x x y =-+,令0x =,得0012M y y x =- 再由()0012y x x y =--+,令0x =,得0012N y y x =+又228OM ON +=,即22000011822y x y x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭化简整理得:22001164x y +=所以点P 的轨迹C 方程221164x y +=(2)由题设知直线l 的斜率显然存在,故设其方程为1y kx =+,()11,A x y ,()22,B x y()222214181201164y kx k x kx x y =+⎧⎪⇒++-=⎨+=⎪⎩ 则122841kx x k +=-+,1221241x x k ⋅=-+ 从而12241x x k -==+又212112564817 22AOBkS OQ x x+=⋅-=⨯⨯=所以21142k k=⇒=±故直线l的方程为112y x=±+.【点睛】关键点点睛:本题的第一问求点P的轨迹C方程是关键,由题意可知过点P的两条直线的斜率,所以设点()00,P x y后,表示两条直线,再表示点M,N的坐标是关键. 26.(1)22143x y+=;(2)1x y=±+.【分析】(1)设椭圆Γ的标准方程为22221x ya b+=,连接AF,由AFB AFC≌,得到ABE FCE△≌△,再利用椭圆定义求解.(2)设直线l的方程为:1x my=+,联立221143x myx y=+⎧⎪⎨+=⎪⎩,结合韦达定理得到12y y-,然后由PNM△的面积为62求解.【详解】(1)如图所示:由题意可设椭圆Γ的标准方程为22221x ya b+=,连接AF,可得AFB AFC≌,所以,,4ABE FCE EF AE EA EB EF EB FB=+=+==≌,由椭圆定义可知:2,1a c==,3b=。
高中数学人教A版选修1-1第2章圆锥曲线与方程课后练习及解析

A.椭圆
B.直线
C.圆
D.线段
2.椭圆1x62 +y72=1 的左右焦点为 F1,F2,一直线过 F1 交椭圆于 A、B 两点,则△ABF2 的
周长为( )
A.32
B.16
C.8
D.4
3.椭圆 2x2+3y2=1 的焦点坐标是( )
A.0,±
6 6
B.(0,±1)
C.(±1,0)
D.± 66,0
4.方程|a|x-2 1+a+y2 3=1 表示焦点在 x 轴上的椭圆,则实数 a 的取值范围是(
)
A.(-3,-1) C.(1,+∞)
B.(-3,-2) D.(-3,1)
5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点25,-32,则该椭圆的方程是( )
A.y82+x42=1
B.1y02 +x62=1
C.y42+x82=1
D.y62+1x02 =1
6.设 F1、F2 是椭圆1x62 +1y22 =1 的两个焦点,P 是椭圆上一点,且 P 到两个焦点的距离之
11.已知椭圆 4x2+y2=1 及直线 y=x+m. (1)当直线和椭圆有公共点时,求实数 m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.
高中数学人教A版选修1-1圆锥曲线与方程章末综合测评-含答案解析

人教A 版选修1-1圆锥曲线与方程章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-18x 2的准线方程是( )A .x =132B .y =2C .y =132D .y =-22.下列双曲线中,渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1 C .x 2-y 22=1D.x 22-y 2=1 3.若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.534.抛物线y 2=14x 关于直线x -y =0对称的抛物线的焦点坐标是( )A .(1,0) B.⎝ ⎛⎭⎪⎫0,116C .(0,1)D.⎝ ⎛⎭⎪⎫116,0 5.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为2时,PF1→²PF 2→的值为( ) A .2 B .3 C .4D .66.有一个正三角形的两个顶点在抛物线y 2=2px (p >0)上,另一个顶点在原点,则该三角形的边长是( )A .23pB .43pC .63pD .83p7.已知|A B →|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,O P →=13O A →+23O B →,则动点P 的轨迹方程是( ) A.x 24+y 2=1B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=18.AB 为过椭圆x 2a 2+y 2b2=1(a >b >0)的中心的弦F 1为一个焦点,则△ABF 1的最大面积是(c 为半焦距)( )A .acB .abC .bcD .b 29.若F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.75210.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .± 211.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积是( )A .3 2B .2 2 C. 2D.32212.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13C .b 2=12D .b 2=2二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知(2,0)是双曲线x 2-y 2b2=1(b >0)的一个焦点,则b =________.14.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则△PF 1F 2的面积为________.15.如图1,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y2b2=1的右焦点F ,且两条曲线的交点连线也经过焦点F ,则该椭圆的离心率为________.图116.已知双曲线C 1、C 2的顶点重合,C 1的方程为x 24-y 2=1,若C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,则C 2的方程为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知双曲线与椭圆有共同的焦点F1(0,-5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.18.(本小题满分12分)已知直线l:y=x+m与抛物线y2=8x交于A,B两点,(1)若|AB|=10,求m的值;(2)若OA⊥OB,求m的值.19.(本小题满分12分)已知双曲线过点P ()-32,4,它的渐近线方程为y =±43x .(1)求双曲线的标准方程;(2)设F 1和F 2为该双曲线的左、右焦点,点P 在此双曲线上,且|PF 1|²|PF 2|=41,求∠F 1PF 2的余弦值.20.(本小题满分12分)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .21.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点F 及点A (0,b ),原点O 到直线FA 的距离为22b .(1)求椭圆C 的离心率e ;(2)若点F 关于直线l :2x +y =0的对称点P 在圆O :x 2+y 2=4上,求椭圆C 的方程及点P 的坐标.22.(本小题满分12分)已知经过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B ,C ,当直线l 的斜率是12时,A C →=14A B →.(1)求抛物线G 的方程;(2)设线段BC 的垂直平分线在y 轴上的截距为b ,求b 的取值范围.人教A 版选修1-1圆锥曲线与方程章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-18x 2的准线方程是( )A .x =132B .y =2C .y =132D .y =-2【解析】 将y =-18x 2化为标准形式为x 2=-8y ,故准线方程为y =2.【答案】 B2.(2015²安徽高考)下列双曲线中,渐近线方程为y =±2x 的是( )A .x 2-y 24=1B.x 24-y 2=1C .x 2-y 22=1D.x 22-y 2=1 【解析】 法一 由渐近线方程为y =±2x ,可得y2=±x ,所以双曲线的标准方程可以为x 2-y 24=1⎝ ⎛⎭⎪⎫或y 24-x 2=1,舍去.法二 A 中的渐近线方程为y =±2x ;B 中的渐近线方程为y =±12x ;C 中的渐近线方程为y =±2x ;D 中的渐近线方程为y =±22x .故选A.【答案】 A3.若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.53【解析】 由双曲线的渐近线过点(3,-4)知b a =43,∴b 2a 2=169. 又b 2=c 2-a 2,∴c 2-a 2a 2=169,即e 2-1=169,∴e 2=259,∴e =53.【答案】 D5.抛物线y 2=14x 关于直线x -y =0对称的抛物线的焦点坐标是( )A .(1,0) B.⎝ ⎛⎭⎪⎫0,116C .(0,1)D.⎝ ⎛⎭⎪⎫116,0 【解析】 ∵y 2=14x 的焦点坐标为⎝ ⎛⎭⎪⎫116,0,∴关于直线y =x 对称后抛物线的焦点为⎝⎛⎭⎪⎫0,116.【答案】 B5.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为2时,PF1→²PF 2→的值为( ) A .2 B .3 C .4D .6【解析】 设P (x 0,y 0),又F 1(-2,0),F 2(2,0), ∴PF1→=(-2-x 0,-y 0),PF 2→=(2-x 0,-y 0).|F 1F 2|=4. S △PF 1F 2=12|F 1F 2|²|y 0|=2,∴|y 0|=1.又x 203-y 20=1,∴x 20=3(y 20+1)=6,∴PF 1→²PF 2→=x 20+y 20-4=6+1-4=3.【答案】 B6.(2016²泰安高二检测)有一个正三角形的两个顶点在抛物线y 2=2px (p >0)上,另一个顶点在原点,则该三角形的边长是( )A .23pB .43pC .63pD .83p【解析】 设A 、B 在y 2=2px 上,另一个顶点为O ,则A 、B 关于x 轴对称,则∠AOx =30°,则OA 的方程为y =33x .由⎩⎪⎨⎪⎧y =33x ,y 2=2px ,得y =23p ,∴△AOB 的边长为43p .【答案】 B7.已知|A B →|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,O P →=13O A →+23O B →,则动点P 的轨迹方程是( ) A.x 24+y 2=1B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1【解析】 设P (x ,y ),A (0,y 0),B (x 0,0),由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|A B →|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9,化简整理得动点P 的轨迹方程是x 24+y 2=1.