华师大版七年级数学上册《第5章 相交线与平行线》

合集下载

华师大版数学七年级上册第5章《相交线与平行线》说课稿

华师大版数学七年级上册第5章《相交线与平行线》说课稿

华师大版数学七年级上册第5章《相交线与平行线》说课稿一. 教材分析华师大版数学七年级上册第5章《相交线与平行线》是学生在学习几何初步知识后的进一步拓展。

本章主要介绍了相交线与平行线的概念、性质及运用。

通过本章的学习,学生能够理解并掌握相交线与平行线的基本性质,提高空间想象能力,并为后续几何学习打下基础。

二. 学情分析七年级的学生已经具备了一定的几何基础,对基本的几何概念和性质有所了解。

但学生在空间想象方面还存在一定困难,对相交线与平行线的认识尚浅。

因此,在教学过程中,教师需要注重引导学生建立空间观念,激发学生学习兴趣,提高学生几何素养。

三. 说教学目标1.知识与技能:学生会识别相交线与平行线,掌握它们的基本性质,并能运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、交流等活动,学生能够培养空间想象能力,提高几何思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,体验数学学习的乐趣,增强对几何学科的兴趣。

四. 说教学重难点1.重点:相交线与平行线的概念及其性质。

2.难点:相交线与平行线的判定与应用。

五. 说教学方法与手段1.教学方法:采用启发式教学法、小组合作学习法、案例教学法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、模型、实物等辅助教学,提高学生的空间想象力。

六. 说教学过程1.导入:通过展示生活中常见的相交线与平行线现象,引导学生关注本节课的主题。

2.新课导入:介绍相交线与平行线的概念,引导学生理解并掌握它们的基本性质。

3.实例分析:分析实际问题,让学生运用所学知识解决,巩固所学内容。

4.课堂练习:设计相关练习题,让学生在实践中进一步理解和掌握相交线与平行线的性质。

5.小组讨论:分组讨论相交线与平行线的判定方法,培养学生的合作意识。

6.总结提升:对本节课内容进行总结,强化学生对相交线与平行线的认识。

7.课后作业:布置相关作业,让学生巩固所学知识。

七. 说板书设计板书设计如下:相交线与平行线1.相交线:两条直线在同一平面内,有一个公共点。

华师版数学七年级上第5章相交线和平行线

华师版数学七年级上第5章相交线和平行线

华师版数学七年级上第5章相交线和平行线编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(华师版数学七年级上第5章相交线和平行线)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为华师版数学七年级上第5章相交线和平行线的全部内容。

相交线与平行线5。

1相交线1、对顶角性质:____________________.2、垂线的定义及性质:⑴定义:当两条直线相交所成的四个角中,有一个角是_______时,就说这两条直线互相________,其中一条直线叫做另一条直线的_______,它们的焦点O叫做________,如:直线AB、CD互相垂直,记作:“___________”,读作:___________________。

⑵性质:AB、CD这两条直线在垂足O点交成的四个角都是__________.⑶在________________,经过直线外或直线上一点,有且只有___________与已知直线垂直。

提示:①两条直线或射线垂直,指的是他们所在的直线互相垂直。

②以上性质必须强调“在同一平面内”,否则,在空间里,经过一点与已知直线垂直的直线有无数条。

3、点到直线的距离:⑴定义:从直线外一点到这条直线的_________的长度,叫做点到直线的距离。

⑵性质:直线外一点与直线上各点连结的所有线段中,__________最短。

⑶距离是一个数量,而不是一条线段。

4、同位角、内错角、同旁内角:如图,指出图中所有的同位角、内错角和同旁内角提示:①这三对角都是成对出现的,而且没对角的顶点都不相同;②这三类角必须是两条直线被第三条直线所截形成的。

5、⑴下列说法:①在平面上,过已知直线外一点有且只有一条直线垂直于已知直线;②在平面上,有且只有一条直线垂直于已知直线;③两条直线相交时,如果对顶角的和是180度,那么这两条直线互相垂直;④过直线L外一点P画PD⊥L,垂足为D,则PD是点P到直线L的距离。

华师大版数学七年级上册《 第5章 相交线与平行线 》教学设计

华师大版数学七年级上册《 第5章 相交线与平行线 》教学设计

华师大版数学七年级上册《第5章相交线与平行线》教学设计一. 教材分析华师大版数学七年级上册第5章《相交线与平行线》是学生在学习了平面几何基本概念和几何图形之后,进一步研究几何图形的性质和相互关系的重要章节。

本章主要内容包括相交线与平行线的定义、性质、判定和应用。

通过本章的学习,学生能够掌握相交线与平行线的基本知识,提高空间想象能力和逻辑思维能力。

二. 学情分析七年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。

但学生在学习过程中,可能会对相交线与平行线的概念和性质产生混淆,对判定定理的理解和应用也存在一定的困难。

因此,在教学过程中,需要注重对学生的基础知识的巩固,通过实例讲解和动手操作,帮助学生理解和掌握相交线与平行线的性质和判定方法。

三. 教学目标1.知识与技能目标:学生能够准确掌握相交线与平行线的定义,了解它们的性质和判定方法,并能运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 教学重难点1.相交线与平行线的定义和性质。

2.平行线的判定方法。

3.相交线与平行线在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入相交线与平行线的概念,激发学生的学习兴趣。

2.动手操作法:让学生通过实际操作,观察和分析相交线与平行线的性质,加深对知识的理解。

3.合作学习法:学生进行小组讨论和合作探究,培养学生的团队协作能力。

4.引导发现法:教师引导学生发现问题,引导学生运用已有知识解决问题,提高学生的逻辑思维能力。

六. 教学准备1.教学课件:制作相交线与平行线的教学课件,包括图片、动画和实例等,帮助学生直观理解。

2.教学素材:准备相关的练习题和实际问题,用于巩固和拓展学生所学知识。

3.教学工具:准备直尺、三角板等工具,方便学生进行实际操作。

初中数学华师大版七上5.平行线的判定课件

初中数学华师大版七上5.平行线的判定课件

文字叙述 同位角 相等 两直线平行
_内___错__角__相等 两直线平行
___同__旁__内__角互补 两直线平行
符号语言 ∵ ∠1=∠2 (已知) ∴a∥b
∵ ∠3=∠2 (已知) ∴a∥b
图形 c
1a 34
2
∵ ∠2+∠4=180° (已知)
b
∴a∥b
方法归纳
方法一:平行线的定义:在同一平面内,不相交的两 条直线就是平行线. 方法二:如果两条直线都和第三条直线平行,那么这 两条直线也互相平行. 方法三:同位角相等,两直线平行. 方法四:内错角相等,两直线平行. 方法五:同旁内角互补,两直线平行. 方法六:在同一平面内,垂直于同一条直线的两条直 线平行.
求证:AB∥CE.请完成下列推理过程:证明:∵CD平分∠ECF,
∴∠ECD=

