测量不确定度的方法

合集下载

物理实验中的测量不确定度计算方法

物理实验中的测量不确定度计算方法

物理实验中的测量不确定度计算方法作为一门实验科学,物理实验的目标是通过对物理现象的测量和观察来验证和探索物理理论。

在进行实验过程中,测量不确定度是必不可少的概念。

测量不确定度反映了实验数据的准确性和可靠性,同时也为实验结果的解释和合理性提供了依据。

本文将介绍物理实验中常用的测量不确定度计算方法。

1. 比例系数法比例系数法认为,在实验测量中,存在某些因素可以使得测量结果的变化与测量值的大小成比例关系。

比例系数法的计算公式为:δx = kx其中,δx为测量不确定度,k为比例系数,x为测量值。

比例系数法适用于测量仪器误差较小且稳定的情况,可以通过对测量仪器的特性进行研究和测量,得到相应的比例系数,从而计算出测量值的不确定度。

2. 标准偏差法标准偏差法是一种常用且较为普遍的测量不确定度计算方法。

标准偏差法基于一组重复测量的数据,通过对数据的统计分析,计算出实验结果的不确定度。

标准偏差法的计算公式为:δx = σ/√n其中,δx为测量不确定度,σ为数据的标准偏差,n为测量数据的数量。

标准偏差法适用于测量数据呈正态分布的情况,且要求重复测量的数据要充分,以获得较为可靠的结果。

3. 一次平均值法一次平均值法是一种简化的测量不确定度计算方法。

这种方法假设测量误差均匀地分布在测量值的上下限之间。

一次平均值法的计算公式为:δx = (x_max - x_min)/2其中,δx为测量不确定度,x_max和x_min分别为测量值的最大值和最小值。

一次平均值法可以快速估算实验结果的不确定度,但对于不均匀分布的测量误差或极端值较多的情况,其结果可能会偏离实际情况。

4. 扩展不确定度法扩展不确定度法是一种综合考虑多种不确定度来源的计算方法。

在物理实验中,不确定度来自于多个因素,如仪器的误差、人为操作的误差等。

扩展不确定度法能够将这些因素综合考虑,并将不确定度扩大一定倍数以确保结果的可靠性。

扩展不确定度法的计算公式为:δx = k*√(δx_1² + δx_2² + … + δx_n²)其中,δx为测量不确定度,k为扩展因子,δx_1、δx_2、…、δx_n为不同来源的不确定度。

测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例1.标准不确定度方法:U =sqrt(∑(xi-x̅)^2/(n-1))其中,xi表示测量值,x̅表示测量值的平均值,n表示测量次数。

标准不确定度包含随机误差和系统误差等。

例如,对一组长度进行测量,测得的数据为10.2、10.3、10.1、10.2、10.3,计算平均值为10.22,标准差为0.069、则标准不确定度为0.069/√5≈0.031,即U=0.0312.扩展不确定度方法:扩展不确定度是在标准不确定度的基础上,考虑到误差的正态分布,对标准不确定度进行扩展得到的结果,通常以U'表示。

其计算公式如下:U'=kU其中,k表示不确定度的覆盖因子,代表了误差分布的概率密度曲线下的面积,一般取k=2例如,对上述例子中的长度进行测量,标准不确定度为0.031,取k=2,则扩展不确定度为0.031×2=0.062,即U'=0.0623.组合不确定度方法:4.直接测量法:直接测量法是通过多次测量同一物理量,统计测得值的离散程度来评估测量的不确定度。

该方法适用于一些简单的测量,如长度、质量等物理量的测量。

例如,对一些小球的直径进行测量,测得的数据为2.51 cm、2.49 cm、2.52 cm、2.50 cm,计算平均值为2.505 cm,标准差为0.013 cm。

则标准不确定度为0.013/√4≈0.007 cm,即U=0.0075.间接测量法:间接测量法是通过已知物理量之间的数学关系,求解未知物理量的方法来评估测量的不确定度。

该方法适用于一些复杂的测量,如测量速度、加速度等物理量的测量。

例如,测量物体的速度v,则有v=S/t,其中S为位移,t为时间。

若S的不确定度为U_S,t的不确定度为U_t,则根据误差传递法则,计算得到v的不确定度为U_v = sqrt(U_S^2 + (U_t * (∂v/∂t))^2 )。

