胶体化学

合集下载

人教版高一化学必修一《胶体》课件

人教版高一化学必修一《胶体》课件


后氢氧化铁沉淀又 溶于稀硫酸。 _________________________________
OH Fe3+
ClFe3+ Fe3+ Fe3+
Fe3+ Cl-
OH-
3+ ClFe ClOH3+ Cl Fe Fe3+ Fe3+ [Fe(OH)3]n Fe3+ Cl3+ Fe 3+ Fe OHCl ClFe3+
<1nm
均一、透明 稳定
1nm~100nm
均一、透明
介稳性
>100nm
不均一、不透明
不稳定 不能 不能
能 能

不能
胶体与溶液分离方法: 渗析
胶体
1. 概念: 分散质粒子大小介于1nm~100nm之间的 分散系。
2. 分类:
按分散剂 的状态
胶体
气溶胶 液溶胶 固溶胶
云、雾 ห้องสมุดไป่ตู้奶、豆浆 有色玻璃、烟水晶
非金属氧化物、金属硫化物的胶体粒子及土壤胶 体、硅酸胶体的胶体粒子,带负电荷。 某些大分子胶体,如淀粉溶液的胶体粒子, 不带电荷。
胶体
(3)布朗运动
胶体粒子不停地做无规则运动。
胶体粒子吸附同种电 荷,相互排斥
胶体处于介稳体系
布朗运动
胶体
(4)聚沉
a.表现:胶体粒子在一定条件下聚集起来 形成较大颗粒,从分散剂里析出的过程。 b.方法: i.加热或搅拌 ii.加入带相反电荷的胶体 iii.加入电解质
胶体
常见的胶体有: 按分散质粒子大小分(当分散剂为水或 其他液体时): 胶体 胶体 淀粉溶液、蛋白质溶液、豆浆、牛奶、血液、 烟、云、雾、墨水、肥皂水、Fe(OH)3胶体等。

物理化学第七章

物理化学第七章

粗分散物系
>10-7m
混浊泥水,牛 奶,豆浆
3、胶体四大特征:(同溶液相比较)
①聚结不稳定性(热不稳自发聚沉)②多相不均匀性 聚结不稳定性 ②多相不均匀性(一相分散 于另一相,有相界面)③高分散性 ③高分散性(颗粒大小及胶团量不相同) 结构组成不确定性(受添加剂或添加物影响) ④结构组成不确定性 (真溶液:热稳,均相物系,组成,结构,分子量恒定) 4、胶体化学研究内容:表面现象,分散物系及高分子溶液 5、表面:物体处于真空或与本身饱和蒸气达平衡的面。 6、界面:物体与空气或其他物体相接触的面(存在于两相之间 几个nm厚度薄层) 7、表面现象(Surface phenomenon):凡物质处于凝聚状态时, 其界面上发生的一切物理化学现象。(包括s-g,s-l,l-g,ss,l-l等统称表面)严格讲为界面现象,如:毛细现象,润湿 作用,液体过热,蒸气过饱和,吸附作用等统称界面现象 AS Sο (Interface phenomenon)。
(1)按分散相和分散介质的聚集状态分类
分散相 分散介质 名称 气 泡沫 液 液 乳状液 固 悬浮体,溶液胶 气 液 固 固溶胶 固 气 液 气 气溶胶 固
实例 肥皂泡沫 牛奶 泥浆,金溶胶 浮石,泡沫玻璃 珍珠,某些矿石 某些合金 雾 烟
(2)按分散相的分散度分类
类型 低分子 分散物系 分散相粒子半 径 <10-9m 分散相 原子 离子,小分子 性质 均相,热力学稳定物 系,扩散快,能透过 半透膜,形成真溶液 均相,热力学稳定物 系,扩散慢,不能透 过半透膜,形成真溶 液 举例 NaCI、蔗糖的 水溶液,混合 气体等 聚乙烯醇水溶 液
之一):当毛细管插入润湿性液体水中时,管内液面呈凹面, △P背向 液面,使液体受到向上提升力而沿管内壁上升,当液柱产生的静压 力ρgh=△P时达平衡停止移动;反之,当毛细管插入非润湿性液体 汞中时产生管内凸液面,因△P向下,使管内液面下降至ρgh=△P 达平衡时停止,此为毛细现象。

物化 第十二章 胶体化学

物化  第十二章 胶体化学

二、 胶体系统的分类
1、按胶体溶液的稳定性可分为两类 憎液溶胶:难溶物分散在介质中,有很大 的相界面,易聚沉,是热力学上不稳定、 不可逆体系。 亲液溶胶: 大分子分散在合适的溶剂中, 是热力学稳定、可逆体系。
2、按分散相和分散介质的聚集状态可分为
气溶胶、液溶胶和固溶胶三大类
分散介质 分散相 气 液 液 固 气 液 固 气 液 固 名 称 实 例