【答案】 A8.AB 为过椭圆x 2a 2+y 2b2=1(a >b >0)的中心的弦F 1为一个焦点,则△ABF 1的最大面积是(c 为半焦距)( )A .acB .abC .bcD .b 2【解析】 △ABF 1的面积为c ²|y A |,因此当|y A |最大, 即|y A |=b 时,面积最大.故选C. 【答案】 C9.若F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7B.72C.74D.752【解析】 |F 1F 2|=22,|AF 1|+|AF 2|=6, 则|AF 2|=6-|AF 1|,|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|²|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8,即(6-|AF 1|)2=|AF 1|2-4|AF 1|+8, 解得|AF 1|=72,所以S =12³72³22³22=72.【答案】 B10.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .± 2【解析】 由题设易知A 1(-a,0),A 2(a,0),B ⎝⎛⎭⎪⎫c ,b 2a ,C ⎝ ⎛⎭⎪⎫c ,-b 2a .∵A 1B ⊥A 2C ,∴b 2ac +a ²-b 2ac -a=-1,整理得a =b . ∵渐近线方程为y =±bax ,即y =±x ,∴渐近线的斜率为±1.【答案】 C11.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积是( )A .3 2B .2 2 C. 2D.322【解析】 如图所示,由题意知,抛物线的焦点F 的坐标为(1,0),又|AF |=3,由抛物线定义知:点A 到准线x =-1的距离为3,∴点A 的横坐标为2.将x =2代入y 2=4x 得y 2=8,由图知点A 的纵坐标y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).联立直线与抛物线的方程⎩⎪⎨⎪⎧y =22 x -1 ,y 2=4x ,解之得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎪⎨⎪⎧x =2,y =2 2.由图知B ⎝ ⎛⎭⎪⎫12,-2,∴S △AOB =12|OF |²|y A -y B |=12³1³|22+2|=32 2.【答案】 D12.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13C .b 2=12D .b 2=2【解析】 由题意,知a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,∴直线截椭圆的弦长d =5³2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12,故选C. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知(2,0)是双曲线x 2-y2b2=1(b >0)的一个焦点,则b =________.【解析】 由题意得,双曲线焦点在x 轴上,且c =2.根据双曲线的标准方程,可知a 2=1.又c 2=a 2+b 2,所以b 2=3.又b >0,所以b = 3.【答案】314.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则△PF 1F 2的面积为________.【解析】 由题意知|F 1F 2|=26-2=4,设P 点坐标为(x ,y ).由⎩⎪⎨⎪⎧x 26+y 22=1,x 23-y 2=1,得⎩⎪⎨⎪⎧x =±322,y =±22.则S △PF 1F 2=12|F 1F 2|²|y |=12³4³22= 2.【答案】215.如图1,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y2b2=1的右焦点F ,且两条曲线的交点连线也经过焦点F ,则该椭圆的离心率为________.图1【解析】 由条件知,c =p2,∴其中一个交点坐标为(c,2c ),∴c 2a 2+4c 2b2=1,∴e 4-6e 2+1=0, 解得e 2=3±22,∴e =±(2±1). 又0<e <1,故e =2-1. 【答案】2-116.已知双曲线C 1、C 2的顶点重合,C 1的方程为x 24-y 2=1,若C 2的一条渐近线的斜率是C 1的一条渐近线的斜率的2倍,则C 2的方程为________.【解析】 因为C 1的方程为x 24-y 2=1,所以C 1的一条渐近线的斜率k 1=12,所以C 2的一条渐近线的斜率k 2=1,因为双曲线C 1、C 2的顶点重合,即焦点都在x 轴上,设C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),所以a =b =2,所以C 2的方程为x 24-y 24=1.【答案】x 24-y 24=1 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知双曲线与椭圆有共同的焦点F 1(0,-5),F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.【解】 由共同的焦点F 1(0,-5),F 2(0,5),可设椭圆方程为y 2a 2+x 2a 2-25=1,双曲线方程为y 2b 2-x 225-b 2=1(b >0). 点P (3,4)在椭圆上,则16a2+9a 2-25=1,得a 2=40, 双曲线过点P (3,4)的渐近线方程为y =b25-b2x ,即4=b25-b 2³3,得b 2=16.所以椭圆方程为y 240+x 215=1,双曲线方程为y 216-x 29=1.18.(本小题满分12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点,(1)若|AB |=10,求m 的值; (2)若OA ⊥OB ,求m 的值. 【解】 设A (x 1,y 1),B (x 2,y 2),(1)⎩⎪⎨⎪⎧y =x +m ,y 2=8x⇒x 2+(2m -8)x +m 2=0⇒⎩⎪⎨⎪⎧Δ= 2m -8 2-4m 2>0,x 1+x 2=8-2m ,x 1x 2=m 2.|AB |=2|x 1-x 2|=2 x 1+x 2 2-4x 1x 2=10, 得m =716,∵m <2,∴m =716.(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.x 1x 2+(x 1+m )(x 2+m )=0,2x 1x 2+m (x 1+x 2)+m 2=0, 2m 2+m (8-2m )+m 2=0,m 2+8m =0,m =0或m =-8.经检验m =-8.19.(本小题满分12分)已知双曲线过点P ()-32,4,它的渐近线方程为y =±43x .(1)求双曲线的标准方程;(2)设F 1和F 2为该双曲线的左、右焦点,点P 在此双曲线上,且|PF 1|²|PF 2|=41,求∠F 1PF 2的余弦值.【解】 (1)由渐近线方程知,双曲线中心在原点,且渐近线上横坐标为-32的点P ′的纵坐标的绝对值为4 2.∵42>4,∴双曲线的焦点在x 轴上,设方程为x 2a 2-y 2b2=1.∵双曲线过点P (-32,4), ∴18a 2-16b2=1.①又b a =43,② 由①②,得a 2=9,b 2=16, ∴所求的双曲线方程为x 29-y 216=1.(2)设|PF 1|=d 1,|PF 2|=d 2,则d 1²d 2=41.又由双曲线的几何性质知,|d 1-d 2|=2a =6.由余弦定理,得cos ∠F 1PF 2=d 21+d 22-|F 1F 2|22d 1d 2= d 1-d 2 2+2d 1d 2-|F 1F 2|22d 1d 2=941.20.(本小题满分12分)(2015²安徽高考)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .【解】 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510.进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明:由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a 2,-b 2,可得NM →=⎝ ⎛⎭⎪⎫a 6,5b 6. 又AB →=(-a ,b ),从而有AB →²NM →=-16a 2+56b 2=16(5b 2-a 2).由(1)的计算结果可知a 2=5b 2, 所以AB →²NM →=0,故MN ⊥AB .21.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点F 及点A (0,b ),原点O 到直线FA 的距离为22b .(1)求椭圆C 的离心率e ;(2)若点F 关于直线l :2x +y =0的对称点P 在圆O :x 2+y 2=4上,求椭圆C 的方程及点P 的坐标.【解】 (1)由点F (-ae,0),点A (0,b ),及b =1-e 2a ,得直线FA 的方程为x -ae +y 1-e 2a=1,即1-e 2x -ey +ae 1-e 2=0. 因为原点O 到直线FA 的距离为 22b =ae 1-e 2, 所以221-e 2²a =ae 1-e 2,解得e =22. (2)设椭圆C 的左焦点F ⎝ ⎛⎭⎪⎪⎫-22a ,0关于直线l :2x +y =0的对称点为P (x 0,y 0),则有⎩⎪⎨⎪⎧ y 0x 0+22a =12,2²x 0-22a 2+y 02=0,解得x 0=3210a ,y 0=225a . 因为P 在圆x 2+y 2=4上,所以⎝ ⎛⎭⎪⎪⎫3210a 2+⎝ ⎛⎭⎪⎪⎫225a 2=4. 所以a 2=8,b 2=(1-e 2)a 2=4.故椭圆C 的方程为x 28+y 24=1, 点P 的坐标为⎝ ⎛⎭⎪⎫65,85. 22.(本小题满分12分)已知经过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B ,C ,当直线l 的斜率是12时,A C →=14A B →. (1)求抛物线G 的方程;(2)设线段BC 的垂直平分线在y 轴上的截距为b ,求b 的取值范围.【解】 (1)设B (x 1,y 1),C (x 2,y 2),由已知,当k l =12时,l 的方程为y =12(x +4),即x =2y -4. 由⎩⎪⎨⎪⎧ x 2=2py ,x =2y -4,得2y 2-(8+p )y +8=0,所以⎩⎪⎨⎪⎧y 1y 2=4,y 1+y 2=8+p 2,又因为A C →=14A B →, 所以y 2=14y 1或y 1=4y 2. 由p >0得:y 1=4,y 2=1,p =2,即抛物线方程为x 2=4y . (2)设l :y =k (x +4),BC 中点坐标为(x 0,y 0), 由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4 , 得x 2-4kx -16k =0.①所以x 0=x 1+x 22=2k ,y 0=k (x 0+4)=2k 2+4k .所以BC 的中垂线方程为y -2k 2-4k =-1k(x -2k ), 所以BC 的中垂线在y 轴上的截距为b =2k 2+4k +2=2(k +1)2, 对于方程①由Δ=16k 2+64k >0得k >0或k <-4.所以b ∈(2,+∞).。
