高三数学寒假作业冲刺培训班之历年真题汇编复习实战26919
高三数学寒假作业冲刺培训班之历年真题汇编复习实战26925

时间:.10.20 满分:160分一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卡相应的位置上) 1.已知全集{}18U x x =-≤≤,{}213A x x x U =-<∈,,则U C A =▲ . 2.复数11+2i(i 是虚数单位)的实部为▲ . 3.已知命题2:(0,),2,p x x x ∀∈+∞≥-则命题p 的否定是▲ . 4.函数)(x f 的定义域是]1,1[-,则函数)(log 21x f 的定义域为▲ .5.若(3,4)AB =,A 点的坐标为()2,1--,则B 点的坐标为▲ . 6.已知直线l ⊥平面α,直线m ⊂平面β,有下列四个命题:①若αβ∥,则l m ⊥;②若αβ⊥,则l m ∥;③若l m ∥,则αβ⊥;④若l m ⊥,则αβ∥.以上命题中,正确命题的序号是▲ .7.等比数列{}n a 的前3项的和等于首项的3倍,则该等比数列的公比为▲ .8.已知向量)1,0(),2,1(==,设b k a u +=,b a v -=2,若v u //,则实数k 的值为▲ . 9.已知长方体从同一顶点出发的三条棱长分别为a ,b ,c ,且a ,2b,c 成等差数列.若其对角,则b 的最大值为▲ . 10.将函数f (x )=tan(x +p4)图像的纵坐标不变,横坐标变为原来的2倍得到函数g (x )的图像,若0()2g x =,则0()4f x π-的值是▲.11.已知平面上三个向量OA ,OB ,OC ,满足1OA =,3OB =,2OC =,0OA OB ⋅=,则CA CB ⋅的最大值为▲.12.已知函数()=x f x e ,且函数()f x 与()g x 的图像关于点()1,2对称,若()()f x g x m ≥+恒成立,则m 的取值范围为▲ .13.若数列{}n a 满足()1122n n n a a a n -++≥≥,则称数列{}n a 为凹数列.已知等差数列{}n b 的公差为d ,14b =,且数列n b n ⎧⎫⎨⎬⎩⎭是凹数列,则d 的取值范围为▲ . 14.设()f x 是定义在R 上的偶函数,x R ∀∈,都有(2)(2)f x f x -=+,且当[0,2]x ∈时,()22x f x =-,若函数()()log (1)a g x f x x =-+()0,1a a >≠在区间()1,9-内恰有三个不同零点,则实数a 的取值范围是▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分14分)已知向量(sin ,cos ),(cos ,cos )(0)m x x n x x ωωωωω==>,设函数()f x m n =⋅,且()f x 的最小正周期为π.⑴求()f x 的单调递增区间;⑵先将函数()y f x =的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,然后将图象向下平移1个单位,得到函数()y g x =的图象,求函数()y g x =在区间上3[0,]4π上的取值范围.16.(本题满分14分)在如图所示的几何体中, 四边形ABCD 是正方形,EA ⊥面ABCD ,AD EF //,且2AB =,2AE =,1EF =.⑴若AC 与BD 交于点O ,求证:FCD EO 面//; ⑵求证:DE ⊥平面ABF .17.(本题满分14分)已知函数)4sin()4sin(cos sin 32sin )(2ππ-+++=x x x x x x f (R x ∈).(1)求)(x f 的最小正周期和单调增区间;(2)在ABC ∆中,角C B A ,,的对边分别是c b a ,,,角A 为锐角,若2)()(=-+A f A f ,7=+c b ,ABC ∆的面积为32,求a 边的值.18.(本题满分16分)如图,扇形AOB 是一个观光区的平面示意图,其中∠AOB 的圆心角为23π,半径OA 为1km.为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由弧AC 、线段CD 及线段BD 组成,其中D 点在线段OB 上(不包括端点),且AO CD //.设AOC θ∠=. ⑴用θ表示CD 的长度,并写出θ的取值范围; ⑵当θ为何值时,观光道路最长?19.(本题满分16分)已知函数kx x x x f ++-=221)(,且定义域为()0,2. ⑴求关于x 的方程在()0,2上的解;⑵若)(x f 是定义域()0,2上的单调函数,求实数k 的取值范围;⑶若关于x 的方程0)(=x f 在()0,2上有两个不同的解21,x x ,求k 的取值范围. 20.(本题满分16分)已知非零数列{}n a 满足11a =,()*112n n n n a a a a n N ++=-∈.⑴求证:数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列;⑵若关于n 的不等式222121113111log 1log 1log 1nm n n n a a a +++<-⎛⎫⎛⎫⎛⎫++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭有解,求整数m 的最小值; ⑶在数列()111n n a ⎧⎫+--⎨⎬⎩⎭中,是否存在首项、第r 项、第s 项()16r s <<≤,使得这三项依次构成等差数列?若存在,求出所有的r 、s ;若不存在,请说明理由.高三文科数学参考答案及评分意见一、填空题(本大题共14小题,每小题5分,共70分)1.[]2,82.153.2(0,),2x x x ∃∈+∞<- 4.]2,21[5.()1,36.①③7.-2或18.12-9.210.3411.222+12.(],24e -∞-13.(,4]-∞14.11(,)(3,7)95二、解答题:(本大题共6道题,计90分) 15.(本小题满分14分)解:⑴()211cos 2=sin cos cos sin 222xf x m n x x x x ωωωωω+⋅=⋅+=+1242x πω⎛⎫=++ ⎪⎝⎭, ………………………2分 又22T ππω==,1ω∴=, ………………………4分 22k π-+故()f x 的单调递增区间是[,],88k k k Z πππ-++∈,………………………7分⑵111())())4242f x x f x x ππ=++−−−−−−−→=++纵坐标不变横坐标伸长为原来的2倍……9分11())42g x x π−−−−−−→=+-向下平移个单位, ………………………11分 3[0,],[,]444x x ππππ∈∴+∈sin()[0,1]4x π∴+∈,111)[]4222x π+-∈-,()g x 的取值范围为11[]22--.…………14分 16.(本题满分14分)证明:⑴如图,取CD 中点G ,连OG ,FG , 在CAD ∆中,因为G O ,分别是CD CA ,的中点,∴∥OG AD ,且12OG AD =,……………………2分 又由已知得,∥EF AD ,且12EF AD =, ∴OG EF =//,∴四边形OGFE 是平行四边形,∴FG EO //, ………………………5分又FCD EO 平面⊄,FCD FG 平面⊂,∴FCD EO 平面//………7分 ⑵设EDAF M =,在四边形ADFE 中,EF EAEA AD=,90FEA EAD ∠=∠=︒,FEA EAD ∴∆∆,EAF ADE ∴∠=∠,90AMD ∴∠=︒,即DE AF ⊥,……………10分又EA ⊥面ABCD ,AB ⊂面ABCD ,EA AB ∴⊥, 又AD AB ⊥,AB ∴⊥面EADF AB DE ∴⊥,………………………12分DE AF ⊥,AB AF A =,∴DE ⊥平面ABF .………………………14分17.(本题满分14分)解:(1)f(x)=sin2x +3sin2x + 12( sin2x cos2x)(或者f(x)=sin2x +3sin2x sin(x+4) cos (x+4)) =1 cos2x 2+3sin2x 12cos2x( =1cos2x 2+3sin2x 12sin(2x+2))=3sin2x cos2x + 12 =2sin(2x6)+ 12………………4分所以f(x)的最小正周期为 由2k2≤2x6≤2k +2( kZ),可得k6≤x≤k +3( kZ),所以f(x)单调增区间为[k6,k +3]( k Z).………………7分(2)由f(A)+ f(A)=2得, 2sin(2A 6)+122sin(2A+6)+12=2,化简得cos2A=12,又因为0<A<2,所以解得A= 3. ………………10分 由题意知,S ABC=12bcsinA=23,解得bc=8,由余弦定理得,a2= b2+c22bccosA=(b+c) 22bc(1+cosA)=25, 故a= 5. ………………14分 18.(本题满分16分)解:⑴解:(1) 在△OCD 中,由正弦定理,得sin sin sin CD OD COCOD DCO CDO==∠∠∠………2分 又CD ∥AO ,CO =1,∠AOC θ=, 所以2cos 333CD πθθθ⎛⎫=-=+ ⎪⎝⎭,3OD θ=.………………………4分因为OD <OB ,所以3sin θ<,所以03πθ<<. 