).∵∠ACB=∠FCD (
),∴∠ECD=∠ACB (
)∵∠B=∠ACB,∴∠B=∠

∠D)CF.∴A角B∥平C分E线(定义
).
对顶角相等
等量代换
ECD 等量代换 同位角相等,两直线平行
课堂总结
两条直线平行的判定定理:
故选:B.
2.如图,现有如下条件:①∠1=∠4;②∠2=∠3;③∠B=∠D;④∠B
=∠DCE;⑤∠D+∠DCB=180°.其中能判断AB∥DC的有( B ) A.①②③ B.②④ C.①③⑤ D.①②④
解:①当∠1=∠4时,由“内错角相等,两直线平行”可以判定AD∥BC, 不能判定AB∥DC,不符合题意;②当∠2=∠3时,由“内错角相等,两直 线平行”可以判定AB∥DC,符合题意;③由∠B=∠D不能判定AB∥DC, 不符合题意;④当∠B=∠DCE时,由“同位角相等,两直线平行”可以判 定AB∥DC,符合题意;⑤当∠D+∠DCB=180°时,由“同旁内角互补,两 直线平行”可以判定AD∥BC,不能判定AB∥DC,不符合题意.

华东师大版七年级数学上册第5章《相交线与平行线》教案设计

华东师大版七年级数学上册第5章《相交线与平行线》教案设计

华东师大版七年级数学上册第5章《相交线与平行线》教案设计5.1 相交线第1课时教学目标【知识与能力】1.能准确理解对顶角的概念,会在图形中识别对顶角.2.理解对顶角的性质并能运用对顶角的相关知识进行简单运算.【过程与方法】经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.【情感态度价值观】在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强用数学的意识.教学重难点【教学重点】对顶角的概念与性质.【教学难点】在复杂图形中找对顶角.课前准备无教学过程一、情境引入同学们,进入七年级学习以来,大家都有这样的感受:“生活中处处有——数学.”现在老师请各位同学看一组生活中的图片,(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)在这些图形中都出现了两条相交直线,每两条相交直线形成几个角?这些角叫什么角?它们有没有特殊关系?(说明:由此引入新课)二、探究新知1.问题导读自学教材第160、161前两个自然段,回答下列问题:(1)什么是对顶角?对顶角满足什么条件?(2)在教材第160页图5.1.1中找出对顶角.(3)举出生活中对顶角的例子.(4)教材第162页练习第1题.设计意图:明确对顶角的概念.2.合作交流(1)互为对顶角的两个角的大小关系是怎样的?可让学生动手画一画,学生两人一组,任取一个角∠2,得出∠2的度数,看这两个角的大小关系有什么特点,得出结论.最后全班汇总,看得出的结论是否相同.(2)这个结论正确吗?学生分组讨论,利用同角的补角相等说明.设计意图:先通过测量感知对顶角相等,然后再从理论上说明.(3)结论:对顶角相等.3.例题如图,直线AB、CD相交于点O,OE平分∠AOC,∠AOE=25°,你能说出图中哪些角的度数?先让学生分组讨论,充分利用已知条件,如对顶角、角平分线、补角等.思考:在本题中,如果已知∠BOD的度数,你能求出哪些角的度数?三、巩固练习1.教材第162页练习第2题2.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?四、课堂小结本节课你学会了什么?请你说出来,还有哪些不明白?五、课后作业1.如图,其中共有对对顶角.【答案】4第1题图第2题图2.如图,AB、CD相交于点O,∠DOE=90°,∠AOC=70°,求∠BOE的度数.【答案】∠BOE的度数为20°.5.1 相交线第3课时教学目标【知识与能力】能够根据图形判断哪些角是同位角、内错角、同旁内角.【过程与方法】在认识三线八角中的同位角、内错角、同旁内角的过程中,培养学生的识图能力.【情感态度价值观】发展学生应用数学的意识与能力,增强学好数学的愿望和信心.教学重难点【教学重点】从不同图形中找出不同位置关系的角.【教学难点】根据图形特点正确确定位置关系的角.课前准备无教学过程一、创设情境,导入新课设计意图:通过问题情境,引发学生的学习兴趣和探究欲望,使学生参与到教学过程中来,培养学生的自主学习能力.教师提出问题:两条直线相交,只有一个交点,产生四个角,如图:直线AB与CD相交于点O,得到∠1,∠2,∠3,∠4,在这些角中,哪些是相等的?哪些是互补的?学生观察后作出回答,并且指出相等或互补的理由.二、探究新知设计意图:通过学生的观察、比较、归纳、探究,使学生体验两条直线被第三条直线所截产生的八个角的位置关系,能够识别同位角、内错角、同旁内角,去体验“三线八角”的具体特征.师:两条直线相交产生四个角,若两条直a、b被同一平面内的第三条直线l所截,则又可得到几个角呢?这几个角之间又存在哪些关系呢?教师画出图形,引导学生去观察、思考.(1)同位角教师提出问题,图中的∠1和∠5的位置有什么关系?从直线l来看,∠1与∠5处于哪个位置,从直线a、b来看,∠1与∠5又处于哪个位置?学生先观察、思考,然后讨论交流.师生共同概括:∠1与∠5位于直线l的同一侧,直线a、b的同一方,这样位置的角叫做同位角. 在上图中,你还能发现哪些同位角?学生观察后,教师提问回答.(2)内错角师:除以上几对同位角外,如∠3与∠5不是同位角,∠3与∠5处于直线l的哪个位置?直线a、b 的哪个位置?学生观察后作出回答.由此总结出内错角的特征,认识了内错角的定义,并找出图中的其他内错角.(3)同旁内角师提出问题:除了以上两种位置关系的角之外,你还能发现其他不一样的角吗?学生观察、讨论、交流后进一步指出∠4与∠5,∠3与∠6这种位置关系的角.从而进一步得出同旁内角的特征:位于截线的同侧,且位于被截直线之间.三、巩固练习设计意图:通过学生自主练习,让学生进一步认识同位角、内错角、同旁内角;并且交流各自的学习成果,培养学生的自主学习能力.练习:如图,∠1是直线a、b相交所成的一个角,用量角器量出∠1的度数,画一条直线c,使直线c与直线b相交所成的角中有一个与∠1为一对同位角,并且自行找出一对内错角和同旁内角.学生完成后,组内交流,展示不同的画法,不同的结果,互相评价.四、课堂小结设计意图:通过小结,让学生回顾一下本节所学的内容,对本节的知识形成一个完整的知识网络,有利于学生对知识的消化与吸收.小结:谈谈你对“三线八角”的认识,本节的收获是什么?五、课后作业(1)如图所示,∠1和∠2是直线和直线被第三条直线所截而成的角;(2)∠2和∠BCE是直线和直线被第三条直线所截而成的角;(3)∠4和∠A是直线和直线被第三条直线所截而成的角.【答案】(1)AB CE BD 同位 (2)AB EC BD 同旁内 (3)AB CE AC 内错.5.2 平行线第2课时教学目标【知识与能力】使学生认识平行线的识别法,能灵活地利用平行线的三个识别法解决一些简单的问题. 【过程与方法】经历平行线三种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.【情感态度价值观】通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物主义观点.教学重难点【教学重点】平行线的三种识别方法.【教学难点】运用三种识别方法进行简单的推理.课前准备无教学过程一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了α、β的度数,请几个小组同学说说测量的结果,老师告诉你:根据α=β,可得出校道中两段笔直的部分是平行的,想知道为什么吗?带着这个问题,我们来学习“平行线的识别”.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.师生共同操作,经过直线外一点画已知直线的平行线.三角尺沿着直尺的方向由原来的位置移到另一个位置,角在平移前的位置与平移后的位置构成一对同位角,其大小不变,因此,只要保持同位角相等,画出的直线就平行于已知直线.(合作、交流讨论后得出)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果∠1=∠3,那么a∥b.(交流后得出)因为∠1=∠3(已知),∠2=∠3(对顶角相等),所以∠1=∠2,∴a∥b.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示例1.如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,那么a∥b吗?为什么?学生思考后根据所学知识做出解答.变式训练:若在以上问题中,∠1=115°,∠3=65°,那么a∥b吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.例2.如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构. 师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?【答案】因为∠1=∠2(已知),又因为∠CGE=∠2(对顶角相等),所以∠1=∠CGE(等量代换),又因为∠3=∠4(已知),所以∠3+∠1=∠4+∠CGE,即∠MEF=∠EGH,所以EF∥GH(同位角相等,两直线平行).2.如图,已知∠1=35°,∠B=55°,AB⊥AC,则(1)∠DAB+∠B= ;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?【答案】(1)180°(2)AD∥BC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使AB∥CD,则须满足AC⊥DC,或∠B+∠BCD=180°.。