总之,测量不确定度评定的方法包括标准不确定度方法、扩展不确定度方法、组合不确定度方法、直接测量法和间接测量法。

不确定度评估的基本方法

不确定度评估的基本方法

不确定度评估的基本方法引言:在各个领域的研究和实践中,不确定度评估是一项重要的任务。

不确定度评估可以帮助我们理解和量化测量结果的可靠性和精确性。

本文将介绍不确定度评估的基本方法,包括测量不确定度和模型不确定度的评估方法。

一、测量不确定度的评估方法1. 重复测量法:重复测量法是最常用的评估测量不确定度的方法之一。

它通过多次重复测量同一物理量,并计算测量结果的标准偏差来评估不确定度。

重复测量法适用于稳定的测量系统和测量量的变化范围较小的情况。

2. 标准样品法:标准样品法是通过使用已知不确定度的标准样品来评估测量不确定度。

该方法适用于无法进行重复测量的情况,或者需要与其他实验室的测量结果进行比较的情况。

通过与标准样品进行比较,可以确定测量结果的偏差和不确定度。

3. 传递函数法:传递函数法是一种将测量不确定度传递到最终结果的方法。

它基于已知不确定度的输入量和它们与最终结果之间的关系。

通过计算输入量的不确定度和传递函数的敏感度,可以评估最终结果的不确定度。

传递函数法适用于复杂的测量系统和多个输入量的情况。

二、模型不确定度的评估方法1. 参数估计法:参数估计法是一种常用的评估模型不确定度的方法。

它基于对模型参数的估计和参数估计的不确定度。

参数估计法通过使用统计方法,如最小二乘法或最大似然估计,来确定模型参数的最佳估计值和其不确定度。

2. 敏感度分析法:敏感度分析法通过评估模型输出对输入量变化的敏感程度来评估模型不确定度。

它可以识别哪些输入量对模型输出的不确定度贡献最大。

通过对敏感度进行评估,可以确定模型输出的不确定度范围。

3. 蒙特卡洛模拟法:蒙特卡洛模拟法是一种基于随机抽样的方法,用于评估模型不确定度。

它通过随机生成输入量的值,并使用这些值进行模型运行,得到模型输出的分布。

通过分析模型输出的分布,可以评估模型的不确定度。

结论:不确定度评估是一项关键的任务,它可以帮助我们理解和量化测量结果和模型的可靠性和精确性。

测量不确定度的方法

测量不确定度的方法

测量不确定度评定U,p,k,u代表什么?当测量不确定度用标准偏差σ表示时,称为标准不确定度,统一规定用小写拉丁字母“u”表示,这是测量不确定度的第一种表示方式。

但由于标准偏差所对应的置信水准(也称为置信概率)通常还不够高,在正态分布情况下仅为68.27%,因此还规定测量不确定度也可以用第二种方式来表示,即可以用标准偏差的倍数kσ来表示。

这种不确定度称为扩展不确定度,统一规定用大写拉丁字母U表示。

于是可得标准不确定度和扩展不确定度之间的关系:U=kσ=ku式中k为包含因子。

扩展不确定度U表示具有较大置信水准区间的半宽度。

包含因子有时也写成kp的形式,它与合成标准不确定度uc(y)相乘后,得到对应于置信水准为p的扩展不确定度Up=kpuc(y)。

在不确定度评定中,有关各种不确定度的符号均是统一规定的,为避免他人的误解,一般不要自行随便更改。

在实际使用中,往往希望知道测量结果的置信区间,因此还规定测量不确定度也可以用第三种表示方式,即说明了置信水准的区间的半宽度a来表示。

实际上它也是一种扩展不确定度,当规定的置信水准为p时,扩展不确定度可以用符号Up表示。

测量不确定度评定步骤?评定与表示测量不确定度的步骤可归纳为1)分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量。

2)评定标注不确定度分量,并给出其数值ui和自由度vi。

3)分析所有不确定度分量的相关性,确定各相关系数ρij。

4)求测量结果的合成标准不确定度,则将合成标准不确定度uc及自由度v .5)若需要给出展伸不确定度,则将合成标准不确定度uc乘以包含因子k,得展伸不确定度U=kuc。