人教A版选修11《第二章圆锥曲线与方程》质量检测试卷含解析

人教A 版选修11《第二章圆锥曲线与方程》质量检测试卷含解析一、选择题1.假如方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范畴是( ) A .(1,+∞) B .(1,2) C.⎝⎛⎭⎫12,1 D .(0,1)2.已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )A.53B.43C.54D.323.抛物线y 2=8x 上一点P 到焦点的距离为4,则P 到坐标原点的距离为( ) A .5 B .2 5 C .4 2 D.334.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线5.设P 是双曲线x 2a 2-y 29=1(a >0)上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .86.设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于( )A.12或32B.23或2C.12或2D.23或327.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c ,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若,则双曲线的离心率为( )A.102 B.105C.10D. 28.已知双曲线x 24-y 212=1的左、右焦点分别是F 1、F 2,P 是双曲线上的一点,若|PF 1|=5,则△PF 1F 2最大内角的余弦值为( )A .-110 B.110C.35 D .-359.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=111.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口的直径为60 cm ,灯深40 cm ,则抛物线的标准方程可能是( )A .y 2=254xB .y 2=454xC .x 2=-452yD .x 2=-454y12.双曲线与椭圆4x 2+y 2=64有公共焦点,它们的离心率互为倒数,则双曲线方程为( )A .y 2-3x 2=36B .x 2-3y 2=36C .3y 2-x 2=36D .3x 2-y 2=36 二、填空题13.以双曲线x 24-y 212=1的焦点为顶点,顶点为焦点的椭圆方程为________.14.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则△PF 1F 2的面积为________.15.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.16.已知抛物线y 2=2px (p >0)的焦点与双曲线x 2-y 23=1的右焦点F 重合,抛物线的准线与x 轴交于点K ,点A 在抛物线上且|AK |=2|AF |,则△AFK 的面积为________.三、解答题17.椭圆的中心在原点,焦点在坐标轴上,焦距为213.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7∶3,求椭圆和双曲线的方程.18.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若,求λ的值.19.如图所示,F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,A ,B 为两个顶点,已知椭圆C 上的点⎝⎛⎭⎫1,32到F 1,F 2两点的距离之和为4. (1)求椭圆C 的方程;(2)过椭圆C 的焦点F 2作AB 的平行线交椭圆于P ,Q 两点,求△F 1PQ 的面积. 20.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)通过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)通过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.21.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,过点A (0,-b )和B (a ,0)的直线与原点的距离为32. (1)求双曲线C 的方程;(2)直线y =kx +m (km ≠0)与该双曲线C 交于不同的两点C ,D ,且C ,D 两点都在以点A 为圆心的同一圆上,求m 的取值范畴.22.已知抛物线C 1:x 2=4y的焦点F 也是椭圆C 1:y 2a 2+x 2b2=1(a >b >0)的一个焦点.C 1与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,.(1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.答 案1. 解析:选D 由x 2+ky 2=2,得x 22+y 22k=1, 又∵椭圆的焦点在y 轴上, ∴2k>2,即0<k <1. 2. 解析:选A 由b a =43得b =43a ,∴c =a 2+b 2=a 2+⎝⎛⎭⎫43a 2=53a .∴e =c a =53.3. 解析:选B 抛物线y 2=8x 的准线方程为x =-2,由P 到焦点的距离为4知,P 到准线的距离为4,故P 的横坐标x P =2,y 2P =16,|PO |=x 2P +y 2P =2 5.4. 解析:选D 由题意得,点P 到直线x =-2的距离与它到点(2,0)的距离相等,因此点P 的轨迹是抛物线.5. 解析:选C 双曲线x 2a 2-y 29=1的一条渐近线方程为3x -2y =0,故a =2.又P 是双曲线上一点,故||PF 1|-|PF 2||=4,而|PF 1|=3,则|PF 2|=7.6. 解析:选A 设|PF 1|=4k ,|F 1F 2|=3k ,|PF 2|=2k .若曲线C 为椭圆,则2a =6k ,2c =3k ,∴e =12;若曲线C 为双曲线,则2a =2k ,2c =3k ,∴e =32.7. 解析:选A 设双曲线右焦点为M ,∵OE ⊥PF ,∴在直角三角形OEF 中,|EF |=c 2-a 24. 又,∴E 是PF 的中点.∴|PF |=2c 2-a 24, 又O 是FM 的中点, ∴MP ⊥FP ,∴|PM |=a ,又|PF |-|PM |=2a ,∴2c 2-a 24-a =2a ,∴离心率e =c a =102.8. 解析:选B 由双曲线定义知|PF 2|=|PF 1|±2a .因此|PF 2|=9或|PF 2|=1<c -a =2(舍去).又|F 1F 2|=8,因此△PF 1F 2的最大内角为∠PF 1F 2, cos ∠PF 1F 2=52+82-922×5×8=110.9. 解析:选D 因为椭圆的离心率为32,因此e =c a =32,c 2=34a 2=a 2-b 2,因此b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,因此x 2=45b 2,x =±25b ,y 2=45b 2,y =±25b ,则在第一象限双曲线的渐近线与椭圆C的交点坐标为⎝⎛⎭⎫25b ,25b ,因此四边形的面积为4×25b ×25b =165b 2=16,因此b 2=5,因此椭圆方程为x 220+y 25=1.10.11. 解析:选C 假如设抛物线的方程为y 2=2px (p >0),则抛物线过点(40,30),从而有302=2p ×40,即2p =452,因此所求抛物线方程为y 2=452x .尽管选项中没有y 2=452x ,但C 中的2p =452符合题意.12. 解析:选A 由4x 2+y 2=64得x 216+y 264=1,c 2=64-16=48, ∴c =43,e =438=32.∴双曲线中,c ′=43,e ′=23=c ′a ′. ∴a ′=32c ′=6,b ′2=48-36=12. ∴双曲线方程为y 236-x 212=1,即y 2-3x 2=36.13. 解析:双曲线焦点(±4,0),顶点(±2,0),故椭圆的焦点为(±2,0),顶点(±4,0). 答案:x 216+y 212=114. 解析:由题意知|F 1F 2|=26-2=4,设P 点坐标为(x ,y ). 由⎩⎨⎧x 26+y 22=1,x 23-y 2=1,得⎩⎨⎧x =±322,y =±22.则S △PF 1F 2=12|F 1F 2|·|y |=12×4×22= 2.答案: 215. 解析:设椭圆的右焦点为F 1,在△ABF 中,由余弦定理可解得|BF |=8,因此△ABF 为直角三角形,又因为斜边AB 的中点为O ,因此|OF |=c =5,连接AF 1,因为A ,B 关于原点对称,因此|AF 1|=|BF |=8,因此2a =14,a =7,因此离心率e =57.答案:5716. 解析:由题意得p2=2,p =4,抛物线方程为y 2=8x ,K (-2,0),设A (x 0,y 0),|AF |=a ,x 0=a -2,由|AK |=2a 得a 2+y 20=2a 2,又y 20=8(a -2),∴a 2=8(a -2),解得a =4.由已知可得|y 0|=a =4. ∴S △AFK =12×4×4=8.答案:817. 解:①焦点在x 轴上,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),且c =13.设双曲线为x 2m 2-y 2n 2=1(m >0,n >0),m =a -4.因为e 双e 椭=73,因此a m =73,解得a =7,m =3.因为椭圆和双曲线的半焦距为13, 因此b 2=36,n 2=4. 因此椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.②焦点在y 轴上,椭圆方程为x 236+y 249=1,双曲线方程为y 29-x 24=1.18. 解:(1)直线AB 的方程是y =22⎝⎛⎭⎫x -p2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,因此x 1+x 2=5p4.由抛物线定义得:|AB |=x 1+x 2+p =9,因此p =4,从而抛物线方程是y 2=8x . (2)由p =4,4x 2-5px +p 2=0 可简化为x 2-5x +4=0.从而x 1=1,x 2=4,y 1=-22,y 2=42, 从而A (1,-22),B (4,42). 设=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1, 解得λ=0或λ=2.19. 解:(1)由题设知,2a =4,即a =2,将点⎝⎛⎭⎫1,32代入椭圆方程得122+⎝⎛⎭⎫322b 2=1,解得b 2=3, 故椭圆方程为x 24+y 23=1.(2)由(1)知A (-2,0),B (0,3), 因此k PQ =k AB =32,因此PQ 所在直线方程为 y =32(x -1), 由⎩⎨⎧y =32(x -1),x 24+y23=1,得8y 2+43y -9=0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-32,y 1·y 2=-98,因此|y 1-y 2|=(y 1+y 2)2-4y 1y 2=34+4×98=212, 因此S △F 1PQ =12|F 1F 2|·|y 1-y 2|=12×2×212=212.20. 