华师版七年级数学上册第五章_相交线与平行线_教案

华师版七年级数学上册第五章_相交线与平行线_教案

相交线教学目标1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。

重点难点对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点。

教学过程一、情景导入下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。

“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。

相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。

我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。

二、邻补角和对顶角下面是一把剪刀,你能联想到什么几何图形?两条直线相交,如图。

上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4。

量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:∠1和∠2、∠1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是1800;∠1和∠3、∠2和∠4为二类,它们相等。

第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线。

1 2 3 4 O B A C D具有这种关系的两个角,互为邻补角。

讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关。

第二类角有什么共同的特征?有公共的顶点,两边互为反向延长线。

具有这种位置关系的角,互为对顶角。

思考:〔投影3〕下列图形中,∠1和∠2是对顶角的是〔 〕A B C D注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个。

三、对顶角的性质在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。

在这过程中,两个把手之间的角与剪刀刃之间的角有什1 2 1 2 1 2 12么关系?为了回答这个问题,我们先来研究下面的问题。

华东师大版七年级数学上册第五章《相交线与平行线》教案

华东师大版七年级数学上册第五章《相交线与平行线》教案5.1 相交线第1课时教学目标【知识与能力】1.能准确理解对顶角的概念,会在图形中识别对顶角.2.理解对顶角的性质并能运用对顶角的相关知识进行简单运算.【过程与方法】经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.【情感态度价值观】在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强用数学的意识.教学重难点【教学重点】对顶角的概念与性质.【教学难点】在复杂图形中找对顶角.课前准备无教学过程一、情境引入同学们,进入七年级学习以来,大家都有这样的感受:“生活中处处有——数学.”现在老师请各位同学看一组生活中的图片,(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)在这些图形中都出现了两条相交直线,每两条相交直线形成几个角?这些角叫什么角?它们有没有特殊关系?(说明:由此引入新课)二、探究新知1.问题导读自学教材第160、161前两个自然段,回答下列问题:(1)什么是对顶角?对顶角满足什么条件?(2)在教材第160页图5.1.1中找出对顶角.(3)举出生活中对顶角的例子.(4)教材第162页练习第1题.设计意图:明确对顶角的概念.2.合作交流(1)互为对顶角的两个角的大小关系是怎样的?可让学生动手画一画,学生两人一组,任取一个角∠2,得出∠2的度数,看这两个角的大小关系有什么特点,得出结论.最后全班汇总,看得出的结论是否相同.(2)这个结论正确吗?学生分组讨论,利用同角的补角相等说明.设计意图:先通过测量感知对顶角相等,然后再从理论上说明.(3)结论:对顶角相等.3.例题如图,直线AB、CD相交于点O,OE平分∠AOC,∠AOE=25°,你能说出图中哪些角的度数?先让学生分组讨论,充分利用已知条件,如对顶角、角平分线、补角等.思考:在本题中,如果已知∠BOD的度数,你能求出哪些角的度数?三、巩固练习1.教材第162页练习第2题2.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?四、课堂小结本节课你学会了什么?请你说出来,还有哪些不明白?五、课后作业1.如图,其中共有对对顶角.【答案】4第1题图第2题图2.如图,AB、CD相交于点O,∠DOE=90°,∠AOC=70°,求∠BOE的度数.【答案】∠BOE的度数为20°.5.1 相交线第2课时教学目标【知识与能力】认识生活中的垂直现象,理解垂直定义,并能用符号表示.掌握垂线的性质,会过一点作已知直线的垂线.【过程与方法】经历垂线画法,垂线的性质以及点到直线的距离的探索过程,尝试从不同角度寻求垂线的画法,用不同方法得到垂线的性质.【情感态度价值观】通过与生活相联系,让学生对数学产生兴趣,认识到数学的实用价值.教学重难点【教学重点】垂线、垂线段、点到直线的距离的概念.【教学难点】垂线的性质和点到直线的距离.课前准备无教学过程一、引入设计意图:通过设置问题,引发学生的思考,激发学生的学习兴趣,在回忆旧知识的同时,自然切入本节课所要学习的内容.教师提问学生:能在生活中找到互相垂直的直线吗?学生观察实例,这时教师可以问学生“是通过什么特征来确定它们是垂线的?”帮助学生回忆垂直的形象(小学已接触过垂直).二、做一做设计意图:通过让学生动手操作,加深对垂线的理解,明确垂线的不同画法,锻炼了学生的实际操作能力,开拓了他们的思维,积累了他们的数学活动经验.1.请学生作出两条互相垂直的直线教师鼓励学生用不同的方法画垂线,学生发现用三角尺、量角器都可以来画互相垂直的直线,然后让两位学生各自采用一种作图工具在黑板上演示作图过程.2.引入垂直符号表示通过以上画图过程,使学生明确两条直线相交只有一个交点,当相交所成的角中有一个角是直角时,则此时两条直线互相垂直,若直线AB与CD垂直,则用符号“⊥”表示,即“AB⊥CD”,从而引出垂直的符号表示及垂足的定义.3.在方格纸上画出互相垂直的两条直线,用量角器验证你画出的两条直线是否垂直,如果是,能试着说明一下原因吗?三、想一想设计意图:让学生自主探究,从而经历垂线的性质得出过程,体会到经过一点,有且只有一条直线与已知直线垂直,通过动手测量,从而让学生了解到“垂线段最短”,这样学生得到的知识印象更深,更符合学生对新知识学习的接受过程.1.过点A作l的垂线,你能作出多少条?教师不仅要引导学生运用三角尺,过直线外一点和直线上一点作已知直线的垂线,还要鼓励学生运用自己的语言描述所得的结论,培养学生有条理的表达能力.2.点到直线的距离让学生量取直线外一点到直线的若干个线段的长,比较这一点到直线的垂线段的长度的大小,从而引出点到直线的距离的概念,其性质“垂线段最短”.四、做一做设计意图:让学生做出三角形的高,从而进一步巩固点到直线的距离是这一点到直线的垂线段的长度.