6)给出不确定度的最后报告,以规定的方式报告被测量的估计值y及合成标准不确定度uc或展伸不确定度U,并说明获得它们的细节。

根据以上测量不确定度计算步骤,下面通过实例说明不确定度评定方法的应用。

我们单位的不确定度都是我写,其实计算不确定度,并写出报告,整体来说也就分几个步骤,一、概述二、数学模型三、输入量的标准不确定度评定这里面就包括数学模型里所有影响结果的参量,找出所有影响因素,计算各个影响量的标准不确定度,其中又分为A类评定和B类评定这个按B类评定进行计算,影响万用表的因素也很多,比如万用表的仪器设备检定证书中如果有不确定度,可以直接用,如果没有,就看给出的允许误是多少,用这个数字除以根号3,得出误差的标准不确定度。

测量不确定度评定方法

测量不确定度评定方法

测量不确定度评定方法引言:在科学研究和工程领域,测量是一项非常重要的工作。

然而,任何测量都不可避免地会有一定的不确定度。

不确定度是指测量结果与被测量真实值之间的差异或误差范围。

为了评估测量结果的可靠性和准确性,我们需要进行不确定度的评定。

本文将介绍一些常见的测量不确定度评定方法。

一、类型A不确定度评定方法:类型A不确定度评定方法是通过统计分析已有数据进行评定的。

具体步骤如下:1. 收集数据:首先,需要收集足够数量的测量数据,这些数据应尽可能地覆盖整个测量范围,以获取更准确的评定结果。

2. 数据处理:对收集到的数据进行处理,计算平均值、标准差等统计指标。

平均值表示测量结果的中心位置,标准差表示数据的离散程度。

3. 确定置信水平:根据实际需求和测量要求,确定评定的置信水平。

常用的置信水平有95%和99%。

4. 计算不确定度:根据统计分析的结果和置信水平,计算类型A不确定度。

一般情况下,类型A不确定度等于标准差除以测量数据的平方根。

二、类型B不确定度评定方法:类型B不确定度评定方法是通过基于先验知识或经验的评估方法进行评定的。

具体步骤如下:1. 确定不确定因素:首先,需要明确影响测量结果的不确定因素,例如仪器精度、环境条件等。

2. 评估不确定度:对于每个不确定因素,根据先验知识或经验进行评估,并给出相应的不确定度估计值。

这些估计值可以是基于厂商提供的规格或历史数据分析得出的。

3. 合成不确定度:将所有不确定因素的评估结果进行合成,得到类型B不确定度。

合成的方法可以采用加法合成或根据不确定度的传递规则进行合成。

三、合成不确定度评定方法:在实际应用中,我们经常需要综合考虑类型A和类型B不确定度,得到测量结果的总不确定度。

合成不确定度评定方法可以根据具体情况选择不同的方法。

1. 加法合成法:当类型A和类型B的不确定度可以看作相互独立的时候,可以采用加法合成法。

即将类型A和类型B的不确定度进行简单相加,得到总不确定度。

测量不确定度基本评定方法

测量不确定度基本评定方法
测量不确定度评定 基本方法
测量不确定度基本评定方法
பைடு நூலகம்
1
一. 测量不确定度的概念
1 定义 表征合理地赋予被测量之值的分 散性,与测量结果相联系的参数。 • 表示测量结果分散性的参数 • 通过科学分析,采用统一方法评定 • 与测量结果相对应
测量不确定度基本评定方法
2
例:测量某物体长度 独立分别测量6次,测量结果如下: 1.50 1.52 1.48 1.51 1.49 1.50 测量结果为 : 1.50 ± 0.02 测量结果分散区间:± 0.02 0.02为区间半宽,测量结果不确定度
测量不确定度基本评定方法
3

测量误差与测量不确定度比较
1.定义: 测量误差 = 测量结果 – 真值
真值: 与给定的特定量的定义一致的值.
约定真值:对于给定目的具有适当不确定度的,
赋予特定量的值.
2. 分类: 测量误差 = 系统误差 + 随机误差(合成)
3. 修正: 修正值 =真值(实际值)--测量结果
测量不确定度基本评定方法
11
2 寻找 不确定度来源
• 可从测量仪器、测量环境、测量人 员、测量方法、被测量等方面考虑
• 应不遗漏、不重复,特影响大来源
• 修正量加入测得值,异常值剔除
• 逐个评定输入量标准不确定度,评 定方法可归纳为A、B两类
测量不确定度基本评定方法
12
3 输入量标准不确定度的A类评定
测量误差可修正; 测量不确定度不可修正
测量不确定度基本评定方法
4
4. 因果: 测量误差: 仅决定于测量结果.与仪器,方法,条
件无直接关系. 结果一样,误差就一样. 测量不确定度: 仅决定于测量仪器,方法,条件.