解:(1)由题意知c a =22,b =1,综合a 2=b 2+c 2,解得a =2,因此,椭圆的方程为x 22+y 2=1.(2)证明:由题设知,直线PQ 的方程为y =k (x -1)+1, 代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP 与AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2 =2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.21. 解:(1)x 23-y 2=1.(2)⎩⎪⎨⎪⎧y =kx +m ,x 23-y 2=1,消去y 得,(1-3k 2)x 2-6kmx -3m 2-3=0,由已知,1-3k 2≠0且Δ=12(m 2+1-3k 2)>0⇒m 2+1>3k 2.① 设C (x 1,y 1),D (x 2,y 2),CD 的中点P (x 0,y 0), 则x 0=x 1+x 22=3km 1-3k 2,y 0=kx 0+m =m 1-3k 2, 因为AP ⊥CD ,因此k AP =m1-3k 2+13km 1-3k 2-0=m +1-3k 23km =-1k,整理得3k 2=4m +1.② 联立①②得m 2-4m >0,因此m <0或m >4,又3k 2=4m +1>0, 因此m >-14,因此-14<m <0或m >4.故m 的取值范畴为⎝⎛⎭⎫-14,0∪(4,+∞). 22. 解:(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1), 因为F 也是椭圆C 2的一个焦点,因此a 2-b 2=1.①又C 1与C 2的公共弦长为26,C 1与C 2都关于y 轴对称,且C 1的方程为:x 2=4y , 由此可知C 1与C 2的公共点的坐标为⎝⎛⎭⎫±6,32, 因此94a 2+6b 2=1.②联立①②得a 2=9,b 2=8, 故C 2的方程为y 29+x 28=1.(2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),从而x 3-x 1=x 4-x 2,即x 3-x 4=x 1-x 2,因此(x 3+x 4)2-4x 3x 4=(x 1+x 2)2-4x 1x 2.③设直线l 的斜率为k ,则l 的方程为y =kx +1,由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得x 2-4kx -4=0,而x 1,x 2是那个方程的两根,因此x 1+x 2=4k ,x 1x 2=-4,④由⎩⎪⎨⎪⎧y =kx +1,x 28+y 29=1,得(9+8k 2)x 2+16kx -64=0, 而x 3,x 4是那个方程的两根,因此x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k 2,⑤ 将④、⑤代入③,得16(k 2+1)=162k 2(9+8k 2)2+4×649+8k 2.即16(k 2+1)=162×9(k 2+1)(9+8k 2)2,因此(9+8k 2)2=16×9, 解得k =±64,即直线l 的斜率为±64.。
(好题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(答案解析)

一、选择题1.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 2.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .2D 3.已知椭圆C 的焦点为()12,0F -,()22,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为( ) A .221124x y +=B .2211612x y +=C .221128x y +=D .2212016x y +=4.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( ) A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =-5.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF F B =,23cos 5AF B ∠=,则双曲线的离心率e =( )A B .52C D .536.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .47.若椭圆22221(0)x y a b a b +=>>的离心率为3,则213a b +的最小值为( )A B C .2D8.已知点P 是抛物线22y x =上的一个动点,则点P 到点D ⎛ ⎝的距离与点P 到y 轴的距离之和的最小值为( ) A .2B .52C .3D .729.顶点在原点,经过点(),且以坐标轴为轴的抛物线的标准方程是( )A .2y =或212=-x y B .2y =-或212=-x yC .2y =或212x y =D .2y =-或212x y =10.已知抛物线2:4C y x =,过点()1,0A -作C 的两条切线,切点分别为B 、D ,则过点A 、B 、D 的圆截y 轴所得弦长为( )A .B .C .D .11.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( )A .(B .C .[D .12.已知抛物线1C 的顶点在坐标原点,焦点F 在y 轴正半轴上.若点F 到双曲线222:126x y C -=的一条渐近线的距离为2,则1C 的标准方程是( )A .23y x =B .23y x =C .28x y =D .216x y =二、填空题13.已知抛物线22y px =上三点(2,2),,A B C ,直线,AB AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为___________.14.已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅=,||MN b =,则C 的离心率为________.15.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.16.已知椭圆22:1168x y C +=的左、右焦点分别为12,F F ,直线(44)x m m =-<<与椭圆C 相交于点A ,B .给出下列三个命题:①存在唯一一个m ,使得12AF F △为等腰直角三角形; ②存在唯一一个m ,使得1ABF 为等腰直角三角形; ③存在m ,使1ABF 的周长最大.其中,所有真命题的序号为_________.17.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.18.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.19.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.20.已知点P 是椭圆22:13x C y +=上动点,则点P 到直线30x y +-=距离的最大值是________.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,若点P 在C 上,点E 在l 上,且PEF 是边长为4的正三角形. (1)求C 的方程;(2)过F 作直线m ,交抛物线C 于A ,B 两点,若直线AB 中点的纵坐标为1-,求直线m 的方程.23.已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ∆的面积为92. (1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.24.(1)已知椭圆2222:1(0)x y E a b a b+=>>的焦距为1F 、2F 为左、右焦点,M 为椭圆E 上一点,且123F MF π∠=,12F MF S =△,求椭圆E 的方程. (2)过点()()00P m m a <<,的直线交椭圆E 于A 、B 两点,交直线4x m=于点M ,设MA AP λ=,MB BP μ=,求λμ+的值.25.已知抛物线C :22y px =(0p >)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l x ⊥轴时,4AB =, (1)求p 的值:(2)若2AF BF =,求直线l 的方程.26.已知抛物线()2:20C x py p =>的焦点到准线的距离为2,直线:2l y kx =+交抛物线于()11,A x y ,()22,B x y 两点. (1)求抛物线C 的标准方程;(2)过点A ,B 分别作抛物线C 的切线1l ,2l ,点P 为直线1l ,2l 的交点. (i )求证:点P 在一条定直线上; (ii )求PAB △面积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F ,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PF F F +==故()2222220a ++=. 可得1a =ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).2.D解析:D 【分析】首先设直线2x y c =+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y =-,与根与系数的关系联立消元可得22213242a b c +=,求得椭圆的离心率.【详解】设直线方程为2x y c =+,设()11,A x y ,()22,B x y,与椭圆方程联立得 22224102a b y cy b ⎛⎫++-= ⎪⎝⎭,12222y y a b +=+4122212b y y a b =-+ ① 223AF F B =,()()1122,3,c x y x c y ∴--=-, 得123y y =- ②,由①②联立可得,22213242a bc +=即22222323c a b a c =+=-,得2243c a =, 椭圆的离心率3c e a ==. 故选:D 【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.3.C解析:C 【分析】根据椭圆的定义以及余弦定理,结合221cos cos 0AF O BF F ∠+∠=列方程可解得a ,b ,即可得到椭圆的方程. 【详解】22||2||AF BF =,2||3||AB BF ∴=, 又1||||AB BF =,12||3||BF BF ∴=, 又12||||2BF BF a +=,2||2aBF ∴=, 2||AF a ∴=,13||2BF a =, 12||||2AF AF a +=,1||AF a ∴=, 12||||AF AF ∴=,A ∴在y 轴上.在Rt2AF O 中,22cos AF O a∠=,在12BF F △中,由余弦定理可得22221316()()822cos 2242a a a BF F a a +--∠==⨯⨯.221cos cos 0AF O BF F ∠+∠=,可得22802a a a -+=,解得212a =.2221248b a c =-=-=.