(液 )气 溶 胶 (固 )气 溶 胶 (气 )液 溶 胶 -泡 沫 (液 )液 溶 胶 -乳 状 液 (固 )液 溶 胶 -悬 浮 液 (气 )固 溶 胶 (液 )固 溶 胶 (固 )固 溶 胶
云、雾、油烟 烟尘、粉尘 肥皂泡沫 牛奶、含水原油 AgI 溶 胶 、 油 墨 泡沫塑料 珍珠、蛋白石 有色玻璃、合金
热力学不稳定性 :胶核粒子有互相聚集而降低 其表面积的趋势
因为粒子小,比表面大,表面自由能高,是热力 学不稳定体系,有自发降低表面自由能的趋势,即小 粒子会自动聚结成大粒子。
四、胶体的特征
动力稳定性强 散射作用明显 扩散速度慢 渗透压低 不能通过半透膜
五、胶体系统的制备与净化
1、胶体系统的制备
沉降平衡时粒子的高度分布公式
通过沉降速率的测定求算粒子半径
利用在超离心力场中的沉降平衡测定胶团或大分子物质的摩尔质量
14-4 胶体系统的电学性质
1、电动现象
电泳、电渗、沉降电势和流动电势统称为
溶胶的电动现象。
电泳是带电的胶粒在电场作用下作定向移动
若在多孔膜(或毛细管)的两端施加一 定电压,液体将通过多孔膜而定向流动,这 种现象称为电渗。
( z 1)cRT
唐南平衡(Donnan)
NazP NaCl

胶体化学(物化重难点)

胶体化学(物化重难点)

电势的值小于热力学电势且受外加电解质的影响很大;决定胶粒电泳速度的物理量是
电势,而不是热力学电势;向溶胶中加入电解质,可改变 电势,但对热力学电势无影响;
电势等于零的状态称为等电态,在等电态,扩散层厚度为零,胶粒不带电,在电场作用
下,无电泳现象。 10.2.7 胶团结构 溶胶的胶团结构分为胶核、 胶粒及胶团三个层次。 以AgCl溶胶为例, 当用KCl与AgNO 3 制备AgCl溶胶时,胶粒和胶团的组成、结构与KCl和AgNO 3 相对用量有关,若AgNO 3 过量, 则胶粒与胶团结构如图 2,即 胶体粒子 滑动面
10.2.1 胶体定义:分散相粒子在某维上的线度为 1 nm~100nm 时的高分散系统称为胶 体。按分散相粒子线度分类:分子分散系统(真溶液,如乙醇水溶液) 、胶体分散系统(如 碘化银溶胶) 、粗分散系统(如牛奶) 。 10.2.2 按胶体系统稳定性分类 憎液溶胶: 分散相不能溶于分散介质中所形成的胶体系统。 对于由金属及难溶于水的卤 化物、硫化物或氢氧化物等在水中形成的胶体称憎液溶胶(简称为胶体) 。憎液溶胶的粒子 均是由数目众多的分子构成,存在着很大的相界面,因此憎液溶胶具有高分散性、多相性以 及热力学不稳定性的特点。如氢氧化铁溶胶、碘化银溶胶等。 形成憎液溶胶的必要条件是: (1)分散相的溶解度要小; (2)必须有稳定剂存在,否则 胶粒易聚结而聚沉。 憎液溶胶的制备:分散法包括研磨法、胶溶法(如 Fe(OH)3 溶胶的制备) 、超声分散法、电 弧法; 凝聚法包括化学凝聚法 (如水解反应制氢氧化铁溶胶) 和物理凝聚法 (如更换溶剂法、 蒸气骤冷法等) 。 憎液溶胶的净化:目的是除去对新制备的溶胶的稳定性不利的过多的电解质或其它杂 质。净化的方法主要有渗析法和超过滤法。 亲液溶胶: 半径落在胶体粒子范围内的大分子溶解在合适的溶剂中所形成的系统。 高分 子溶液为亲液溶胶。将溶剂蒸发,大分子化合物凝聚,再加入溶剂,又可形成溶胶。因此,

物理化学第十章 胶体化学

物理化学第十章 胶体化学

3. 沉降与沉降平衡
多相分散系统中的粒子,因受重力作用而下 沉的过程,称为沉降。沉降与扩散为一对矛盾 的两个方面
沉降 扩散 分散相分布
真溶液
粗分散系统 胶体系统 平衡