所以cos 3CD θθ=+,θ的取值范围为0,3π⎛⎫⎪⎝⎭.………………………7分 ⑵设道路长度为()L θ,则()1cos cos 1333L BD CD AC θθθθθθθθ=++=+++=++,0,3πθ⎛⎫∈ ⎪⎝⎭, ………………………9分()'1sin L θθθ=--)cos 1sin 6πθθθ⎛⎫=++=+ ⎪⎝⎭,………11分 由()'0L θ=,得sin 6πθ⎛⎫+= ⎪⎝⎭.又0,3πθ⎛⎫∈ ⎪⎝⎭,所以6πθ=.当06θπ<<时,'0y >,∴函数在(0,)6π上单调递增,当63θππ<<时,'0y <,∴函数在(,)63ππ上单调递减,………………………14分所以当6πθ=时,()L θ达到最大值,观光道路最长.答:当6πθ=时,观光道路最长.………………………16分19.(本题满分16分)解:,kx x f =∴)(+3当10≤<x 时,………………2分当21<<x 时,,原方程等价于:,22=x 此时该方程的解为综上可知:方程kx x f =)(+3在(0,2分]1,0(1)2,1(122{)(∈+∈-+=∴x kxx kx x x f ………………5分可得:若)(x f 是单调递增函数,则分若)(x f 是单调递减函数,则综上可知:)(x f 是单调函数时k 的取值范围为),0(]8,(+∞⋃--∞.………9分 ⑶[解法一]:当10≤<x 时,1-=kx ,①当21<<x 时,0122=-+kx x ,② 若k=0则①无解,②故0=k 不合题意……………11分②中,082>+=∆k 故方程②中一根在()1,2内另一根不在()1,2内,设12)(2-+=kx x x g ,而又1-≤k ,故………………13分 (II )当(]10,1k -∉时,即10k -<<或0k >时,方程②在()1,2有两个不同解,而12102x x =-<,则方程②必有负根,不合题意. ………………15分 综上,712k -<<-. ………………16分 法二、()0f x =,即221x x kx -+=-,22221,1211,01x x x x x ⎧-≤<-+=⎨<<⎩, 故整理得,12,121,01x x xk x x⎧-≤<⎪⎪∴-=⎨⎪<<⎪⎩,分析函数的单调性及其取值情况易得解(用图像法做,必须画出草图,再用必要文字说明) 利用该分段函数的图像得712k -<<-. 20.(本题满分16分)解:⑴由112n n n n a a a a ++=-,得1121n n a a +=+,即111121n n a a +⎛⎫+=+ ⎪⎝⎭,……………2分 所以数列11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列;………………………4分⑵由⑴可得,112n n a +=,故111312m n n n n+++<-+++,…………………5分 设()11112f n n n n n=++++++, 则()()1111110212212122f n f n n n n n n +-=+-=->+++++,所以()f n 单调递增,………………………8分 则()()min 112f n f ==,于是132m <-,即72m >, 故整数m 的最小值为4,………………………10分 ⑶由上面得,121n na =-,则设()()11121n n nn nb a =+--=--, 要使得1b ,r b ,s b 成等差数列,即12s r b b b +=,即()()1321221srs r ++--=--,得()()1221213srs r +-=----,…………………12分1s r ≥+,()()12130s r ∴----≥,()()11111s rs r =+⎧⎪⎪∴-=⎨⎪-=-⎪⎩,故s 为偶数,r 为偶数,………………………14分36s ≤<,4s ∴=,3r =或6s =,5r =. ………………………16分一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. 19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战22965

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试结束后,将答题卡交回。
满分150分,考试用时l20分钟。
注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.第一卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
答在试卷上的答案无效。
第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项符合题目要求。
1.已知集合2{|20}A x x x =-≤,{1,2,3,4}B =,则集合AB =( )A.∅B.{12},C.{34},D.{134},,2.设i 是虚数单位,若复数z 满足(1)1z i i +=-,则复数z =( ) A . 1-B .1C .iD .i -3.若,a b 为实数,则“01ab <<”是“1a b <或1b a>”的( )条件A .充分必要B .充分而不必要C .必要而不充分D . 既不充分也不必要4. 一几何体的三视图如图,其中侧(左)视图和俯视图都是腰长为4的等腰直角三角形,正(主)视图为直角梯形,则此几何体体积的大小为( )A .12B .16C .48D .645.从某校高三100名学生中采用系统抽样的方法抽取10名学生作代表,学生的编号从00到99,若第一组中抽到的号码是03,则第三组中抽到的号码是( )A. 22B . 23C. 32D. 336.已知直线a 和平面α,则能推出//a α的是( )A. 存在一条直线b ,//a b ,且//b αB. 存在一条直线b ,a b ⊥,且b α⊥C. 存在一个平面β,a β⊂,且//αβD. 存在一个平面β,//a β,且//αβ7.若函数()sin 3cos (0)f x ax ax a =+>的最小正周期为1,则函数()f x 的一个零点为( )A.13 B. 3π- C. 1(,0)3D. (0,0)8.执行如图所示的程序框图,若输入],[ππ-∈x ,则输出y 的取值范围是A .[0,1]B .[1,1]-C .2[,1]2-D .2[1,]2-9.若直线y x b =+与曲线243x x y --=有公共点,则b 的取值范围是( )A. ]221,221[+-B. ]3,21[-C. ]221,1[+-D. ]3,221[- 10. 某班有50名学生,一次数学考试的成绩ξ服从正态分布)10,105(2N ,已知32.0)10595(=≤≤ξP ,估计该班学生数学成绩在115分以上的人数为( )A.10B.9C.8D.7 11.双曲线12222=-b ya x与曲线)0,0(132222>>=+b a b ya x的交点恰为某正方形的四个顶点,则双曲线的离心率为()A .3B.2C.3D.212. 已知函数()||xf x xe =,方程2()()10()f x tf x t R ++=∈有四个不同的实数根,则t 的取值范围为( )A.21(,)e e+-∞- B. (,2)-∞-C.21(,2)e e +--D. 21(,)e e++∞ 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战46269

时量 120分钟总分 150分考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对条形码上的准考证号、姓名、考试科目与考生本人准考证号、姓名是否一致。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答的答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
一:选择题:(本大题共12个小题,每小题5分,满分60分.在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.已知复数iz -=11,则z z -对应的点所在的象限为 A .第一象限B .第二象限C .第三象限D .第四象限2.已知33cos 25πϕ⎛⎫-=⎪⎝⎭,且2πϕ<,则tan ϕ为 A .43-B .43C .34-D .343.下列命题中,真命题是A .0R x ∃∈,00x e≤B .R x ∀∈,22x x >C .0a b +=的充要条件是1ab=-D .1a >,1b >是1ab >的充分条件 4.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(-1,1)的密度曲线)的点的个数的估计值为A .1193B .1359C .2718D .34135.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是 A .2B .3C .4D .6 6.如图,正方体1111D C B A ABCD -的棱长为1,F E ,是线段11D B 上的两个动点,且22=EF ,则下列结论中错误的是 A .BF AC ⊥;B .三棱锥BEF A -的体积为定值;C .//EF 平面ABCD D .异面直线AE 、BF 所成的角为定值。