测量不确定度评定方法与步骤

测量不确定度评定方法与步骤

测量不确定度评定方法与步骤一、测量不确定度评定资料名称资料名称为:XXXXX 测量结果不确定度评定其中“XXXXX ”表示被测量对象的名称仪器的名称或参数的名称;如:被测量对象为普通压力表,测量方式为检定,则资料名称为:普通压力表检定结果不确定度评定;又如,被测量对象为光谱分析仪,测量方式为校准,则资料名称为:光谱分析仪校准结果不确定度评定;再如,被测量对象为XXX 工件内尺寸,测量方式为直接测量,则资料名称为:XXX 工件内尺寸测量结果不确定度评定; 二、评定步骤1.测量方法与测量数学模型 测量方法当测量是按照相关的规程、规范或标准进行时,测量方法的描述为:依据XXX 规程、规范或标准的规定进行测量;当测量无直接相关的规程、规范或标准作依据,即按相应的测量操作进行测量时,测量方法的描述应简述操作的方法; 测量数学模型1.2.1直接测量数学模型当被测对象的量值即是测量仪器的读数的情况直接绝对测量,测量数学模型为:x y = y 表示被测量值,x 表示测量仪器的读数当被测对象的是求取测量误差的情况直接相对测量,测量数学模型为:s x x e -= e 表示示值误差,x 表示被检定或校准的设备的读数,s x 表示检定或校准所用的测量标准设备的读数;一般检定或校准所用的测量标准设备的读数应在不改变的情况下进行比较测量 1.2.2间接测量数学模型当测量是按照相关的规程、规范或标准进行时,应原式引入规程、规范或标准上给出的被测量的计算公式;当测量无直接相关的规程、规范或标准作依据时,应使用相应的计算公式,如:长方形的面积 b a A ⨯= ; 电流强度 RU i =2.最佳测量值最佳测量值即是将各输入分量的平均值带入测量数学模型后计算并修约得到的结果; 如测量数学模型:),,,(21N x x x f y = 先计算得到各个输入分量的平均值,?=i x带入测量数学模型后计算得到: ?),,,(21==N x x x f y3.方差及灵敏系数方差依据测量数学模型写出方差3.1.1当各输入量之间相互独立即不相关的情况,对任意的测量数学模型,方差形式均为:)()()(222i iC x u x f y u ∑∂∂=)(y u C 表示被测量y 的合成标准不确定度 特别地,当测量数学模型形如N pN ppx x Cx y 2121=时,方差可写成相对合成式:2.2.)]([)(i rel i i rel C x u p y u ∑=3.1.2当各输入量之间相互不独立即不相关的情况,对任意的测量数学模型,方差包含协方差形式为: ),(2)()()(222j i ji i iC x x u x fx f x ux fy u ∂∂∂∂+∂∂=∑∑∑其中:协方差)()(),(),(j i j i j i x u x u x x r x x u = 式中),(j i x x r 为输入量i x 和j x 之间的相关系数,其绝对值小于或等于1 ; 灵敏系数灵敏系数即各偏导数i x f ∂∂ ,一些资料中用字母)(i x C 表示 ,即)(i x C =ix f ∂∂ 应经计算得到具体的结果; 4.标准不确定度分量)(i x u 计算 标准不确定度)(1x u 评定应认为11)(x x f = 为一个简单的直接测量进行评定,主要评定: 测量重复性随即效应引入的不确定度 ns x u =)(11 或 ms x u =)(11测量仪器不准系统效应引入的不确定度 kax u =)(12 该分量合成得到:)()()(122121x u x u x u i +=标准不确定度)(2x u 评定 ┉┉ 仿效)(1x u 的评定,可得到各)(i x u6.合成标准不确定度)(y u C将各标准不确定度分量及其灵敏系数代入方差式,取其正方根即可计算得到; 7.扩展不确定度)(y U一般按简易法进行扩展,)()(y u k y U C ⋅= 2=k注1:扩展不确定度的有效数字不能多于2位,应与测量结果末位对齐;保留1位或2位有效数字时后面的数字除零外应均要进位;注2:各标准不确定度分量的有效数字应多余2位进行保留; 8.结果报告 按绝对量报告报告方式1 )(y U y Y ±= 2=k 或 )(U y Y = 2=k报告方式2 ?=Y ?)(=y U 2=k 按相对量报告报告方式1 )](1[y U y Y rel ±= 2=k 报告方式2 ?=Y ?)(=y U rel 2=k。