均相
沉于底部 形成浓度梯度
贝林(Perrin)导出沉降平衡时粒子浓度随高度的分布:
o c2 Mg ln 1 ( h2 h1 ) c1 RT
胶核 可滑动面
胶粒
{[AgI]m nI-(n-x)K+}x- xK+ 胶团结构
K+
K+
I-
K+
(AgI)m
I-
I-
K+
特点:
1) 胶核:首先吸附过量的成核离子,然后吸附反离子; 2) 胶团整体为电中性
I-
§10.5
溶胶的稳定与聚沉
Derjaguin&Landau(1941)
1. 溶胶的经典稳定理论DLVO理论
溶胶粒子间的作用力:
Verwey &Overbeek(1948) van der Waals 吸引力:EA -1/x2
势 能 ER
双电层引起的静电斥力:ER ae-x 总作用势能:E = ER + EA
E
EA 曲线的形状由粒子本
性决定,不受电解质影响;
Emax
0 x 第二最小值 EA 第一最小值
势 能 ER 电解质浓度: c1 < c2 < c3 ,
0EAc3源自c2c1E电解质浓度,ER,E,
溶胶稳定性。在 c3 以后, 引力势能占绝对优势,分散 相粒子一旦相碰,即可聚合。
41
电解质对溶胶的聚沉规律:
(i)反离子的价数起主要作用

10胶体化学

10胶体化学
2NaAuO2 + 3HCHO + NaOHAu(s) + 3HCOONa+ 2H2O
NaAuO2是上述方法制得金溶胶的稳定剂,写出该金溶胶
胶团结构的表示式。
解:该金溶胶胶团结构为: {[Au]m nAuO2- (n-x)Na+}x- xNa+
12.11.在Ba(NO3)2溶液中滴加Na2SO4溶液可制备BaSO4溶 胶。分别写出(1) Ba(NO3)2溶液过量,(2) Na2SO4溶液过量 时的胶团结构表示式。 解:(1) Ba(NO3)2溶液过量时,胶团结构为: {[BaSO4]m nBa2+(2n-x)NO3-}x+ xNO3(2) Na2SO4溶液过量时,胶团结构为: {[BaSO4]m nSO42-(2n-x)Na+}x- xNa+
胶核:胶体粒子内由分子、原子或离子
形成的固态微粒
胶团:整个扩散层及其所包围的胶体粒子
构成的电中性的整体
例: AgNO3 + KI AgI + KNO3 KI过量 :
AgI溶胶吸附I-带负电,K+为反离子 AgNO3过量: AgI溶胶吸附Ag+带正电,NO3-为反离子
特点:
(1) 胶 核 : 首 先 吸附过量的成 核离子,然后 吸附反离子; (2) 胶 团 整 体 为 电中性。
分散系统分类(按分散相与分散介质的聚集状态): (1) 均相系统(真溶液) 分散相以分子形式溶于分散介质 (2) 多相系统 分散相不溶于分散介质
分散 分散相 介质 气
名称 气溶胶 泡沫 乳状液 液溶胶或悬浮液
实例
液 固
气 液 固 气 液 固
云、雾 烟、尘
肥皂泡沫 牛奶 泥浆、油漆 泡沫塑料 珍珠 有色玻璃

高中化学 胶体


4、胶体的凝聚
(1)胶体稳定存在的原因:
布朗运动、胶粒带电
(2)胶体的凝聚 ①破坏胶粒的带电结构——加入电解质 由于胶体胶粒带有电荷,加入电解质后,由于 电解质在溶液中能电离出阳离子和阴离子,分 别能中和带有负电荷胶粒的胶体和带有正电荷 胶粒的胶体。
例2:要使Fe(OH)3胶体凝聚,最好用( ) 要使带负电荷的AgI胶体凝聚,最好用( )


不能
不能
能否透过 半透膜
胶体的分类
根据分散质微 粒的构成分
粒子胶体:Fe(OH)3胶体、AgI胶体 分子胶体:淀粉溶液、蛋白质溶液
气溶胶:烟、云、雾
根据分散 质状பைடு நூலகம்分
液溶胶:AgI胶体、Fe(OH)3胶体
固溶胶:有色玻璃、烟水晶
1、丁达尔现象 ——光学性质
当可见光束通过胶体时,在入射光侧面可观察 到光亮的通路,这种现象叫做丁达尔现象。