7.如图,在△ABC 中,设AB a =,AC b =,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP ma nb =+,则n m 、对应的值为 A .24,77 B .11,24C .12,67D .13,678.函数2||,0,0)(sin()(πφωφω<>>+=A x A x f )的图象如图所示,则)0(f 等于A .23B .23- C .21D .21-9.已知集合A{1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如219a =,则()129I a =,()921D a =),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为A .792B .693C .594D .49510.如图所示,使电路接通,开关不同的开闭方式共有 A .11B .12C .20D .21体1111ABCD A B C D -中,E 为棱11.如图,正方1BB 的中点,用过点1,,A E C 的平面截去该正方体的上半部分,则剩余几何体的侧视图为A B C D12.对于曲线C 所在平面内的点O ,若存在以O 为顶点的角θ,使得AOB θ≥∠对于曲线C 上的任意两个不同点A 、B 恒成立,则称θ为曲线C 相对于O 的“界角”,并称最小的“界RQPABCA BCDA B C D 1111E第11题角”为曲线C 相对于O 的“确界角”,已知曲线M :2119010x x x y xex -⎧+≤⎪=⎨+>⎪⎩,(其中e 为自然对数的底数),O 为坐标原点,则曲线M 相对于O 的“确界角”为A .3πB .4πC .23πD .34π二:填空题:(本大题共4小题,每小题5分,满分20分) 13.若函数⎩⎨⎧≤≤--≤<-=02,120,1)(x x x x f ,]2,2[,)()(-∈+=x ax x f x g 为偶函数,则实数=a 14.若抛物线22y x =上两点()11,A x y 、()22,B x y 关于直线y x m =+对称,且1212x x =-,则实数m 的值为15.若,x y 满足0,30,30,y x y kx y ≥⎧⎪-+≥⎨⎪-+≥⎩且2z x y =+的最大值为4,则k 的值为.16.已知Q P ,是圆心在坐标原点O 的单位圆上的两点,分别位于第一象限和第四象限,且P 点的纵坐标为54,Q 点的横坐标为135,则COS POQ ∠=. 三:解答题:(本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列}{n a 的前n 项和为n S ,0,11≠=n a a ,*)(141N n S a a n n n ∈-=+。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战69291

一、填空题:本大题共14小题.每小题5分.共计70分.请把答案填写在答题卡相应位置上.1.(5分)(•江苏)已知集合A={1.2.4}.B={2.4.6}.则 A∪B={1.2.4.6}.考点:并集及其运算.专题:集合.分析:由题意.A.B两个集合的元素已经给出.故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1.2.4}.B={2.4.6}.∴A∪B={1.2.4.6}故答案为{1.2.4.6}点评:本题考查并集运算.属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比.做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例.得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例.这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意.可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值.从而得到所求的答案解答:解:由题.a.b∈R.a+bi=所以a=5.b=3.故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算.解题的关键是分子分母都乘以分母的共轭.复数的四则运算是复数考查的重要内容.要熟练掌握.复数相等的充分条件是将复数运算转化为实数运算的桥梁.解题时要注意运用它进行转化.4.(5分)(•江苏)图是一个算法流程图.则输出的k的值是5.考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值.判断是否循环.达到满足题目的条件.结束循环.得到结果即可.解答:解:1﹣5+4=0>0.不满足判断框.则k=2.22﹣10+4=﹣2>0.不满足判断框的条件.则k=3.32﹣15+4=﹣2>0.不成立.则k=4.42﹣20+4=0>0.不成立.则k=5.52﹣25+4=4>0.成立.所以结束循环.输出k=5.故答案为:5.点评:本题考查循环框图的作用.考查计算能力.注意循环条件的判断.5.(5分)(•江苏)函数f(x)=的定义域为(0.].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0.真数要大于0.得到不等式组.根据对数的单调性解出不等式的解集.得到结果.解答:解:函数f(x)=要满足1﹣2≥0.且x>0∴.x>0∴.x>0.∴.x>0.∴0.故答案为:(0.]点评:本题考查对数的定义域和一般函数的定义域问题.在解题时一般遇到.开偶次方时.被开方数要不小于0.;真数要大于0;分母不等于0;0次方的底数不等于0.这种题目的运算量不大.是基础题.6.(5分)(•江苏)现有10个数.它们能构成一个以1为首项.﹣3为公比的等比数列.若从这10个数中随机抽取一个数.则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为.然后找出小于8的项的个数.代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1.﹣3.(﹣3)2.(﹣3)3…(﹣3)9其中小于8的项有:1.﹣3.(﹣3)3.(﹣3)5.(﹣3)7.(﹣3)9共6个数这10个数中随机抽取一个数.则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用.属于基础试题7.(5分)(•江苏)如图.在长方体ABCD﹣A1B1C1D1中.AB=AD=3cm.AA1=2cm.则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O.求出AO.然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O.AO是棱锥的高.所以AO==.所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法.考查空间想象能力与计算能力.8.(5分)(•江苏)在平面直角坐标系xOy中.若双曲线的离心率为.则m的值为2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0.所以双曲线的焦点必在x轴上.因此a2=m>0.可得c2=m2+m+4.最后根据双曲线的离心率为.可得c2=5a2.建立关于m的方程:m2+m+4=5m.解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0.b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为.∴.可得c2=5a2.所以m2+m+4=5m.解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程.在已知离心率的情况下求参数的值.着重考查了双曲线的概念与性质.属于基础题.9.(5分)(•江苏)如图.在矩形ABCD中.AB=.BC=2.点E为BC的中点.点F在边CD 上.若=.则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形.把已知向量用矩形的边所在的向量来表示.做出要用的向量的模长.表示出要求得向量的数量积.注意应用垂直的向量数量积等于0.得到结果.解答:解:∵.====||=.∴||=1.||=﹣1.∴=()()==﹣=﹣2++2=.故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式.本题是一个中档题目.10.(5分)(•江苏)设f(x)是定义在R上且周期为2的函数.在区间[﹣1.1]上.f(x)=其中a.b∈R.若=.则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数.由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0.解关于a.b的方程组可得到a.b的值.从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数.f(x)=.∴f()=f(﹣)=1﹣ a.f()=;又=.