椭圆C 的方程为:221128x y +=.故选:C . 【点睛】方法点睛:用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求.4.C解析:C 【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程. 【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0, 设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y , 联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-,故选:C . 【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.5.C解析:C 【分析】设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率. 【详解】设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a = 故4AB a =,25AF a =,23F B a = 故2AF B 为直角三角形,290ABF ∠=在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a ==故e =故选:C 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.B解析:B 【分析】作出图形,过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A ,由抛物线的定义得出1d MB MF ==,可得出12d d MF MA +=+,利用FM 与直线3490x y ++=垂直时,12d d +取最小值,然后计算出点F 到直线3490x y ++=的距离,即为所求.【详解】 如下图所示:过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A , 由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为22130494234d ⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.7.C解析:C 【分析】由椭圆的离心率为223和222a b c =+,求得3a b =,化简2219113333a b b b b b ++==+,结合基本不等式,即可求解. 【详解】由题意,椭圆22221(0)x y a b a b +=>>22,即23c a =,即22c =,又由222a b c =+,可得2219b a =,即3a b = 所以221911132323333a b b b b b b b++==+≥⋅=,当且仅当133b b=,即13b =时,“=”成立.故选:C. 【点睛】 关键点睛:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.8.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫ ⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -= 所以点P 到点332D ⎛ ⎝的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=, 其他位置,都有||||||PD PF DF +>所以点P 到点D ⎛ ⎝的距离与点P 到y 轴的距离之和的最小值为:1115||||||||||222PD PP PD PF DF +=+-≥-== 当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.9.D解析:D 【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得.【详解】设抛物线方程为22y mx =,则262(m =⋅,m =-2y =-,或设方程为22x ny =,则2(26n =⨯,14n =,方程为212x y =.所以抛物线方程为2y =-或212x y =. 故选:D . 【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.10.A解析:A 【分析】设出直线方程,与抛物线方程联立,由判别式为零解出B 、D 两点的坐标,进而得出过点A 、B 、D 的圆的方程,求出弦长即可. 【详解】设过点()1,0A -的直线方程为1x my =-, 联立214x my y x=-⎧⎨=⎩,可得2440y my -+=,由216160m ∆=-=,解得1m =± 即2440y y ±+=,2y =±,不妨设()()1,2,1,2B D -,则BD 的中垂线方程为0y =,即圆心在x 轴上又()1,0A -,且点()1,0到点A 、B 、D 的距离都相等,则圆心坐标为()1,0,半径为2圆的方程为()2214x y -+=,令0x =,解得y =即圆被y 轴所截得的弦长为故选:A 【点睛】关键点点睛:本题考查直线与抛物线的位置关系,考查圆的方程以及直线与圆的位置关系,解决本题的关键点是根据直线与抛物线相切,求出切点的坐标,进而得出圆的方程,求出弦长,考查学生逻辑思维能力和计算能力,属于中档题.11.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点, 所以210k -≠,且2248(1)0k k ∆=+->,1k <,解得1k <<,所以实数k 的取值范围为, 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案12.D解析:D 【分析】先根据双曲线的方程求解出双曲线的渐近线方程,再根据点到直线的距离公式求解出抛物线方程中的p ,则抛物线方程可求. 【详解】双曲线2C 的渐近线方程是22026x y -=,即y =.因为抛物线的焦点()0,02p F p ⎛⎫> ⎪⎝⎭0y -=的距离为2,则2231p =+,即8p =,所以1C 的标准方程是216x y =,故选:D . 【点睛】方法点睛:求解双曲线方程的渐近线方程的技巧:已知双曲线方程22221x y a b-=或22221y x a b -=,求解其渐近线方程只需要将方程中的“1”变为“0”,由此得到的y 关于x 的一次方程即为渐近线方程. 二、填空题13.【分析】先利用点求抛物线方程利用相切关系求切线再分别联立直线和抛物线求出点即求出直线方程【详解】在抛物线上故即抛物线方程为设过点与圆相切的直线的方程为:即则圆心到切线的距离解得如图直线直线联立得故由 解析:3640x y ++=【分析】先利用点(2,2)A 求抛物线方程,利用相切关系求切线,AB AC ,再分别联立直线和抛物线求出点,B C ,即求出直线BC 方程. 【详解】(2,2)A 在抛物线22y px =上,故2222p =⨯,即1p =,抛物线方程为22y x =,设过点(2,2)A 与圆22(2)1x y -+=相切的直线的方程为:()22y k x -=-,即220kx y k -+-=,则圆心()2,0到切线的距离2202211k kd k -+-==+,解得3k =±,如图,直线():232AB y x -=-,直线():232AC y x -=--.联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x ++-=,故16833A B x x -=,由2A x =得8433B x -=,故363B y =,联立() 22322y xy x⎧-=-⎪⎨=⎪⎩,得()23431416830x x-+++=,故1683A Cx x+=,由2Ax=得843Cx+=,故236Cy--=,故2362364B Cy y---+=+=-,又由,B C在抛物线上可知,直线BC的斜率为22221114222B C B CBCB C B CB Cy y y ykx x y yy y--=====--+--,故直线BC的方程为23618432y x⎛⎫---=--⎪⎪⎝⎭,即3640x y++=.故答案为:3640x y++=14.2【分析】首先根据可得可计算结合可得是等腰三角形且再由渐进线的斜率可计算出点坐标即可求出点坐标利用结合可得之间的关系即可求解【详解】因为所以即所以为点到渐近线的距离所以可得点为的中点又因为所以所以设解析:2【分析】首先根据0OM MF⋅=可得⊥OM MF,可计算MF b=,结合||MN b=可得OFN△是等腰三角形,且ON c=,再由渐进线的斜率可计算出点N坐标,即可求出点M坐标,利用OM a=结合222b c a=-可得,a c之间的关系,即可求解.【详解】因为0OM MF⋅=,所以OM MF⊥,即⊥OM MF所以MF为点(),0F c到渐近线0bx ay-=的距离,22bcMF bcb a===+,所以MF MN b ==,可得点M 为NF 的中点, 又因为⊥OM MF ,所以ON OF c ==, 所以222OM c b a =-=,设双曲线的左焦点为1F ,1FON θ∠=,(),N x y 则()tan tan tan bFON FON aθπ=-∠=-∠=, 因为222c a b =+,所以cos acθ=,sin b c θ=所以cos a x ON c a c θ=-=-⋅=-,sin by ON c b cθ==⋅=, 所以(),N a b -,因为M 为NF 中点,所以,22a M c b -⎛⎫⎪⎝⎭, 222222c a b OM a -⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,将222b c a =-代入整理可得:()22224c a c a a -+-= 即222240c ac a --=,所以220e e --=,可得()()210e e -+=, 解得:2e =或1e =-(舍), 故答案为:2 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=;(2)利用变形公式e =; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.15.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化解析: 【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAO CFO a c ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有223b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.16.①③【分析】首先根据题意得到设对①分类讨论和以及即可判断①为真命题对②根据椭圆的对称性可知利用解方程即可判断②为假命题对③利用椭圆的定义即可判断③为真命题【详解】由题知:设对①若则此时则所以满足为等解析:①③ 【分析】首先根据题意得到4a =,b c ==()1F -,()2F ,设(),A m y ,(),B m y -.对①,分类讨论12AF AF =,1290F AF ∠=,和1290AF F ∠=,以及2190AF F ∠=,即可判断①为真命题.对②,根据椭圆的对称性可知,11AF BF =,利用11AF k ==,解方程即可判断②为假命题,对③,利用椭圆的定义即可判断③为真命题. 