让学生分别画出三个三角形AB边上的高(三个三角形分别是锐角三角形,直角三角形,钝角三角形),教师在学生的画图过程中注意发现问题,进行针对性的指导.五、巩固练习设计意图:通过练习,让学生进一步理解垂直的定义,怎样过一点画已知直线的垂线,加深对本节知识的理解和应用,从而学以致用,从学到的知识解决问题.1.作一条直线l,在直线l上取一点A,在直线l外取一点B,分别经过点A、B,用三角尺或量角器作l的垂线.2.如图所示,在某村庄中有一条街道,在街道的一侧有一公共汽车站,为了方便村民坐车,村委会决定修一条马路直达车站,你能设计一种方案,使得公共汽车站到街道的路程最近吗?六、课堂小结小结:以下几个方面由学生自己总结:①垂线的定义及垂直的符号表示;②垂线的有关性质;③过一点作已知直线的垂线的方法.七、课后作业1.如图,O是直线AB上一点,∠AOD=53°,∠BOE=37°,则OD与OE的位置关系是什么?【答案】∠DOE=180°-∠AOD-∠BOE=90°,所以OD⊥OE.2.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm【答案】D5.1 相交线第3课时教学目标【知识与能力】能够根据图形判断哪些角是同位角、内错角、同旁内角.【过程与方法】在认识三线八角中的同位角、内错角、同旁内角的过程中,培养学生的识图能力.【情感态度价值观】发展学生应用数学的意识与能力,增强学好数学的愿望和信心.教学重难点【教学重点】从不同图形中找出不同位置关系的角.【教学难点】根据图形特点正确确定位置关系的角.课前准备无教学过程一、创设情境,导入新课设计意图:通过问题情境,引发学生的学习兴趣和探究欲望,使学生参与到教学过程中来,培养学生的自主学习能力.教师提出问题:两条直线相交,只有一个交点,产生四个角,如图:直线AB与CD相交于点O,得到∠1,∠2,∠3,∠4,在这些角中,哪些是相等的?哪些是互补的?学生观察后作出回答,并且指出相等或互补的理由.二、探究新知设计意图:通过学生的观察、比较、归纳、探究,使学生体验两条直线被第三条直线所截产生的八个角的位置关系,能够识别同位角、内错角、同旁内角,去体验“三线八角”的具体特征. 师:两条直线相交产生四个角,若两条直a、b被同一平面内的第三条直线l所截,则又可得到几个角呢?这几个角之间又存在哪些关系呢?教师画出图形,引导学生去观察、思考.(1)同位角教师提出问题,图中的∠1和∠5的位置有什么关系?从直线l来看,∠1与∠5处于哪个位置,从直线a、b来看,∠1与∠5又处于哪个位置?学生先观察、思考,然后讨论交流.师生共同概括:∠1与∠5位于直线l的同一侧,直线a、b的同一方,这样位置的角叫做同位角. 在上图中,你还能发现哪些同位角?学生观察后,教师提问回答.(2)内错角师:除以上几对同位角外,如∠3与∠5不是同位角,∠3与∠5处于直线l的哪个位置?直线a、b 的哪个位置?学生观察后作出回答.由此总结出内错角的特征,认识了内错角的定义,并找出图中的其他内错角.(3)同旁内角师提出问题:除了以上两种位置关系的角之外,你还能发现其他不一样的角吗?学生观察、讨论、交流后进一步指出∠4与∠5,∠3与∠6这种位置关系的角.从而进一步得出同旁内角的特征:位于截线的同侧,且位于被截直线之间.三、巩固练习设计意图:通过学生自主练习,让学生进一步认识同位角、内错角、同旁内角;并且交流各自的学习成果,培养学生的自主学习能力.练习:如图,∠1是直线a、b相交所成的一个角,用量角器量出∠1的度数,画一条直线c,使直线c与直线b相交所成的角中有一个与∠1为一对同位角,并且自行找出一对内错角和同旁内角. 学生完成后,组内交流,展示不同的画法,不同的结果,互相评价.四、课堂小结设计意图:通过小结,让学生回顾一下本节所学的内容,对本节的知识形成一个完整的知识网络,有利于学生对知识的消化与吸收.小结:谈谈你对“三线八角”的认识,本节的收获是什么?五、课后作业(1)如图所示,∠1和∠2是直线和直线被第三条直线所截而成的角;(2)∠2和∠BCE是直线和直线被第三条直线所截而成的角;(3)∠4和∠A是直线和直线被第三条直线所截而成的角.【答案】(1)AB CE BD 同位 (2)AB EC BD 同旁内 (3)AB CE AC 内错.5.2 平行线第1课时教学目标【知识与能力】感受平行线的概念,理解平行公理,能作出已知直线的平行线.【过程与方法】通过观察、交流、探索等活动获取知识,在具体操作活动中了解平行线的有关性质.【情感态度价值观】丰富和发展自己的数学活动经历和体验,感受数学图形世界的丰富多彩.教学重难点【教学重点】平行线的概念和平行公理.【教学难点】用几何语言描述作图过程.课前准备无教学过程一、创设情境,引入新课设计意图:创设多种有关平行的现实情境,激发学生的学习兴趣,让他们体会数学知识与现实生活的联系,掀起他们探究的欲望.教师课件展示学生熟悉的有关平行线的现实情境,让学生观察:线、线与线的关系.如人行道、高压电线、百米跑道……问题:这些线之间呈现怎样的位置关系?学生积极思考,观察后踊跃发言.二、新知探索设计意图:在让学生动手操作画平行线的过程中加深对平行线的理解,培养学生主动参与合作交流的意识,提高观察、分析、概括和抽象能力,培养学生的动手能力,引导学生探索平行线的性质.1.教师板书课题,并说明本节课继续探讨现实生活中的平行现象,让学生给出平行的定义.一部分学生能回答出“不相交的两直线”而遗漏“在同一平面内”,教师此处应适当放开,让学生结合现实生活中的情景讨论“在同一平面内”的重要性.教师出示问题:在教学中找平行线?学生讨论,组内交流,最后派代表发表见解.师:生活中这么多平行,如何表示它们?如何画平行线?从而引出平行线的表示符号“∥”.2.画平行线教师让学生拿出方格纸,画出平行线,并进行组内交流.总结画平行线的方法:一靠、二落、三推、四画.为了让学生印象深刻,让学生板演,其余学生集中演示,体会.3.平行线的性质师:让学生拿出预制教具.(一块泡沫塑料上一根固定的木条和两根一端固定的木条)问题:何种情形下,活动的木条与固定的木条平行?学生一边活动木条,一边思考,用自己的语言叙述:只有一种情形.教师总结:经过直线外一点,有且只有一条直线与这条直线平行.进一步提问:若两根活动木条都与固定的木条平行,这两根活动木条有什么关系?学生经过讨论思考后,体会平行线的性质并积极发言.得出:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三、巩固练习设计意图:通过练习,巩固对平行线的认识,熟悉做已知直线的平行线的方法,达到学以致用的目的.1.如图,四边形ABCD和四边形AFCE都是平行四边形,点E、F分别在CD、AB上,则图中平行线的组数是( )A.2组B.3组C.4组D.5组2.如图,你能用学过的方法判断a、b这两条直线的位置关系吗?(1)过直线外一点A画直线l的平行线;(2)找出图中所有的平行线,并用“∥”表示.四、课堂小结设计意图:由练习过渡到小结中,让学生再次体会,知识来自于实践中,反过来又指导实践,初步体验知识的系统性和完整性.小结:本课你从现实情境中了解了什么知识?对你获取的信息说说你的反思.五、课后作业1.如图所示,图中哪些线段是互相平行的?把它们表示出来.【答案】线段a∥e,线段b∥d,线段c∥f.2.已知:D是∠AOB内部一点,如图,过D作DE∥AO,作DF∥BO分别交OA、OB于F、E,画出图形,并说明四边形DEOF是什么图形?