测量不确定度评定方法

测量不确定度评定方法

测量不确定度评定方法引言:在科学研究和工程实践中,测量是一个重要的环节,它涉及到数据的采集、分析和解释。

然而,由于各种因素的影响,测量结果往往存在不确定性。

为了能够客观地评估测量结果的可靠性,科学家和工程师们提出了各种不确定度评定方法。

本文将介绍几种常用的测量不确定度评定方法,并对其原理和应用进行探讨。

一、标准偏差法标准偏差法是一种常用的测量不确定度评定方法。

它基于统计学原理,通过对多次测量结果的分析,计算出测量值的标准偏差。

标准偏差越小,说明测量结果的稳定性越好,不确定度越小。

标准偏差法适用于连续变量的测量,如长度、质量等。

二、最大允差法最大允差法是一种简单直观的测量不确定度评定方法。

它基于测量设备的精度规格和操作人员的经验,通过确定最大允差来评估测量结果的可靠性。

最大允差越小,说明测量设备越精确,不确定度越小。

最大允差法适用于离散变量的测量,如计数、分类等。

三、扩展不确定度法扩展不确定度法是一种综合考虑多种不确定度来源的测量不确定度评定方法。

它基于不确定度的传递规律,通过计算各个不确定度分量的贡献,得到测量结果的总体不确定度。

扩展不确定度法适用于复杂测量系统,涉及多个测量参数和环境条件的情况。

四、蒙特卡洛法蒙特卡洛法是一种基于随机模拟的测量不确定度评定方法。

它通过随机生成符合不确定度分布规律的测量结果,进行大量重复实验,并对结果进行统计分析,得到测量结果的不确定度。

蒙特卡洛法适用于复杂非线性系统和高度不确定的测量问题。

五、不确定度的表示和报告不确定度的表示和报告是测量不确定度评定中的重要环节。

一般来说,不确定度应该以数值和单位的形式给出,并伴随着测量结果一起报告。

此外,还应该明确不确定度的计算方法和评定依据,以便他人能够理解和验证。

六、总结测量不确定度评定是科学研究和工程实践中的重要问题。

通过合理选择和应用不确定度评定方法,可以提高测量结果的可靠性和可信度。

标准偏差法、最大允差法、扩展不确定度法和蒙特卡洛法是常用的测量不确定度评定方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量不确定度评定U,p,k,u代表什么?
当测量不确定度用标准偏差σ表示时,称为标准不确定度,统一规定用小写拉丁字母“u”表示,这是测量不确定度的第一种表示方式。

但由于标准偏差所对应的置信水准(也称为置信概率)通常还不够高,在正态分布情况下仅为68.27%,因此还规定测量不确定度也可以用第二种方式来表示,即可以用标准偏差的倍数kσ来表示。

这种不确定度称为扩展不确定度,统一规定用大写拉丁字母U表示。

于是可得标准不确定度和扩展不确定度之间的关系:
U=kσ=ku
式中k为包含因子。

扩展不确定度U表示具有较大置信水准区间的半宽度。

包含因子有时也写成kp的形式,它与合成标准不确定度uc(y)相乘后,得到对应于置信水准为p的扩展不确定度Up=kpuc(y)。

在不确定度评定中,有关各种不确定度的符号均是统一规定的,为避免他人的误解,一般不要自行随便更改。

在实际使用中,往往希望知道测量结果的置信区间,因此还规定测量不确定度也可以用第三种表示方式,即说明了置信水准的区间的半宽度a来表示。

实际上它也是一种扩展不确定度,当规定的置信水准为p时,扩展不确定度可以用符号Up表示。

测量不确定度评定步骤?
评定与表示测量不确定度的步骤可归纳为
1)分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量。

2)评定标注不确定度分量,并给出其数值ui和自由度vi。

3)分析所有不确定度分量的相关性,确定各相关系数ρij。

4)求测量结果的合成标准不确定度,则将合成标准不确定度uc及自由度v .
5)若需要给出展伸不确定度,则将合成标准不确定度uc乘以包含因子k,得展伸不确定度
U=kuc。