【详解】由题知:4a =,b c ==()1F -,()2F , 设(),A m y ,(),B m y -.对①,若12AF AF =,则0m =,此时(0,A .11AF k ==,21AF k ==-,则121AF AF k k ⋅=-,所以1290F AF ∠=,满足12AF F △为等腰直角三角形.若1290AF F ∠=,则()2A -,此时12AF =,12F F =.若2190AF F ∠=,则()2A ,此时22AF =,12F F =.所以存在唯一一个m ,使得12AF F △为等腰直角三角形,故①为真命题. 对②,根据椭圆的对称性可知,11AF BF =,满足等腰三角形. 当190AF B ∠=时,根据椭圆的对称性可知:直线1AF 的倾斜角为45,11AF k ==,即y m =+又因为221168m y +=,所以(22216m m ++=,解得0m =或3m =-,都在44m -<<内, 故存在唯一一个m ,使得1ABF 为等腰直角三角形为假命题. 对③,1ABF 的周长为11AB AF BF ++, 又因为128AF AF =-,128BF BF =-, 所以()112216AF BF AF BF +=-+,即1ABF 的周长为()2216AB AF BF +-+,又因为22AF BF AB +≥,当且仅当m =时取等号, 所以()22AF BF AB -+≤-,即1ABF 的周长为()22161616AB AF BF AB AB +-+≤+-=.当且仅当m =时,1ABF 的周长最大. 故③为真命题. 故答案为:①③ 【点睛】关键点点睛:本题主要考查椭圆的定义,解决本题①的关键为分类讨论12AF AF =,1290F AF ∠=,和1290AF F ∠=,以及2190AF F ∠=,②的关键为代入椭圆的对称性,③的关键为椭圆的定义,属于中档题.17.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440y ky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-,所以111,y A x ⎛⎫--⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫--⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.18.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴3e = 3【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.19.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点, 所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-20.【分析】设与平行的直线与相切求解出此时的方程则点到直线距离的最大值可根据平行直线间的距离公式求解出【详解】设与平行的直线当与椭圆相切时有:所以所以所以所以或取此时与的距离为所以点到直线距离的最大值为解析:2【分析】设与30x y +-=平行的直线:l y x m '=-+与22:13xC y +=相切,求解出此时l '的方程,则点P 到直线30x y +-=距离的最大值可根据平行直线间的距离公式求解出.【详解】设与30x y +-=平行的直线():3l y x m m '=-+≠,当l '与椭圆C 相切时有:2233y x mx y =-+⎧⎨+=⎩,所以2246330x mx m -+-=, 所以()223616330m m ∆=--=,所以2m =±,所以:20l x y '+-=或:20l x y '++=,取:20l x y '++=,此时:20l x y '++=与30x y +-=的距离为2d ==,所以点P 到直线30x y +-=,故答案为:2. 【点睛】方法点睛:求解椭圆22221x y a b+=上一点到直线距离的最值的两种方法:(1)设与已知直线平行的直线l 与椭圆相切,求解出切线l 的方程,根据平行直线间的距离公式求解出点到直线距离的最值;(2)将P 点坐标为设为()cos ,sin a b θθ,利用点到直线的距离公式以及三角函数的知识求解出点到直线距离的最值.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =,所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)24y x =;(2)220x y +-=. 【分析】(1)设l 与x 轴交于点D ,根据PEF 是边长为4的正三角形.得到PE l ⊥,60PEF EFD ∠=∠=︒,然后由||cos60p DF EF ==求解.(2)设()11,A x y ,()22,B x y ,根据点A ,B 在抛物线上,由21122244y x y x ⎧=⎨=⎩,根据线段AB 中点的纵坐标为1-,利用“点差法”求解. 【详解】(1)因为PEF 是边长为4的正三角形. 则||||PE PF =,所以PE l ⊥,设l 与x 轴交于点D ,则60PEF EFD ∠=∠=︒,||4EF =, 所以||cos602p DF EF === 所以抛物线的方程为24y x =.(2)由(1)得抛物线C 的方程为24y x =,焦点(1,0)F ,设A ,B 两点的坐标分别为()11,A x y ,()22,B x y ,由21122244y x y x ⎧=⎨=⎩,得()121212124y y x x x x y y -=≠-+, 因为线段AB 中点的纵坐标为1-,所以直线m 的斜率21442(1)2AB k y y ==-+-⨯=, 所以直线m 的方程为02(1)y x -=--, 即220x y +-=. 【点睛】方法点睛:解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.23.(1)22143x y +=;(2)证明见解析.【分析】(1)根据椭圆离心率和椭圆的性质可知b =,再根据PQ x ⊥轴时,APQ 的面积为 92,由面积公式可知()212922b ac a +⋅=,由此即可求出椭圆方程; (2)设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知 12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线 BQ 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为 1x my =+,与椭圆22143x y +=联立,得 ()2234690m y my ++-=.显然0∆>恒成立. 设1122(,),(,)P x y Q x y , 所以有12122269,3434m y y y y m m +=-=-++()* 直线AP 的方程为()112+2y y x x =+,直线 BQ 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+,代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x =故点M 在定直线4x =上. 【点睛】关键点点睛:本题第二问解题的关键在于设直线PQ 的方程为1x my =+,避免了斜率存在和不存在的分类讨论,使得运算简化.24.(1)22:142x y E +=;(2)0.【分析】(1)首先根据题意得到c =11MF r =,22MF r =,得到122r r a +=,再根据12F MF S =△和余弦定理即可得到24a =,22b =,从而得到椭圆的标准方程. (2)首先设直线x ky m =+,与椭圆联立得到222(2)240k y kmy m +++-=,从而得到1221224y y km y y m +=--,联立4x m x ky m⎧=⎪⎨⎪=+⎩,得到244m M m km ⎛⎫- ⎪⎝⎭,.再根据MA AP λ=,MB BP μ=,得到2141m kmy λ-=-和2241m kmy μ-=-,计算λμ+即可. 【详解】(1)由已知得2c =,即c =设11MF r =,22MF r =,得到122r r a +=. 在12F MF △中,12121sin 23F MF r r S π==△,解得1283r r =.(22212122cos3r r r r π=+-,化简得:()2121283r r r r =+-,288433a =-⨯,解得24a =.所以2242b =-=,椭圆22:142x y E +=.(2)由(1)知22:142x y E +=,()()002P m m <<,,设直线x ky m =+, 联立2224x ky m x y =+⎧⎨+=⎩得:222(2)240k y kmy m +++-=12222km y y k +=-+,212242m y y k-=+ 所以1221224y y km y y m +=-- 联立4x m x ky m⎧=⎪⎨⎪=+⎩,得244m M m km ⎛⎫- ⎪⎝⎭,.21144,m MA x y m km ⎛⎫-=-- ⎪⎝⎭,()11AP m x y =--,由MA AP λ=,得2114m y y km λ--=-,得2141m kmy λ-=-. 同理MB BP μ=得2241m kmy μ-=-. 222212212124444222204y y m m m m kmkmy kmy km y y km m λμ+-----+=+-=⋅-=⋅-=-.【点睛】关键点点睛:本题主要考查直线与椭圆的位置关系,属于中档题.本题中直线方程代入椭圆方程整理后得到1221224y y km y y m +=--和利用向量关系得到2141m kmy λ-=-和2241m kmy μ-=-为解决本题的关键,考查了学生的运算求解能力,逻辑推理能力. 25.(1)2p =;(2))1y x =±- 【分析】(1)根据题意得,02p F ⎛⎫⎪⎝⎭,当l x ⊥轴时,l 的方程为:2p x =,进而与抛物线联立得,2p A p ⎛⎫ ⎪⎝⎭,,2p B p ⎛⎫- ⎪⎝⎭,故24AB p ==,进而得答案; (2)由(1)得抛物线C :24y x =,()1,0F ,设直线l 方程为:()1y k x =-,()11,A x y ,()22,B x y ,进而与抛物线联立方程得212224k x x k ++=,121=x x ,再结合焦半径公式和2AF BF =得1221x x =+,进而得212x =,12x =,故21222452k x x k ++==,解方程得k =±,进而得答案. 【详解】解:(1)根据题意得:,02p F ⎛⎫ ⎪⎝⎭,。
高中数学人教A版选修1-1 第二章圆锥曲线与方程 学业分层测评7 Word版含答案

学业分层测评
(建议用时:分钟)
[学业达标]
一、选择题
.椭圆+=的长轴长、短轴长、离心率依次是( )
.,.,
.,
.,
【解析】椭圆方程可化为+=.
∴=,=,=,
∴长轴长=,短轴长=,
离心率==.故选.
【答案】.若焦点在轴上的椭圆+=的离心率为,则等于( )
【解析】∵椭圆焦点在轴上,
∴<<,=,=,
===.
故=,∴=.
【答案】.中心在原点,焦点在轴,若长轴长为,且两个焦点恰好将长轴
三等分,则此椭圆的方程是( )
+=+=
+=+=【解析】因为==×=,所以=,=,=-=.故所求方程为+=.
【答案】
.已知椭圆+=(>>)的两顶点为(),(,),且左焦点为,△
是以角为直角的直角三角形,则椭圆的离心率为( )
【解析】由题意得++=(+),即+-=,即+-=,解得=,又>,
故所求的椭圆的离心率为.故选.