【答案】画图如图所示:四边形DEOF是平行四边形.3.如图所示,直线AB、CD是一条河的两岸,并且AB∥CD,点E为直线AB、CD外一点,现想过点E作CD的平行线,则只需过点E作河岸AB的平行线即可,其理由是什么?【答案】理由是(1)过直线外一点有且只有一条直线与已知直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2 平行线第2课时教学目标【知识与能力】使学生认识平行线的识别法,能灵活地利用平行线的三个识别法解决一些简单的问题. 【过程与方法】经历平行线三种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.【情感态度价值观】通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物主义观点.教学重难点【教学重点】平行线的三种识别方法.【教学难点】运用三种识别方法进行简单的推理.课前准备无教学过程一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了α、β的度数,请几个小组同学说说测量的结果,老师告诉你:根据α=β,可得出校道中两段笔直的部分是平行的,想知道为什么吗?带着这个问题,我们来学习“平行线的识别”.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.师生共同操作,经过直线外一点画已知直线的平行线.三角尺沿着直尺的方向由原来的位置移到另一个位置,角在平移前的位置与平移后的位置构成一对同位角,其大小不变,因此,只要保持同位角相等,画出的直线就平行于已知直线.(合作、交流讨论后得出)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果∠1=∠3,那么a∥b.(交流后得出)因为∠1=∠3(已知),∠2=∠3(对顶角相等),所以∠1=∠2,∴a∥b.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示例1.如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,那么a∥b吗?为什么?学生思考后根据所学知识做出解答.变式训练:若在以上问题中,∠1=115°,∠3=65°,那么a∥b吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.例2.如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构.师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?【答案】因为∠1=∠2(已知),又因为∠CGE=∠2(对顶角相等),所以∠1=∠CGE(等量代换),又因为∠3=∠4(已知),所以∠3+∠1=∠4+∠CGE,即∠MEF=∠EGH,所以EF∥GH(同位角相等,两直线平行).2.如图,已知∠1=35°,∠B=55°,AB⊥AC,则(1)∠DAB+∠B= ;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?【答案】(1)180°(2)AD∥BC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使AB∥CD,则须满足AC⊥DC,或∠B+∠BCD=180°.5.2 平行线第3课时教学目标【知识与能力】掌握平行线的三个特征,体会平行线特征与平行线识别的区别,能运用平行线的识别与特征解决问题.【过程与方法】经历观察、操作、推理、交流等活动,进一步发展空间观念,加强推理能力和有条理的表达能力,经历探索平行线的特征的过程,掌握平行线的特征并解决一些问题.【情感态度价值观】通过操作、观察、合作、交流,进一步感受学习数学的意义,培养学生主动探索、合作以及解决问题的能力.教学重难点【教学重点】平行线的特征.【教学难点】平行线的特征与识别法的综合运用.课前准备无教学过程一、复习回顾设计意图:本节课所学知识与前一节课的内容有着密切的联系,两者既有相同之处又有本质的区别.在课的开始以习题化方式复习已学知识,一方面为本节课的学习奠定好基础,另一方面为“对比发现,加深理解”环节作好铺垫.教师出示问题:如图,直线a、b被直线l所截,在横线上填空:(1)因为∠1=∠2(已知),所以a∥b .(2)因为∠3=∠2(已知),所以a∥b .(3)因为∠2+∠4=180°(已知),所以a∥b .学生完成后,组内交流结果.二、情境引入设计意图:通过提出一个极具趣味性的问题,学生可能通过猜测得到答案,但并不理解其中真正的原因所在,从而激发学生强烈的求知欲和好奇心,引入新课的学习.教师出示问题:如图,是举世闻名的三星堆考古中发掘出的一个残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°,已知四边形ABCD的AD∥BC,请你求出另外两个角的度数. 学生经过思考,然后小组进行讨论,在教师的引导下得出结论.三、探究发现设计意图:教师要通过设计问题是,让学生经历观察、操作、推理、想象等探索过程,获得数学活动的经验,要发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力.问题:已知直线a、b被l所截,a∥b.让学生自己画出符合要求的图形后,提出问题.(1)合作交流一:请找出图中的同位角,并猜测它们有何关系?你能想办法验证你的猜测吗?(2)合作交流二:请找出图中的内错角,并猜测它们有何关系?你能想办法验证你的猜测吗?(3)合作交流三:图中还有其他位置关系的角吗?它们有何关系呢?说一说你是怎样得到结论的.以上问题在经过学生独立思考后,再进行小组讨论,互相补充,并派代表回答.(4)师生共同总结平行线的特征.四、巩固练习设计意图:通过练习,落实基础,特别是学生刚刚接触到新的知识时,往往应用起来会感到生疏,或者说对它的感觉仍旧停留在“雾里看花”的状态,这就需要一个过程,也就是对新知识从熟悉到熟练的过程.教师出示练习:1.完成下列填空:(1)因为AD∥BC(已知),所以∠B=∠1( );(2)因为AB∥CD(已知),所以∠D=∠1( );(3)因为AD∥BC(已知),所以∠C+∠D=180°( ).2.如图所示,AB∥CD,AD∥BC,分别找出与∠ADC相等或互补的角.学生完成后集中评议.五、课堂小结设计意图:课堂小结并不只是课堂知识点的回顾,教师要对教学目标的达成情况进行反馈,对相关知识点进行整合,要能够提出明确的具有反思性的问题,让学生有所思,有所得,达到巩固所学知识的目的.1.平行线的三个特征?2.直线平行的特征与直线平行条件的区别.(1)平行线识别与特征的条件与结论有什么关系?(2)使用平行线识别时是已知,说明;使用平行线特征时是已知,说明.师生共同交流总结以上所学的知识.六、课后作业1.如图,若AB∥CD,则正确的结论是( )A.∠1=∠2+∠3B.∠1=∠2=∠3C.∠1+∠2+∠3=180°D.∠1=∠2+∠3=180°【答案】A2.如图,AB∥CD,AC∥BD,试说明∠1=∠3.【答案】∵AB∥CD(已知),∴∠1=∠2(两直线平等,内错角相等), 又∵AC∥BD(已知),∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠3(等量代换).。