∴1﹣a=①又f(﹣1)=f(1).∴2a+b=0.②由①②解得a=2.b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性.考查分段函数的解析式的求法.着重考查方程组思想.得到a.b 的方程组并求得a.b的值是关键.属于中档题.11.(5分)(•江苏)设α为锐角.若cos(α+)=.则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+.根据cosβ求出sinβ.进而求出sin2β和cos2β.最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+.∴sinβ=.sin2β=2sinβcosβ=.cos2β=2cos2β﹣1=.∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下.求2α+的正弦值.着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式.考查了三角函数中的恒等变换应用.属于中档题.12.(5分)(•江苏)在平面直角坐标系xOy中.圆C的方程为x2+y2﹣8x+15=0.若直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1.由题意可知.只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0.整理得:(x﹣4)2+y2=1.即圆C是以(4.0)为圆心.1为半径的圆;又直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4.0)到直线y=kx﹣2的距离为d.则d=≤2.即3k2﹣4k≤0.∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系.将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键.考查学生灵活解决问题的能力.属于中档题.13.(5分)(•江苏)已知函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).若关于x的不等式f(x)<c的解集为(m.m+6).则实数c的值为9.考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系.然后根据不等式的解集可得f(x)=c的两个根为m.m+6.最后利用根与系数的关系建立等式.解之即可.解答:解:∵函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).∴f(x)=x2+ax+b=0只有一个根.即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m.m+6).即为x2+ax+<c解集为(m.m+6).则x2+ax+﹣c=0的两个根为m.m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用.以及根与系数的关系.同时考查了分析求解的能力和计算能力.属于中档题.14.(5分)(•江苏)已知正数a.b.c满足:5c﹣3a≤b≤4c﹣a.clnb≥a+clnc.则的取值范围是[e.7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2.而5×﹣3≤≤4×﹣1.于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln.从而≥.设函数f(x)=(x>1).利用其导数可求得f(x)的极小值.也就是的最小值.于是问题解决.解答:解:∵4c﹣a≥b>0∴>.∵5c﹣3a≤4c﹣a.∴≤2.从而≤2×4﹣1=7.特别当=7时.第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc.∴0<a≤cln.从而≥.设函数f(x)=(x>1).∵f′(x)=.当0<x<e时.f′(x)<0.当x>e时.f′(x)>0.当x=e时.f′(x)=0.∴当x=e时.f(x)取到极小值.也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e.=e成立.代入第一个不等式知:2≤=e≤3.不等式成立.从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e.7]双闭区间.点评:本题考查不等式的综合应用.得到≥.通过构造函数求的最小值是关键.也是难点.考查分析与转化、构造函数解决问题的能力.属于难题.二、解答题:本大题共6小题.共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)(•江苏)在△ABC中.已知.(1)求证:tanB=3tanA;(2)若cosC=.求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边.然后两边同时除以c 化简后.再利用正弦定理变形.根据cosAcosB≠0.利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角.及cosC的值.利用同角三角函数间的基本关系求出sinC 的值.进而再利用同角三角函数间的基本关系弦化切求出tanC的值.由tanC的值.及三角形的内角和定理.利用诱导公式求出tan(A+B)的值.利用两角和与差的正切函数公式化简后.将tanB=3tanA代入.得到关于tanA的方程.求出方程的解得到tanA的值.再由A为三角形的内角.利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•.∴cbcosA=3cacosB.即bcosA=3acosB.由正弦定理=得:sinBcosA=3sinAcosB.又0<A+B<π.∴cosA>0.cosB>0.在等式两边同时除以cosAcosB.可得tanB=3tanA;(2)∵cosC=.0<C<π.sinC==.∴tanC=2.则tan[π﹣(A+B)]=2.即tan(A+B)=﹣2.∴=﹣2.将tanB=3tanA代入得:=﹣2.整理得:3tan2A﹣2tanA﹣1=0.即(tanA﹣1)(3tanA+1)=0.解得:tanA=1或tanA=﹣.又cosA>0.∴tanA=1.又A为三角形的内角.则A=.点评:此题属于解三角形的题型.涉及的知识有:平面向量的数量积运算法则.正弦定理.同角三角函数间的基本关系.诱导公式.两角和与差的正切函数公式.以及特殊角的三角函数值.熟练掌握定理及公式是解本题的关键.16.(14分)(•江苏)如图.在直三棱柱ABC﹣A1B1C1中.A1B1=A1C1.D.E分别是棱1上的点(点D 不同于点C).且AD⊥DE.F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱.得到CC1⊥平面ABC.从而AD⊥CC1.结合已知条件AD⊥DE.DE、CC1是平面BCC1B1内的相交直线.得到AD⊥平面BCC1B1.从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中.A1F⊥B1C1.再用类似(1)的方法.证出A1F⊥平面BCC1B1.结合AD⊥平面BCC1B1.得到A1F∥AD.最后根据线面平行的判定定理.得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱.∴CC1⊥平面ABC.∵AD⊂平面ABC.∴AD⊥CC1又∵AD⊥DE.DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1.∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中.A1B1=A1C1.F为B1C1的中点∴A1F⊥B1C1.∵CC1⊥平面A1B1C1.A1F⊂平面A1B1C1.∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1.∴A1F∥AD∵A1F⊄平面ADE.AD⊂平面ADE.∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体.考查了直线与平面平行的判定和平面与平面垂直的判定等知识点.属于中档题.17.(14分)(•江苏)如图.建立平面直角坐标系xOy.x轴在地平面上.y轴垂直于地平面.单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上.其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小).其飞行高度为3.2千米.试问它的横坐标a 不超过多少时.炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求 y=kx﹣(1+k2)x2(k>0)与x轴的横坐标.求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值.