6)给出不确定度的最后报告,以规定的方式报告被测量的估计值y及合成标准不确定度uc
或展伸不确定度U,并说明获得它们的细节。

根据以上测量不确定度计算步骤,下面通过实例说明不确定度评定方法的应用。

我们单位的不确定度都是我写,其实计算不确定度,并写出报告,整体来说也就分几个步骤,
一、概述
二、数学模型
三、输入量的标准不确定度评定
这里面就包括数学模型里所有影响结果的参量,找出所有影响因素,计算各个影响量的标准不确定度,其中又分为A类评定和B类评定
这个按B类评定进行计算,影响万用表的因素也很多,比如万用表的仪器设备检定证书中如果有不确定度,可以直接用,如果没有,就看给出的允许误是多少,用这个数字除以根号3,得出误差的标准不确定度。

还有要考虑温湿度的影响,以及人为读数误差(不知道你们那个万用表是不是人工读数),基本上万用表就考虑这些因素差不多了,你就是一个万用表的读书不确定度,一般按正态分布,K取根号3,一般会把标准不确定度先转换成相对标准不确定度,这样都变成无量纲的,方便后边合成。

四、计算合成不确定度
五、计算扩展不确定度
六、最后的不确定度表示
一般试验室能力验证,查的就是不确定度报告,按这个格式就可以
一、检测方法
(一)依据
(二)原理
(三)主要仪器
(四)操作步骤
1、标准曲线的绘制
2、样品测定
二、数学模型
水中氨氮量的计算公式为:m = ( A - A0 - a) / b
式中:A——样品溶液的吸光度;A0——空白试剂吸光度;
a——回归方程的截距;b——回归方程的的斜率。

水中氨氮浓度的计算公式为: c = m / V
不确定度的计算:
U c(c)÷c = √[u(C NH4Cl)/C NH4Cl]2+[u(f50)/ f50]2+[u(V20)/ V20]2+ [u1(m)/ m]2+[u2(m)/ m]2+[u(A)/ A]2
式中:
u(C NH4Cl)——氨氮标准贮备液引入的不确定度;
[u(f50)——将贮备液稀释至使用液引入的不确定度;
u(V20)——取样过程引入的不确定度;
u1(m) ——标准曲线拟合引入的不确定度;
u2(m) ——样品重复性测量引入的不确定度;
u(A) ——测量仪器引入的不确定度。

三、不确定度分量的来源分析
由检测方法和数学模型分析,其不确定度有以下几个方面:
⑴氨氮标准贮备液引入的不确定度;
⑵将贮备液稀释至使用液引入的不确定度:
10.00ml移液管引入的不确定度u1(V10),500ml容量瓶引入的不确定度u2(V500);分别包括体积刻度引入的不确定度u11(V10)和u21(V500),充满液体至刻度的变动性引入的不确定度u12(V10)和u22(V500),温度变化引入的不确定度u13(V10)和u23(V500)等三个方面。

⑶20.00ml吸管吸取水样过程引入的不确定度u(V20);
包括体积刻度引入的不确定度u31(V20)、温度变化引入的不确定度u32(V20);
⑷标准曲线拟合引入的不确定度u1(m);
⑸样品重复性测量引入的不确定度u2(m);
⑹测量仪器引入的不确定度u(A)。

四、不确定度分量的评估
①氨氮标准贮备液引入的不确定度
本实验所用的贮备液为国家标准,其相对扩展不确定度为1%,按正态分布(k=2)折算成相对标准不确定度:U rel(C NH4Cl)= U rel/k = 1%/2 = 0.005
②将贮备液稀释至使用液引入的不确定度:
1、10.00ml移液管引入的不确定度
使用10.00ml移液管配置标准使用液的不确定度主要来自三个方面:一是体积刻度的不确定度,容量误差为0.020ml,按均匀分布考虑(k=√3,标准不确定度u11(V10)= 0.020/√3= 0.0115 ml;二是容量瓶充满液体至满刻度的变动性标准偏差设定为u21(V500)=0.005ml;三是温度变化带来的不确定度,操作时温度变化为2℃,水的温差引起的体积变化为2.1×10-4,按均匀分布考虑,则10.00ml移液管温度变化带来的标准不确定度u13(V10)=10×2×2.1×10-4/√3=0.0024,此三项合成得
③④⑤⑥。

相关文档
最新文档