华师大版数学七年级上册第5章《相交线与平行线》教学设计

华师大版数学七年级上册第5章《相交线与平行线》教学设计一. 教材分析《相交线与平行线》是华师大版数学七年级上册第5章的内容,本章主要让学生掌握相交线与平行线的概念,学会用平行线与相交线的性质解决实际问题。

教材通过丰富的图片和实例,引导学生探究和发现平行线与相交线的性质,培养学生的观察能力、操作能力和推理能力。

本章内容在初中数学体系中具有重要地位,为后续几何学习打下基础。

二. 学情分析七年级的学生已具备一定的基础知识和观察能力,但对于抽象的几何概念和证明过程尚需引导。

学生在学习本章内容时,需要充分调动已有的知识和经验,通过观察、操作、猜想、验证等过程,掌握相交线与平行线的性质。

此外,学生需要学会用几何语言描述和证明平行线与相交线的关系,提高逻辑推理能力。

三. 教学目标1.了解相交线与平行线的概念,掌握它们的基本性质。

2.学会用平行线与相交线的性质解决实际问题。

3.培养学生的观察能力、操作能力、推理能力和几何语言表达能力。

4.培养学生合作学习、积极探究的学习态度。

四. 教学重难点1.相交线与平行线的概念及性质。

2.用平行线与相交线的性质解决实际问题。

3.几何语言的运用和证明过程的推理。

五. 教学方法1.采用问题驱动法,引导学生观察、操作、猜想、验证,激发学生学习兴趣。

2.运用合作学习法,让学生在小组内讨论、交流,培养学生的团队协作能力。

3.采用几何画板等软件辅助教学,直观展示相交线与平行线的性质。

4.注重个体差异,针对不同学生给予适时引导和帮助。

六. 教学准备1.准备相关图片、实例和教学素材。

2.制作课件,运用几何画板展示相交线与平行线的性质。

3.准备练习题和拓展题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用图片和实例,引导学生观察相交线与平行线的特点,激发学生学习兴趣。

提出问题:“你们认为什么是相交线?什么是平行线?”让学生发表自己的想法。

2.呈现(10分钟)展示教材中的相关内容,介绍相交线与平行线的定义及基本性质。

华师版初中七年级上册数学精品教学课件 第5章 相交线与平行线 5.2 平行线

∠1与∠5与两条铁轨平行没有关系,不符合题意.故选C.
图5.2-12
对接中考
链接教材
本题取材于教材第174页练习第1题.中考真题和教材习题都是考查平行线
的判定,均属于基础题.解决这类问题的关键是正确识别图中的截线和被截直线,然
后对图中的同位角、内错角、同旁内角进行分析判断.
对接中考
考点2 平行线性质的应用
∴ //(内错角相等,两直线平行)确定两直线的位置关系
例题点拨
由两角的数量关系判定平行线的方法
新知探究
知识点5 平行线的性质重难点
性质
文字语言
两条平行线被第三条直线所截,同位
性质1 角相等.简单说成:两直线平行,同位
角相等.
两条平行线被第三条直线所截,内错
性质2 角相等.简单说成:两直线平行,内错
“平行于”或“平行于”.
图5.2-1
新知探究
注意
(1)平行线的前提是“在同一平面内”,即同一平面内不相交的两条直线一定
平行,空间里不相交的两条直线不一定平行.
(2)两条线段或射线平行是指这两条线段或射线所在的直线互相平行.
示例:
在如图所示的长方体中,与′所在直线不相交,也不平行.
新知探究
典例1 下列说法正确的是( D )
A.不相交的两条直线是平行线
B.在同一平面内,不相交的两条线段所在的直线是平行线
C.在同一平面内,两条直线不相交就重合
D.在同一平面内,没有公共点的两条直线是平行线
[解析]
选项
A
B
C
D
分析
缺少前提条件“在同一平面内”.
平行线是直线,两条线段不相交并不代表它们所在的直线一定不相交.
∠2,