由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中.令y=0.得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0.k>0.∴.当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0.∴炮弹可以击中目标等价于存在 k>0.使ka﹣(1+k2)a2=3.2成立.即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0.两根之积大于0.故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时.k=>0.∴当a不超过6千米时.炮弹可以击中目标.点评:本题考查函数模型的运用.考查基本不等式的运用.考查学生分析解决问题的能力.属于中档题.18.(16分)(•江苏)若函数y=f(x)在x=x0处取得极大值或极小值.则称x0为函数y=f(x)的极值点.已知a.b是实数.1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2.求g(x)的极值点;(3)设h(x)=f(f(x))﹣c.其中c∈[﹣2.2].求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数.根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x.求出g′(x).令g′(x)=0.求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx.得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点.∴f′(1)=3﹣2a+b=0.f′(﹣1)=3+2a+b=0.解得a=0.b=﹣3.(2)由(1)得.f(x)=x3﹣3x.∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0.解得x1=x2=1.x3=﹣2.∵当x<﹣2时.g′(x)<0;当﹣2<x<1时.g′(x)>0.∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时.g′(x)>0.∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t.则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况.d∈[﹣2.2]当|d|=2时.由(2 )可知.f(x)=﹣2的两个不同的根为1和一2.注意到f(x)是奇函数.∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时.∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0.f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0.∴一2.﹣1.1.2 都不是f(x)=d 的根.由(1)知.f′(x)=3(x+1)(x﹣1).①当x∈(2.+∞)时.f′(x)>0.于是f(x)是单调增函数.从而f(x)>f(2)=2.此时f(x)=d在(2.+∞)无实根.②当x∈(1.2)时.f′(x)>0.于是f(x)是单调增函数.又∵f(1)﹣d<0.f(2)﹣d>0.y=f(x)﹣d的图象不间断.∴f(x)=d在(1.2 )内有唯一实根.同理.在(一2.一1)内有唯一实根.③当x∈(﹣1.1)时.f′(x)<0.于是f(x)是单调减函数.又∵f(﹣1)﹣d>0.f(1)﹣d<0.y=f(x)﹣d的图象不间断.∴f(x)=d在(一1.1 )内有唯一实根.因此.当|d|=2 时.f(x)=d 有两个不同的根 x1.x2.满足|x1|=1.|x2|=2;当|d|<2时.f(x)=d 有三个不同的根x3.x4.x5.满足|xi|<2.i=3.4.5.现考虑函数y=h(x)的零点:( i )当|c|=2时.f(t)=c有两个根t1.t2.满足|t1|=1.|t2|=2.而f(x)=t1有三个不同的根.f(x)=t2有两个不同的根.故y=h(x)有5 个零点.( i i )当|c|<2时.f(t)=c有三个不同的根t3.t4.t5.满足|ti|<2.i=3.4.5.而f(x)=ti有三个不同的根.故y=h(x)有9个零点.综上所述.当|c|=2时.函数y=h(x)有5个零点;当|c|<2时.函数y=h(x)有9 个零点.点评:本题考查导数知识的运用.考查函数的极值.考查函数的单调性.考查函数的零点.考查分类讨论的数学思想.综合性强.难度大.19.(16分)(•江苏)如图.在平面直角坐标系xOy中.椭圆(a>b>0)的左、右焦点分别为F1(﹣c.0).F2(c.0).已知(1.e)和(e.)都在椭圆上.其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A.B是椭圆上位于x轴上方的两点.且直线AF1与直线BF2平行.AF2与BF1交于点P.(i)若AF1﹣BF2=.求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1.e)和(e.).都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my.x﹣1=my.与椭圆方程联立.求出|AF1|、|BF2|.根据已知条件AF1﹣BF2=.用待定系数法求解;(ii)利用直线AF1与直线BF2平行.点B在椭圆上知.可得..由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2.e=.由点(1.e)在椭圆上.得.∴b=1.c2=a2﹣1.由点(e.)在椭圆上.得∴.∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1.0).F2(1.0).又∵直线AF1与直线BF2平行.∴设AF1与BF2的方程分别为x+1=my.x﹣1=my.设A(x1.y1).B(x2.y2).y1>0.y2>0.∴由.可得(m2+2)﹣2my1﹣1=0.∴.(舍).∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=.∴.解得m2=2.∵注意到m>0.∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行.∴.即.由点B在椭圆上知..∴.同理.∴PF1+PF2==由①②得...∴PF1+PF2=.∴PF1+PF2是定值.本题考查椭圆的标准方程.考查直线与椭圆的位置关系.考查学生的计算能力.属于中档题.点评:20.(16分)(•江苏)已知各项均为正数的两个数列{an}和{bn}满足:an+1=.n∈N*.(1)设bn+1=1+.n∈N*.求证:数列是等差数列;(2)设bn+1=•.n∈N*.且{an}是等比数列.求a1和b1的值.数列递推式;等差关系的确定;等比数列的性质.考点:专等差数列与等比数列.题:分析:(1)由题意可得.an+1===.从而可得.可证(2)由基本不等式可得..由{an}是等比数列利用反证法可证明q==1.进而可求a1.b1解答:解:(1)由题意可知.an+1===∴从而数列{}是以1为公差的等差数列(2)∵an>0.bn>0∴从而(*)设等比数列{an}的公比为q.由an>0可知q>0下证q=1若q>1.则.故当时.与(*)矛盾0<q<1.则.故当时.与(*)矛盾综上可得q=1.an=a1.所以.∵∴数列{bn}是公比的等比数列若.则.于是b1<b2<b3又由可得∴b1.b2.b3至少有两项相同.矛盾∴.从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用.解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答.22、23必做题)(共3小题.满分40分)21.(20分)(•江苏)A.[选修4﹣1:几何证明选讲]如图.AB是圆O的直径.D.E为圆上位于AB异侧的两点.连接BD并延长至点C.使BD=DC.连接AC.AE.DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵.求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中.已知圆C经过点P(.).圆心为直线ρsin(θ﹣)=﹣与极轴的交点.求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x.y满足:|x+y|<.|2x﹣y|<.求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C.就得找一个中间量代换.一方面考虑到∠B.∠E是同弧所对圆周角.相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵.根据定义可求出矩阵A.从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(.).求出圆的半径.