【答案】.设是椭圆+=的离心率,且∈,则实数的取值范围是( )
.()
.()
.()∪
【解析】当焦点在轴上时,==∈,
解得<<.
当焦点在轴上时,
==∈,
解得>.综上可知选.
【答案】
二、填空题.已知椭圆的对称轴是坐标轴,离心率为,长轴长为,则椭圆方
程为. 【导学号:】【解析】由题意得(\\(()=(),=,=+,))
解得(\\(=,=(),=,))
∴椭圆方程为+=或+=.
【答案】+=或+=
.若椭圆+=的离心率为,则的值为.【解析】若焦点在轴上,则=-=,=;若焦点在轴上,则=,。
新人教A版(选修1-1)第二章《圆锥曲线与方程》word单元测试

圆锥曲线与方程测试⑵第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是最符合题目要求的.)21、抛物线y =4x 的焦点坐标为( )A. (0,1)B. (1,0)C.(0,2)D. (2,0) 2、 在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为 5,则p 的值为()A. 2B.1C.丄D.422 23、 若抛物线y2=2px(p 0)的焦点与双曲线X - y1的右焦点重合,则p 的值为124( )A.2B.4C.8D. 4 .. 224、已知抛物线y =2x 上的一个动点,则点p 到点(0,2)的距离与p 到该抛物线的距离 之和的最小值为()v 17A.B.326、当a 为任意实数时,直线(a -1)x - y • 2a 7=0恒过定点p ,则过点p 的抛物线的 标准方程是(C. 59 D. 25、抛物线y 2=4x 上的点 p 到抛物线的准线的距离为d 1,到直线3x-4y • 9=0的距离为d 2则d 1 d 2的最小值为(B.-)C.22A . y 2C.y 9十 2 x 或x29 2 x 或x24 =3y 42B .2D . y9十 24 x 或x y 23 9十 24或2y =2x(y 0)上,并且与抛物线的准线及x轴都相切的圆的方程是7、圆心在抛物线22 小丨小 2 2 c’cA. x y -x-2y - 0B. x y x-2y 1=0 41C.x y —x-2y 1=0D. x y -x-2y 048、抛物线(x-2)2 =2(y-m • 2)的焦点在x轴上,则实数m的值为()3A.0B.C.2D.329、过抛物线y2=4x的焦点作直线I交抛物线于A、B两点若线段AB中点的横坐标为3,则|AB|等于()A.2B.4C.6D.810、将抛物线y =x2 -4x绕其顶点顺时针旋转90°,则抛物线方程为()A. (y I)2 =2 _xB.(y 1)2 = x _2C.(y-1)2=2-xD.(y-1)2=x-211.一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线 x ^0相切,则动圆必过定点()A. (0,2)B. (0, 2)C. (2,0)D. (4,0)12.过抛物线2y二ax (a 0)的焦点F作一直线交抛物线于A、B两点,若线段AF、BF的长分别为m、n,则』^等于()m n1 1 aA. 一B. 一C.2aD.-2a 4a 4第H卷(非选择题共90分)、填空题(本大题共4小题,每小题4分,共16分■把答案填在题中的横线上.)13、若直线ax — y+1 =0经过抛物线y2 =4x的焦点,则实数a= ___________14、已知抛物线y=ax2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________15、已知圆C的圆心与抛物线y =4x的焦点关于直线y=x对称•直线4x —3y —2 =0与圆C相交与A、B两点,且| AB | = 6,则圆C的方程为_________21、(12 分)如图,直线丨与抛物线y 2=x 交于A(x 1 , yJ,B(x 2 , y 2)两点, 与x 轴相交于点M ,且 y 1 y 2 - -1 •(1) 求证:M 点的坐标为(1,0); (2) 求证:OA _ OB ; ⑶求 AOB 的面积的最小值•16、如图,过抛物线y 2=2px(p ■ 0)的焦点F 的直线丨交抛物线于点 A 、B,交其准线于点C,若|BC|=2|BF|, 且|AF|=3,则此抛物线的方程为 ____________ .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及 演算步骤.)17、(12 分)已知顶点在原点,焦点在x 轴上的抛物线与直线 y =2x • 1交于P 、Q 两点,|PQ|= 15,求 抛物线的方程18、(12 分)某隧道横断面由抛物线和矩形的三边组成 ,尺寸 如图2所示,某卡车载一集装箱,箱宽3m,车与箱共高 此车能否通过此隧道巧青说明理由•19、(12 分) 过抛物线y 2=4x 的焦点引一直线,已知直线被抛物线截得的弦被焦点分成2:1,求这条直线的方程•20、(12 分)2 2抛物线的顶点在原点,它的准线过双曲线 —2-=1的一个焦点 a b ,且与双曲线实轴垂直已知抛物线与双曲线的交点为3,6 •求抛物线与双曲线的方程 22ni22、(14 分)已知抛物线y2 =4x及点P(2,2),直线l且不过点P ,与抛物线交于点 A,B,(1)求直线I在y轴上截距的取值范围;⑵若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.参考答案一、选择题2 P1.B 因为p=2,所以抛物线y =4x的焦点坐标是(”,0)=(1,0)22.A 抛物线的标准方程为x P,由抛物线的定义知4 •卫=5,解得p = 22 23.C 双曲线的右焦点为(4,0),卫=4= p=8.214.A 依题设P在抛物线准线的投影为P',抛物线的焦点为F,则F(—,0),依抛物线的定义2知P到该抛物线准线的距离为| PP'| PF |,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d =| PF | | PA|_| AF卜9.D 易知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1, d?由抛物5.D 抛物线的焦点为F(1,0),有4 = PF ,而点F到直线的距离d =3 1-4 0 9 12 d1 d26.A由直线方程得a(x+2)—x—y十1 =0,由«!x+2=01 0,得P(-2,3), _x _ y 1=0经检验知A正确.7.D由抛物线的定义可知,所求圆与x轴相切于抛物线的焦点P(^ ,0),从而可求得圆心2(丄,1),半径r =1,所以所求圆的方程为28.B依题意得该抛物线的焦点坐标为1 (x )21(2,; (m-2)),于22(y -1)^1 .故选 D1 3是2 (『2)7,解得m = 3 222线的定义知 | AB |=| AF | | BF |= 4 d 2 = 2 4=810. B 由y =x2-4x • 3=(x-2)2 -1得(x -2)2=:y ・1,绕其顶点顺时针旋转90后开口方向改变,得到(y • 1)2=x - 22 211. C 由抛物线y =8x 的准线方程为x- -2,由题可知动圆的圆心在 y = 8x 上,且恒与抛 物线的准线相切,由定义可知,动圆恒过抛物线的焦点(2,0)1 2 2 112. B 设直线方程为y =kx • 与y =ax 联立消去x 得ax -kx0 ,4a4a22k 122k 1设 A(x !,ax !),B(x 2,ax 2),则捲 x ?,xx 2,/ X 222,a4a a 2a2 221 * 1k 1 k 1n 二 ax 2 ,可得 mn ( ), m n 二 4a4a a a a amn 1 m n 4a填空题213•线 ax-y ,1=0经过抛物线 y =4x 的焦点 F(1,0),则 a • 1 = 0, a =-1211 1 214.由抛物线y =ax -1的焦点坐标(0,1)为坐标原点得,a ,则y x - 1的坐 4a 4 41标轴的交点为(0,-1),(-2,0),(2,0),则以这三点围成的三角形的面积为 4 1=22x 2 (y -1)2 =1016•设 A(x 「yj, Bg y ?),作 AM 、BN 垂直准线于点M 、N,则 BN = BF ,又 BC =2 BF ,得 BC =2 BN ,得/NCB =30”, 有 AC =2 AM =6,设 BF =x ,则 2x+x+3 = 6二 x=1,而捲 +^=3,22 221m =ax t4a 15•抛物线的焦点为 (1,0),所以圆心坐标为2(0,1),=32(0-3-2)25"= 10,圆C 的方程为x2 — = 1,且xx 二丄,••• (3 - R)(1 -卫)=卫=p 一 ,得y2 = 3x •2 4 2 2 4 2三、解答题17•解:设抛物线的方程为y2=2px,则y 2 Px ,消去y得ly = 2x+1把y 1,y 2代入①式得k = 2 2,故所求的直线方程为 2 2x 一 y - 2 2 = 0,20.解:由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为y 2=2px(p 0,24x -(2 p -4)x 1 = 0, X | x 2 p-22,X 1X 2AB = J i +k 2x 1 -x 2亦』(为 +X 2)2_4x i X 2 = ^{(■^^2)2_4= -、3, p - 4p -12 = 0, p _ -2,或6y 2 - -4x,或 y 2 =12x18.解:取抛物线顶点为原点,水平向右为 x 轴正方向建立直角坐标系 2x 二 ~2py(p 0),当x =3时,y = —3,即取抛物线与矩形的结合点 (3, — 3), 代入x 2- -2py ,得9 =6p ,贝U p = 3,故抛物线方程为x 2- -3y .2已知集装箱的宽为 3m,取x ,则y -」x 2 - - 3.2 3 4 、、、、 3 1而隧道高为 5m, 5m m =4—m 4m .4 4,设抛物线方程为19•解:由 y 2=4x 得焦点 F(1,0),设所求弦两端点为2,yJ ,B =(y : 4小),y2 - -y 14 22 'y 2 y 1 yr y 244①,y 1 y 2又 AB 过焦点 F(-,0),且 y 1y 2 2-p 2 ,故 yy 一4由②③解得丁1=2£y2 - - 2丫 1 = -<2Iy 2 = 22直线k AB将交点3, 6代入得p=2,故抛物线方程为y2=4x,焦点坐标为(1,0), V 丿这也是双曲线的一个焦点,则c =1.