华师大版七年级上册数学第5章 相交线与平行线含答案

华师大版七年级上册数学第5章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,在平移三角尺画平行线的过程中,理由是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行2、如图所示,下列条件不能判定的是()A. B. C. D.3、如图,在平行四边形中,,E为垂足.如果,则()A. B. C. D.4、如图,将宽度相等的纸条沿折叠一下,如果,那么的度数是(  )A.70°B.100°C.110°D.140°5、如图,BD⊥BC,∠1=40°,若使AB∥CD,则∠2的度数是()A.30°B.40°C.50°D.60°6、下列说法中正确的个数有()①经过一点有且只有一条直线与已知直线垂直;②经过直线外一点,有且只有一条直线与已知直线平行;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④两条直线相交,对顶角相等.A.1个B.2个C.3个D.4个7、如图1,工程队要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB=()A.80°B.90°C.100°D.105°8、如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.经过直线外一点,有且只有一条直线与这条直线平行D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行9、如图,能判定EC∥AB的条件是()A.∠ B=∠ ACEB.∠ B=∠ ECDC.∠ A=∠ ACBD.∠ A=∠ ECD10、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个11、如图,,平分,则()A. B. C. D.12、将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为()A.60°B.45°C.50°D.30°13、如图,直线,等腰直角三角形的两个顶点分别落在直线、上,若,则的度数是()A. B. C. D.14、已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=()A.50°B.130°C.100°D.50°或130°15、在同一个平面内的四条直线,若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥dB.b⊥dC.a⊥dD.b∥c二、填空题(共10题,共计30分)16、直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB________7cm.(填>或者<或者=或者≤或者≥).17、如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,则∠DEG=________°.18、如图,等腰△ABC中,AB=AC=6,∠BAC=120°,点D,点P分别在AB,BC上运动,则线段AP和线段DP之和的最小值是________.19、点G是△ABC的重心,GD∥AB,交边BC于点D,如果BC=6,那么CD 的长是________.20、如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为________ .21、如图,AB∥CD, AF=EF,若∠C=62°,则∠A=________度.22、如图,在中,是斜边BC上的一个动点,过点D分别作于点M,于点N,连接MN,则线段MN长的最小值为________.23、如图,在矩形中,是对角线,延长到,使,连接.若,则________度.24、如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=________.25、如图,填空①如果∠1=∠2,那么根据________,可得________∥________;②如果∠DAB+∠ABC=180°,那么根据________,可得________∥________.③当________∥________时,根据________,得∠3=∠C.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、在平面直角坐标系中,已知以A(-1,0)或以B(3,0)为直角顶点的直角三角形ABC的面积为6,求顶点C的坐标.28、已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.29、如图所示,,试判断和的位置关系,并说明理由(提示:过点作的平行线)30、已知:如图,DE⊥AC,垂足为点E,∠AGF=∠ABC,∠BFG+∠BDE=180°,求证:BF⊥AC.请完成下面的证明的过程,并在括号内注明理由.证明:∵∠AGF=∠ABC(已知)∴FG∥________(________)∴∠BFG=∠FBC(________)∵∠BFG+∠BDE=180°(已知)∴∠FBC+∠BDE=180°(________)∴BF∥DE(________)∴∠BFA=________(两直线平行,同位角相等)∵DE⊥AC(已知)∴∠DEA=90°(________)∴∠BFA=90°(等量代换)∴BF⊥AC(垂直的定义)参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、C5、C6、C7、A8、A9、B10、B11、C12、D13、C14、D15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第5章相交线与平行线》一、选择题1.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离2.在一个平面内,任意四条直线相交,交点的个数最多有()A.7个B.6个C.5个D.4个3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10° B.20° C.25° D.30°4.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角5.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°6.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等7.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115°C.125°D.130°8.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A.30° B.45° C.60° D.75°9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60° B.50° C.40° D.30°10.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个二、填空题11.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.12.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为.13.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.14.如图,与∠1构成同位角的是,与∠2构成内错角的是.15.如图,已知∠1=∠2,∠B=40°,则∠3= .16.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.17.上午九点时分针与时针互相垂直,再经过分钟后分针与时针第一次成一条直线.18.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于度.三、解答题(共46分)19.)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,求∠ADE的度数.20.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠BAE=45°,∠1=60°,小明马上运用已学的数学知识得出∠ECD的度数.你能求出∠ECD的度数吗?如果能,请写出理由.21.如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量请你写出两种不同的测量方法,并说明几何道理.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.25.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD 于G,求∠1的度数.《第5章相交线与平行线》参考答案与试题解析一、选择题1.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离【考点】点到直线的距离.【分析】利用点到直线的距离的定义、垂线段最短分析.【解答】解:A、根据点到直线的距离的定义:即点到这一直线的垂线段的长度.故此选项正确;B、根据垂线段最短可知此选项正确;C、线段AP的长是点A到直线PC的距离,故选项错误;D、根据点到直线的距离即点到这一直线的垂线段的长度.故此选项正确.故选C.【点评】本题主要考查了点到直线的距离的定义,及垂线段最短的性质.2.在一个平面内,任意四条直线相交,交点的个数最多有()A.7个B.6个C.5个D.4个【考点】相交线.【专题】分类讨论.【分析】在平面上画出4条直线,当这4条直线经过同一个点时,有1个交点;当3条直线经过同一个点,第4条不经过该点时,有4个交点;当4条直线不经过同一点时,有6个交点.故可得出答案.【解答】解:如图所示:①当4条直线经过同一个点时,有1个交点;②当3条直线经过同一个点,第4条不经过该点时,有4个交点;③当4条直线不经过同一点时,有6个交点.综上所述,4条直线相交最多有6个交点.故选B.【点评】此题在相交线的基础上,着重培养学生的观察、实验能力.3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10° B.20° C.25° D.30°【考点】平行线的性质.【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【解答】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°,∵GH∥EF,∴∠2=∠AEC=25°,故选C.【点评】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.4.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.5.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°【考点】平行线的性质;垂线.【分析】如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.【点评】该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.6.