从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径.∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC.∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D.E 为圆上位于AB异侧的两点.∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵.∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1.λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点.∴在ρsin(θ﹣)=﹣中令θ=0.得ρ=1.∴圆C的圆心坐标为(1.0).∵圆C 经过点P(.).∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|.|x+y|<.|2x﹣y|<.∴3|y|<.∴点评:本题是选作题.综合考查选修知识.考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明.综合性强23.(10分)(•江苏)设集合Pn={1.2.….n}.n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆Pn;②若x∈A.则2x∉A;③若x∈ A.则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}.故可求f(4)(2)任取偶数x∈pn.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.可知.若m∈A.则x∈A.⇔k为偶数;若m∉A.则x∈A⇔k为奇数.可求解答:解(1)当n=4时.P4={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}故f(4)=4(2)任取偶数x∈pn.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.于是x=m•2k.其中m为奇数.k∈N*由条件可知.若m∈A.则x∈A.⇔k为偶数若m∉A.则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定.设Qn是Pn中所有的奇数的集合因此f(n)等于Qn的子集个数.当n为偶数时(或奇数时).Pn中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用.解题的关键是准确应用题目中的定义22.(10分)(•江苏)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条.当两条棱相交时.ξ=0;当两条棱平行时.ξ的值为两条棱之间的距离;当两条棱异面时.ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列.并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数.即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对.即可求出相应的概率.从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交.则交点必为正方体8个顶点中的一个.过任意1个顶点恰有3条棱.∴共有8对相交棱.∴P(ξ=0)=.(2)若两条棱平行.则它们的距离为1或.其中距离为的共有6对.∴P(ξ=)=.P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算.考查离散型随机变量的分布列与期望.求概率是关键.第五章 平面向量第二节 平面向量基本定理及坐标表示班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战29191

考生注意:1.本试卷共150分.考试时间120分钟.2.答题前,考生务必将密封线内的项目填写清楚.3.请将各题答案填在试卷后面的答题卷上.4.交卷时,可根据需要在加注“”标志的夹缝处进行裁剪.5.本试卷主要考试内容:前2次联考内容+数列+不等式.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+x-6<0},N={x|1≤x≤3},则M∩(RN)等于A.(-2,1)B. (-2,3]C.(-3,1)D.(-1,2]2.已知数列{an}为等差数列,若a3+a7=20,则数列{an}的前9项和S9等于A.40B.45C.60D.903.若tanθ=1,则sin2θ的值为A. B.1C. D.4.下面四个条件中,使a>b成立的充分不必要条件是A.a>b+1B.a>b-1C.a+1>b+1D.a2>b25.已知在等比数列{an}中,a3+a6=6,a6+a9=,则a8+a11等于A. B. C. D.6.已知平面向量a、b,|a|=3,|b|=2且a-b与a垂直,则a与b的夹角为A. B. C. D.7.在各项均为正数的等比数列{an}中,≤2,则下列结论中正确的是A.数列{an}是递增数列B.数列{an}是递减数列C.数列{an}有可能是递增数列也有可能是递减数列D.数列{an}是常数列8.若函数f(x)=ax-k-1(a>0,a≠1)过定点(2,0),且f(x)在定义域R上是减函数,则g(x)=loga(x+k)的图象是9.若0<x<1,则+的最小值为A.24B.25C.36D.7210.已知在各项为正的等比数列{an}中,a2与a8的等比中项为8,则4a3+a7取最小值时首项a1 等于A.8B.4C.2D.111.在数列{an}中,若存在一个确定的正整数T,对任意n∈N*满足an+T=an,则称{an}是周期数列,T叫做它的周期.已知数列{xn}满足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,若数列{xn}的周期为3,则{xn}的前项的和为A.1344B.1343C.1224D.122312.已知log3(x+y+4)>log3(3x+y-2),若x-y<λ恒成立,则λ的取值范围是A.(-∞,10]B.(-∞,10)C.(10,+∞)D.[10,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上.13.已知a>0,b>0,ab=4,当a+4b取得最小值时,=▲.14.设变量x,y满足约束条件,则目标函数z=2x+3y的最大值为▲.15.函数y=ax+2-2(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为▲.16.设Sn是等差数列{an}的前n项和,S6≥21且S15≤120,则a10的最大值是▲.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=x2-kx+k-1.(1)当k为何值时,不等式f(x)≥0恒成立;(2)当k∈R时,解不等式f(x)>0.18.(本小题满分12分)在△ABC中,a,b,c分别为角A,B,C所对的边,且满足sinA+sinB=2sinC,a=2b.(1)求cosA的值;(2)若△ABC的面积S△ABC=,求△ABC三边的长.19.(本小题满分12分)已知正项等比数列{bn}(n∈N*)中,公比q>1,且b3+b5=40,b3·b5=256,an=log2bn +2.(1)求证:数列{an}是等差数列;(2)若cn=,求数列{cn}的前n项和Sn.20.(本小题满分12分)某公司新研发了甲、乙两种型号的机器,已知生产一台甲种型号的机器需资金30万元,劳动力5人,可获利润6万元,生产一台乙种型号的机器需资金20万元,劳动力10人,可获利润8万元.若该公司每周有300万元的资金和110个劳动力可供生产这两种机器,那么每周这两种机器各生产多少台,才能使周利润达到最大,最大利润是多少?21.(本小题满分12分)已知函数f(x)=(ax2-1)·ex,a∈R.(1)若函数f(x)在x=1时取得极值,求a的值;(2)当a≤0时,求函数f(x)的单调区间.22.(本小题满分12分)各项均为正数的数列{xn}对一切n∈N*均满足xn+<2.证明:(1)xn<xn+1;(2)1-<xn<1.高三第三次联考·数学试卷参考答案1.C由题知集合M={x|-3<x<2},RN={x|x<1或x>3},所以M∩(RN)={x|-3<x<1}.2.DS9====90.3.Bsin2θ===1.4.A根据题意可知,选项A、C都能推出a>b成立,但是根据a>b不能推出A选项成立,故答案选A.5.C=q3=,q=,a8+a11=(a6+a9)q2=×=.6.A因为 a-b与a垂直,所以(a-b)·a=0,所以a·a=b·a,所以cos a,b ====,所以 a,b =.7.D由题意可知,a3+a11≥2=2a7,所以有2≤≤2,从而=2,当且仅当a3=a11时取得等号.此时数列{an}是常数列.8.A由题意可知f(2)=0,解得k=2,所以f(x)=ax-2-1,又因为是减函数,所以0<a<1.此时g(x)=loga(x+2)也是单调减的,且过点(-1,0).