又点3, 6也在双曲线上,因此有-92_-^2 =1. [2丿 4a 2 b 2 又a 2 b 2 =1,因此可以解得a 2 =-, b 2 =3,44因此,双曲线的方程为Ax 2—4】/.3 21.解:⑴ 设M 点的坐标为(x 0,O),直线l 方程为= my x 0,代入y 2 =x 得2 y -my-x 0 =0 ① y 「y 2是此方程的两根,二 x()- -y 1y 2 =1,即 M 点的坐标为(i, 0).2 2 ⑵••• y“2 --1 ,•••Ex ? y 』2 y 2 y 〃2 =%丫2(%丫 2 1) =0 ••• OA _ OB .⑶由方程①,y 1 y 2 二 m , %y 2 - -1,且 |OM |=X o =1,于是 S^OB =1〔OM ||y^Y 2 |=*J(y 1 +y 2)2 —4^2 =*如2+4 > 1, •••当m = 0时,.\AOB 的面积取最小值1.22. 解:(1)设直线l 的方程为y = x • b(b = 0),由于直线不过点 P ,因此b = 0y = x + b 22 由」2 得x +(2b-4)x+b =0,由也> 0,解得by = 4x 所以,直线丨在y 轴上截距的取值范围是 (-::,0) 一 (0,1)2n ,m),( ,n),因为AB 斜率为1,所以m • n = 4,42设D 点坐标为, y D ),因为B 、P 、 42 直线 AD 的方程为 y - m 二 —^D —片(x - m) y _ m 2 444 2m 2 2 2m m - 2m即直线AD 与y 轴的交点为(0,2),同理可得BC 与y 轴的交点也为(0,2), 所以AD,BC 交于定点(0,2).2 一 m(2)设A,B 坐标分别为(—— D 共线,所以k PB = k DP ,得y D = =2 — n m — 2my 。
人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试

人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程单元测试(时间:120分钟 分值:150分)一、选择题(每小题5分,共60分)1. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+2. 动圆的圆心在抛物线x 8y 2=上,且动圆恒与直线02x =+相切,则动圆必过点A. (4,0)B. (2,0)C. (0,2)D. (0,-2)3. AB 是抛物线x 18y 2=的一条过焦点的弦,20|AB |=,AD 、BC 垂直于y 轴,D 、C 分别为垂足,则梯形ABCD 的中位线长为A. 5B.211 C.29 D. 104. 方程2sin y 3sin 2x 22-θ++θ=1所表示的曲线是 A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线5. 设P 为椭圆1by a x 2222=+上一点,1F 、2F 为焦点,如果∠75F PF 21=°,∠=12F PF 15°,则椭圆的离心率为A. 22B. 23C. 32D. 36 6. 以椭圆1144y 169x 22=+的右焦点为圆心,且与双曲线116y 9x 22=-的渐近线相切的圆的方程为A. 09x 10y x 22=+-+B. 09x 10y x 22=--+C. 09x 10y x 22=-++D. 09x 10y x 22=+++7. 椭圆11a 4y a 5x 222=++的焦点在x 轴上,而它的离心率的取值范围是A. ⎪⎭⎫ ⎝⎛51,0B. ⎪⎭⎫⎢⎣⎡1,51C. ⎥⎥⎦⎤ ⎝⎛55,0D. ⎪⎪⎭⎫⎢⎢⎣⎡1,55 8. 设双曲线1b y a x 2222=-与1by a x 2222=+-(0a >,0b >)的离心率分别为1e 、2e ,当a 、b 变化时,21e e +的最小值是A. 4B. 24C.2 D. 229. 设椭圆12y 6x 22=+和双曲线1y 3x 22=-的公共焦点分别为1F 、2F ,P 是两曲线的一个交点,则cos ∠21PF F 的值为A.41 B.31 C.32 D. 31-10. 过抛物线x 4y 2=的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标1x 与N 的横坐标2x 之积为A. 64B. 32C. 16D. 411. 抛物线x y 2=和圆()1y 3x 22=+-上最近的两点之间的距离是A. 1B. 2C.1210- D.1211- 12. 已知圆的方程为4y x 22=+,若抛物线过点A (-1,0)、B (1,0),且以圆的切线为准线,则抛物线的焦点F 的轨迹方程是A. 14y 3x 22=+(0y ≠) B. 13y 4x 22=+(0y ≠) C. 14y 3x 22=+(0x ≠) D.13y 4x 22=+(0x ≠)二、填空题(每小题4分,共16分)13. (2004·湖南)1F 、2F 是椭圆C :14y 8x 22=+的焦点,在C 上满足1PF ⊥2PF 的点P的个数为__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第二章 章末检测(A)
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.1
2 C .2 D .4 2.设椭圆
x 2
m 2
+
y 2n 2
=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为
1
2
,则此椭圆的方程为( ) A.
x 212+y 216=1 B.x 216+y 2
12
=1 C.
x 248+y 264=1 D.x 264+y 2
48
=1 3.已知双曲线x 2a 2-
y 2
b 2
=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在
抛物线y 2=24x 的准线上,则双曲线的方程为( )
A.
x 236-y 2108=1 B.x 29-y 2
27
=1 C.
x 2108-y 236=1 D.x 227-y 2
9
=1 4.P 是长轴在x 轴上的椭圆x 2a 2+
y 2
b 2
=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆
的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )
A .1
B .a 2
C .b 2
D .c 2
1
5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则
双曲线的标准方程为( )
A.x 24-y 24=1
B.y 24-x 2
4=1 C.y 24-x 28=1 D.x 28-y 2
4=1 6.设a >1,则双曲线x 2a
2-
y 2a +1
2
=1的离心率e 的取值范围是( ) A .(2,2) B .(
2,5)
C .(2,5)
D .(2,
5) 7.过点M (2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线的条数是( ) A .1 B .2 C .3 D .0
8.设F 为抛物线y 2=4x 的焦距,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC →
=0,则FB →|+|FB →|+|FC →
|等于( )
A .9
B .6
C .4
D .3 9.已知双曲线x 2a
2-
y 2b 2
=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线
与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )
A .(1,2]
B .(1,2)
C .[2,+∞)
D .(2,+∞)
10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )
A .(4,0)
B .(2,0)
C .(0,2)
D .(0,-2)
11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )
1
A.(32,5
4) B .(1,1)
C. (32,9
4
) D .(2,4)
12.已知椭圆x 2sin α-y 2cos α=1 (0≤α<2π)的焦点在y 轴上,则α的取值范围是( )
A.(34π,π)
B.(π
4 ,π)
C.(π2 ,π)
D.(π2 ,34π)
二、填空题(本大题共4小题,每小题5分,共20分)
13.椭圆的两个焦点为F 1、F 2,短轴的一个端点为A ,且三角形F 1AF 2是顶角为120°的等腰三角形,则此椭圆的离心率为________.
14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在直线的方程是______________.
15.设椭圆x 2a 2+
y 2
b 2
=1 (a >b >0)的左、右焦点分别是F 1、F 2,线段F 1F 2被点(b
2
,0)
分成3∶1的两段,则此椭圆的离心率为________.
16.对于曲线C :x 24-k +y 2
k -1=1,给出下面四个命题:
①曲线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4;。