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【考点】作图—基本作图;平行线的判定.【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.【点评】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.7.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115°C.125°D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.8.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A.30° B.45° C.60° D.75°【考点】平行线的性质.【专题】几何图形问题.【分析】由邻补角的定义即可求得∠BAD的度数,又由AB∥CD,即可求得∠ADC的度数,则问题得解.【解答】解:∵∠EAB=45°,∴∠BAD=180°﹣∠EAB=180°﹣45°=135°,∵AB∥CD,∴∠ADC=∠BAD=135°,∴∠FDC=180°﹣∠ADC=45°.故选B.【点评】此题考查了平行线的性质.注意两直线平行,内错角相等.9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60° B.50° C.40° D.30°【考点】平行线的性质;垂线.【分析】根据直角三角形的两锐角互余,求出∠D=40°,再根据平行线的性质即可解答.【解答】解:如图所示,∵FE⊥BD,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.【点评】本题主要考查平行线的性质、垂线及直角三角形的性质,解决此题时,根据直角三角形的性质求出∠D的度数是解决此题的关键.10.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个【考点】对顶角、邻补角;余角和补角.【分析】根据定义及定理分别判断各命题,即可得出答案.【解答】解:(1)互为补角的应是两个角而不是三个,故错误;(2)没说明∠A是∠B的余角,故错误;(3)互为邻补角的两个角的平分线互相垂直,故错误;(4)根据对顶角的定义可判断此命题错误.(5)相等角的余角相等,故正确.综上可得(5)正确.故选A.【点评】本题考查对顶角及邻补角的知识,难度不大,注意熟练掌握各定义定理.二、填空题11.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.【考点】平行线的判定;垂线.【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.【解答】解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.【点评】此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.12.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为15°.【考点】平行线的性质.【分析】根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=45°﹣∠2计算即可得解.【解答】解:∵∠A=60°,∠F=45°,∴∠1=90°﹣60°=30°,∠DEF=90°﹣45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF﹣∠2=45°﹣30°=15°.故答案为:15°.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.13.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.【考点】平行线的性质;直角三角形的性质.【专题】探究型.【分析】先根据平角的定义求出∠EDC的度数,再由平行线的性质得出∠C的度数,根据三角形内角和定理即可求出∠B的度数.【解答】解:∵∠1=155°,∴∠EDC=180°﹣155°=25°,∵DE∥BC,∴∠C=∠EDC=25°,∵△ABC中,∠A=90°,∠C=25°,∴∠B=180°﹣90°﹣25°=65°.故答案为:65°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.14.如图,与∠1构成同位角的是∠B ,与∠2构成内错角的是∠BDE .【考点】同位角、内错角、同旁内角.【分析】两个角分别在被截线的同一方,并且都在截线的同侧,具有这种位置关系的两个角叫做同位角,与∠1构成同位角的是∠B;两个角都在被截线之间,并且都在截线的两侧,具有这种位置关系的两个角,叫做内错角,与∠2构成内错角的是∠BDE.【解答】解;根据同位角、内错角的定义,与∠1构成同位角的是∠B,与∠2构成内错角的是∠BDE.【点评】正确记忆同位角以及内错角的定义是解决本题的关键.15.如图,已知∠1=∠2,∠B=40°,则∠3= 40°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠2,根据“内错角相等,两直线平行”得AB∥CE,再根据两直线平行,同位角相等即可得到∠3=∠B=40°.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,而∠B=40°,∴∠3=40°.故答案为40°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等.16.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【考点】平行线的性质.【分析】延长DE交AB于F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.17.上午九点时分针与时针互相垂直,再经过16分钟后分针与时针第一次成一条直线.【考点】钟面角.【专题】计算题.【分析】9点后分针与时针第一次成一条直线,则分针再3与4之间,时针在9与10之间,设9点时x分时,分针与时针第一次成一条直线,根据分针每分钟转动6°,时针每分钟转动0.5°,则x•6°﹣3×30°=x•0.5°,然后解方程即可.【解答】解:9点时x分时,分针与时针第一次成一条直线,根据题意得x•6°﹣3×30°=x•0.5°,解得x=16,即9时16分钟时分针与时针第一次成一条直线.故答案为.【点评】本题考查了钟面角:钟面被分成12大格,每大格为30°;分针每分钟转动6°,时针每分钟转动0.5°.18.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于30 度.【考点】平行线的性质.【分析】根据平行线的性质得到∠DNM=∠BME=75°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解答】解:∵AB∥CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=30°,故答案为:30.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.三、解答题(共46分)19.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,求∠ADE的度数.【考点】平行线的性质;三角形内角和定理.【分析】先根据三角形内角和定理求出∠BAC的度数,再由角平分线的性质求出∠BAD的度数,根据平行线的性质即可得出结论.【解答】解:∵在△ABC中,∠B=46°,∠C=54°,∴∠BAC=180°﹣46°﹣54°=80°.∵AD平分∠BAC,∴∠BAD=∠BAC=40°.∵DE∥AB,∴∠ADE=∠BAD=40°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.20.(8分)小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠BAE=45°,∠1=60°,小明马上运用已学的数学知识得出∠ECD的度数.你能求出∠ECD的度数吗?如果能,请写出理由.【考点】平行线的性质.【分析】首先过点E作EF∥AB,又由AB∥CD,可得EF∥AB∥CD,然后由两直线平行,内错角相等,求得∠FEA的度数与∠C=∠FEC,又由∠AEC=60°,即可求得∠C的度数.【解答】解:∠ECD=15°.理由:如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF=45°,∠ECD=∠FEC,∴∠CEF=∠AEC﹣∠AEF=60°﹣45°=15°,∴∠ECD=15°.【点评】此题主要考查了平行线的性质,注意掌握两直线平行,内错角相等与辅助线的添加方法是解此题的关键.21.如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量请你写出两种不同的测量方法,并说明几何道理.【考点】对顶角、邻补角.【专题】应用题.【分析】根据平角的定义以及对顶角相等的性质进行设计方案.【解答】解:方法一:延长AO到C,测量∠BOC,利用邻补角的数量关系求∠AOB.∵∠AOB=180°﹣∠BOC.方法二:延长AO到C,延长BO到D,测量∠DOC,利用对顶角相等求∠AOB.∴∠AOB=∠DOC.【点评】能够运用数学知识解决生活中的问题,提高数学知识的应用能力.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?【考点】同位角、内错角、同旁内角.【分析】根据同位角的概念作答.准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.【解答】解:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.【点评】同位角,即位置相同,两个角都在第三条直线的同旁,同在被截两条直线的上方或下方.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.【考点】平行线的判定;角平分线的定义;三角形内角和定理.【专题】证明题.【分析】(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.【解答】(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.【点评】此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.25.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD 于G,求∠1的度数.【考点】平行线的性质;角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义,两直线平行内错角相等的性质解答即可.【解答】解:∵∠EMB=50°,∴∠BMF=180°﹣∠EMB=130°.∵MG平分∠BMF,∴∠BMG=∠BMF=65°,∵AB∥CD,∴∠1=∠BMG=65°.【点评】主要考查了角平分线的定义及平行线的性质,比较简单.初中数学试卷。

相关文档
最新文档