故选A符合题意.9.B因为0<x<1,所以+=(+)[x+(1-x)]=4+9++≥13+2=25,当且仅当=,即x =时取得等号.10.C由题意知a2a8=82=,即a5=8,设公比为q(q>0),所以4a3+a7=+a5q2=+8q2≥2=32,当且仅当=8q2,即q2=2时取等号,此时a1==2.11.B由xn+2=|xn+1-xn|,得x3=|x2-x1|=|a-1|=1-a,x4=|x3-x2|=|1-2a|,因为数列{xn}的周期为3,所以x4=x1,即|1-2a|=1,解得a=0或a=1.当a=0时,数列为1,0,1,1,0,1…,所以S=2×671+1=1343.当a=1时,数列为1,1,0,1,1,0,…,所以S=2×671+1=1343.12.D要使不等式成立,则有,即,设z=x-y,则y=x-z.作出不等式组对应的可行域如图所示的阴影部分(不包括左右边界):平移直线y=x-z,由图象可知当直线y=x-z经过点B时,直线在y轴上的截距最小,此时z最大,由,解得,代入z=x-y得z=x-y=3+7=10,又因为可行域不包括点B,所以z<10,所以要使x-y<λ恒成立,则λ的取值范围是λ≥10,即[10,+∞).13.4a+4b≥2=8,当且仅当a=4b时取等号,结合a>0,b>0,ab=4,所以a=4,b=1,=4.14.23作出可行域,如图所示:当目标函数z=2x+3y经过x-y+1=0与2x-y=3的交点(4,5)时,有最大值2×4+3×5=23.15.8函数y=ax+2-2(a>0,a≠1)的图象恒过定点A(-2,-1),所以(-2)·m+(-1)·n+1=0,2m+n=1,又mn>0,所以+=(+)·(2m+n)=4++≥4+2=8.当且仅当=,即m=,n=时取等号.16.10法一:S6=6a1+15d≥21,S15=15a1+105d≤120,∴2a1+5d≥7,a1+7d≤8.又a10=a1+9d=-(2a1+5d)+(a1+7d)≤-×7+×8=10.法二:设a1=x,d=y,,目标函数a10=z=x+9y,画出平面区域知a10=z=x+9y在点(1,1)处取到最大值10.17.解:(1)由f(x)≥0恒成,立即x2-kx+k-1≥0恒成立,所以Δ=k2-4(k-1)=(k-2)2≤0,所以k=2.5分(2) 当k∈R时,f(x)>0等价于x2-kx+k-1>0⇔(x-1)[x-(k-1)]>0.由k-1=1,得k=2.∴当k=2时,不等式的解集为(-∞,1)∪(1,+∞),当k<2时,不等式的解集为(-∞,k-1)∪(1,+∞),当k>2时,不等式的解集为(-∞,1)∪(k-1,+∞).10分18.解:(1)因为sinA+sinB=2sinC,由正弦定理得a+b=2c.又a=2b,可得a=c,b=c,所以cosA===-.6分(2)由(1)cosA=-,A∈(0,π),所以sinA=,所以S△ABC=bcsinA=×c×c×=,得c2=9,即c=3 ,所以b=2,a=4.12分19.解:(1)由知b3,b5是方程x2-40x+256=0的两根,注意到bn+1>bn,得 b3=8,b5=32,因为q2==4,所以q=2或q=-2(舍去),所以b1===2,所以bn=b1qn-1=2n,an=log2bn+2=log22n+2=n+2.因为an+1-an=[(n+1)+2]-[n+2]=1,所以数列{an}是首项为3,公差为1的等差数列.7分(2)因为an=3+(n-1)×1=n+2,所以cn=,所以Sn=++…+=-+-+…+-=.12分20.解:设每周生产甲种机器x台,乙种机器y台,周利润z万元,则目标函数为z=6x+8y.作出不等式组表示的平面区域,且作直线l:6x+8y=0,即3x+4y=0,如图:6分把直线l向右上方平移至l3的位置时,直线l3过可行域上的点M时直线的截距最大,即z取最大值,解方程组(x≥0,y≥0,x,y∈Z)得,所以点M坐标为(4,9),将x=4,y=9代入目标函数z=6x+8y得最大值z=6×4+8×9=96(万元).所以每周应生产甲种机器4台、乙种机器9台时,公司可获得最大周利润为96万元.12分21.解:(1)f'(x)=(ax2+2ax-1)·ex,x∈R.2分依题意得f'(1)=(3a-1)·e=0,解得a=.经检验符合题意.4分(2)f'(x)=(ax2+2ax-1)·ex,设g(x)=ax2+2ax-1.①当a=0时,f(x)=-ex,f(x)在(-∞,+∞)上为单调减函数.5分②当a<0时,方程g(x)=ax2+2ax-1=0的判别式为Δ=4a2+4a,令Δ=0, 解得a=0(舍去)或a=-1.1°当a=-1时,g(x)=-x2-2x-1=-(x+1)2≤0,即f'(x)=(ax2+2ax-1)·ex≤0,且f'(x)在x=-1两侧同号,仅在x=-1时等于0,则f(x)在(-∞,+∞)上为单调减函数.2°当-1<a<0时,Δ<0,则g(x)=ax2+2ax-1<0恒成立,即f'(x)<0恒成立,则f(x)在(-∞,+∞)上为单调减函数.3°a<-1时,Δ=4a2+4a>0,令g(x)=0,得x1=-1+,x2=-1-,且x2>x1.所以当x<-1+时,g(x)<0,f'(x)<0,f(x)在(-∞,-1+)上为单调减函数;当-1+<x<-1-时,g(x)>0,f'(x)>0,f(x)在(-1+,-1-)上为单调增函数;当x>-1-时,g(x)<0,f'(x)<0,f(x)在(-1-,+∞)上为单调减函数.综上所述,当-1≤a≤0时,函数f(x)的单调减区间为(-∞,+∞);当a<-1时,函数f(x)的单调减区间为(-∞,-1+),(-1-,+∞),函数f(x)的单调增区间为(-1+,-1-).12分22.证明:(1)因为xn>0,xn+<2,所以0<<2-xn,所以xn+1>,且2-xn>0.因为-xn==≥0.所以≥xn,所以xn≤<xn+1,即xn<xn+1.5分(2)下面用数学归纳法证明:xn>1-.①当n=1时,由题设x1>0可知结论成立;②假设n=k时,xk>1-,当n=k+1时,由(1)得xk+1>≥=1-.由①,②可得xn>1-.8分下面先证明xn≤1.假设存在自然数k,使得xk>1,则一定存在自然数m,使得xk>1+.因为xk+<2,xk+1>≥,xk+2>≥,…,xk+m-1≥2,与题设xk+<2矛盾,所以xn≤1.若xk=1,则xk+1>xk=1,根据上述证明可知存在矛盾.所以xn<1成立.12分一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. 19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战36949

(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于(). (A )()UA B (B )A B (C )A B (D )()UA B解析:根据集合的运算性质,验证选项,答案为A. 考点:集合与常用逻辑用语集合的运算 难度系数:2(2)下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为().(A )sin y x =(B )ln y x =(C )3y x =(D )2xy =解析:A,C 是奇函数,A 不是一致单调函数;B,D 非奇非偶。
所以答案C 。
考点:函数与导数函数函数的单调性;函数与导数函数函数的奇偶性 难度系数:2(3)已知抛物线22x y =,则它的焦点坐标是().(A )1,04⎛⎫⎪⎝⎭(B )10,2⎛⎫ ⎪⎝⎭(C )10,4⎛⎫ ⎪⎝⎭(D )1,02⎛⎫ ⎪⎝⎭解析:根据抛物线的性质,抛物线是开口向上的,交点10,2⎛⎫⎪⎝⎭,答案B 。
考点:解析几何圆锥曲线抛物线 难度系数:2(4)执行如图所示的程序框图.若输入3a =,则输出i 的值是().(A )2 (B)3 (C)4 (D)5解析:第一次循环a=9,i=1;第二次循环a=21,i=2;第三次循环a=45,i=3;第四次循环 A=93,i=4,输出结果,答案为C. 考点:算法与框图算法和程序框图 难度系数:3(5)由直线10x y -+=,50x y +-=和10x -=为().(A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩(B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩(C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩(D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩解析:做出平面区域,带入特殊点验证,答案为A.考点:不等式线性规划二元一次不等【组】表示的平面区域 难度系数:3(6)在区间ππ[-,]上随机取一个实数x ,则事件:“cos 0x ≥”的概率为(). (A )14(B)34(C )23(D )12解析:该题考察解概率模型,画出余弦函数,结合函数图像答案为D.考点:概率与统计概率几何概率 难度系数:3(7)设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n nS a +的最小值为(). (A )10(B )92(C )72(D)12+解析:11(1)(1)888(1)81922(1)222n nn n n n a n d S n a a n d n n +++++++===+≥=+-,答案为B 。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战19699

1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
2.重难点及考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算必修11、集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
它具有三大特性:确定性、互异性、无序性。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战21639

本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分2至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:)(312211S S S S h V ++=其中S1、S2分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24S R π=球的体积公式:334R V π=其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}{}2lg ,230A x y x B x x x ===--<,则A B = ( ▲ )A .(0,3)B .(1,0)-C .(,0)(3,)-∞+∞D .(1,3)-2.已知l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ▲ )A .若//l α,//m α,则//l mB .若l m ⊥,//m α,则l α⊥C .若l α⊥,m α⊥,则//l mD .若l m ⊥,l α⊥,则//m α3.已知实数y x ,满足20323x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则y x z -=的最大值为( ▲ )A .1-B .0C .1D .34.已知直线l :b kx y +=,曲线C :122=+y x ,则“1=b ”是“直线l 与曲线C 有公共点”的( ▲ )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知正方形ABCD 的面积为2,点P 在边AB 上,则PD PC ⋅的最大值为( ▲ )A.32C .2 D6.如图,在矩形ABCD 中,2AB =,3AD =,点E 为AD 的中点,现分别沿,BE CE 将,ABE DCE ∆∆翻折,使得点,A D 重合于F ,此时二面角E BC F --的余弦值为 ( ▲ )A .34 BC .23D722221(0,0)x y a b a b -=>>的左、右焦点,点P 在第一象限,且满足2||F P a =,1(F P 2PF 与双曲线C 点Q ,若22C ( ▲ )A .y =C .2y x =±D .3y x =± 8.已知集合22{(,)|1}M x y x y =+≤,若实数,λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数34343i zi-=++,则z=()A.3i- B.23i- C.3i+ D.23i+2.已知条件p:|4|6x-≤;条件q:22(1)0(0)x m m--≤>,若p是q的充分不必要条件,则m的取值范围是()A . [21,+∞) B. [9,+∞) C.[19,+∞) D.(0,+∞)3.在△ABC中,若点D满足2BD DC=,则AD=()A.1233AC AB+ B.5233AB AC- C.2133AC AB- D.2133AC AB+4.设Sn为等比数列{}n a的前n项和,2580a a+=,则52SS=( )A. 11B. 5C.一8D.一115.等差数列{an}中,,数列2211273=+-aaa{bn}为等比数列,且77b a=,则86bb的值为()A.4 B.2 C.16 D.86.函数2lnxyx=的图象大致为()7.等差数列{na}前n项和为n s,满足3060S S=,则下列结论中正确的是()A .45S是n S中的最大值 B.45S是n S中的最小值C.45S=0 D.90S=08.若(,)4παπ∈,且3cos24sin()4παα=-,则sin2α的值为()A.79B.79-C.19-D.199.若函数2()sin 2(2)cos 2f x a x a x =+-的图像关于直线8x π=-,则()f x 的最大值为( )A .2B .2或42C . 42D .2 10.如图所示,点A ,B ,C 是圆O 上三点,线段OC 与线段AB 交于圆内一点M,若OC mOA nOB =+,(0,0)m n >>2m n +=,则AOB ∠的最小值为( ) A .6πB .3π C .2π D .23π 11.a 为参数,函数2283()()3()3x a x a f x x a x a -+--=+⋅--⋅是偶函数,则a 可取值的集合是( )A .{0,5}B .{-2,5}C .{-5,2}D .{1,}12.已知函数2()ln(2)2x f x x a=--,(a 为常数且0≠a ),若)(x f 在0x 处取得极值,且20[2,2]x e e ∉++,而2()0[2,2]f x e e ≥++在 上恒成立,则a 的取值范围( )A .242e e a +≥ B.242e e a +> C.e e a 22+≥ D.e e a 22+>二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.13.若a ,b 均为非零向量,且(2)a b a -⊥,(2)b a b -⊥,则a ,b 的夹角为.14.将函数()sin(),(0,)22f x x ππωϕωϕ=+>-<<图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移4π个单位长度得到sin y x =的图象,则()6f π=. 15.已知函数()(21)ln(1)f x x a x a =-+++的定义域为(1,)a --+∞, 若()f x ≥0恒成立,则a 的值是.16.等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-。
给出下列结论:①01q <<;②9910110a a ⋅-<,③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198。
OABM C其中正确的结论是.三、解答题:(70分)17.(本是满分10分)已知等差数列{}n a 满足:246a a +=,63a S =,其中n S 为数列{}n a 的前n 项和.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若*k N ∈,且32,,k k k a a S 成等比数列,求k 的值。
18.(本小题满分12分) 已知函数21cos 2()sin sin()42sin()2x f x x a x x ππ+=+++- (Ⅰ)求函数y = f (x )的单调递增区间;(Ⅱ)当x ∈ [0,512π] 时,函数 y = f (x )的最小值为212+,试确定常数a 的值. 19.(本是满分12分)在△ABC 中,a 、b 、c 分别为角A ,B ,C 的对边,且2234sincos 229A CB +-= (Ⅰ)求cosB ;(Ⅱ)若AB =2,点D 是线段AC 中点,且,若角B 大于600,求△DBC 的面积。
20.(本小题满分12分)在如图所示的几何体中,四边形ABC D 为矩形,AB=2BC=4,BF=CF=AE=DE ,EF=2,EF//AB ,AF ⊥CF 。
(Ⅰ)若G 为FC 的中点,证明:AF//平面BDG ;(Ⅱ)求平面ABF 与平面BCF 夹角的余弦值。
21.(本小题满分12分)已知数列{}n a 、{}n b 满足:114a =,1n n a b +=,121n n n b b a +=-。
(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)若22(12)(13)n n n n n n a a c a a -=--,求数列{n c }的前n 项和3.4n S ≥。
22.(本小题满分12分)设R a ∈,函数)1()(12--=-x a e x x f x .(Ⅰ)当1=a 时,求)(x f 在)2,43(上的单调区间;(Ⅱ)设函数)1()()(1x e x a x f x g ---+=,当)(x g 有两个极值点21x x 、)(21x x <时,总有)()(112x f x g x '≤λ,求实数λ的值.高考一轮复习微课视频手机观看地址:http://xkw.so/wksp一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. 19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.。