胶体的概念?
分散系
分散质微 粒大小

悬浊液 >10-7m 乳浊液 >10-7m
很多分子 集合体
溶液 <10-9m
胶体 10-9-— 10-7m
分子集 合体
分散质微 很多分子 分子、离子 粒组成 集合体
不均一、 主要特征 均一、稳定 不稳定
能否透过 滤纸
不均一、 不稳定 不能
不能
均一、 较稳定 能
不能
3、电泳——可用于提纯和精制胶体
胶体带电规律:
(1)金属氢氧化物、金属氧化物的胶粒吸附阳 离子带正电
(2)非金属氧化物、金属硫化物、硅酸、土壤 胶体吸附阴离子带负电 (3)AgI即可吸附I-,也可吸附Ag+,视两者多 少而吸附不同电荷 (4)有些胶体如淀粉、蛋白质一般不吸附各种 离子。因形成水膜而稳定存在

物理化学第十四章胶体化学

把一种或几种物质 例如:云,牛奶,珍珠 分散在另一种物质中所 构成的系统称为分散系 统。被分散的物质称为 分散相(dispersed phase),而另一种呈 连续分布的物质称为分 散介质(dispersing medium)。
一、分散体系的分类
•真溶液 按分散相粒子的大小分类: •胶体分散体系
•粗分散体系 •液溶胶
按胶体溶液的稳定性分类
1.憎液溶胶 胶体化学的主要研究体系 半径在1 nm~100 nm之间的难溶物固体粒子
分散在液体介质中。溶剂与粒子间亲合力弱。
溶剂蒸发后,再加入溶剂无法再形成溶胶。 不可逆体系。
2.亲液溶胶 大分子溶液
溶剂与粒子(大分子 )间亲合力强。溶剂蒸 发后,产生凝聚,再加入溶剂,又可形成溶胶。 热力学上稳定、可逆的体系。
按分散相和介质的聚集状态分类: •固溶胶 •气溶胶
按胶体溶液的稳定性分类: •憎液溶胶 •亲液溶胶
按分散相粒子的大小分类
1.真溶液(分子分散体系)
分散相与分散介质以分子或离子形式均匀的单 相,热力学稳定。分散相粒子半径小于1 nm。
2.胶体分散体系 分散相粒子半径1 nm~100 nm。高分散的多相 体系,粒子有自动聚集的趋势,热力学不稳定。
A.复分解反应制硫化砷溶胶 2H3AsO3(稀)+ 3H2S →As2S3(溶胶)+6H2O
B.水解反应制氢氧化铁溶胶 FeCl3 +3H2O (热)→ Fe(OH)3 (溶胶)+3HCl
C.氧化还原反应制备硫溶胶 2H2S(稀)+ SO2(g) → 2H2O +3S (溶胶) Na2S2O3 +2HCl → 2NaCl +H2O +SO2 +S (溶胶)

高等水化学胶体化学


按胶体分散系统的性质分类
• (2)亲液溶胶 • 半径落在胶体粒子范围内的大分子物质,
溶解在合适的溶剂中形成的溶胶。 • 分散相分子本身的大小已达到胶粒范围,
它的扩散速率小、不能透过半透膜等性质 与胶体系统相似。 • 亲液溶胶是热力学上稳定,可逆的系统。
§12-1 胶体系统的制备与净化
粗分散系统 分散法 胶体系统 凝聚法 分子分散系统
第二章 胶体化学
Chapter 2 Colloidal Chemistry
“胶体”这个名词是英国化学家 Graham于1861年提出的
胶体(colloid)
任一质点,其某个线度 在10-7和10-9m之间即认为 是胶体分散系统
(一)胶体分散系统及其基本性质
胶体是一种分散系统
分散系统:一种或几种物质分散在另一种物质之中 分散相:被分散的物质 (dispersed phase) 分散介质:另一种连续分布的物质
1nm 散慢,不能透过半透膜,有一定 高浓度肥皂水
~100nm 的光散射
溶液
热力学不稳定,但动力学稳 金溶胶、硫溶
1nm 定的多相系统,扩散慢,不能透 胶、牛奶、豆
~100nm
过半透膜,光散射强,在超显微 镜下可以看见
浆、雾、烟、 各种泡沫
>100nm
热力学不稳定,动力学不稳 定的多相系统,扩散慢,不能透 过半透膜,光散射强,在普通显 微镜下可以看见
2
1 cos 2
I0
I :散射光强度 ;
I0 : 入射光强度;
V :一个粒子的体积; C :单位体积中的粒子数;
n : 分散相的折射率; n0:分散介质的折射率;
:散射角(观测方向与入射光方向间夹角);

9胶体化学详解

d=1—1000 nm 包括悬浮体,乳状液
(emulsion),泡沫
(二)胶体的基本特征 (1)多相(multiphase)性 在胶体系 统中,分散相粒子由众多分子或离子 组成,粒子内部与外部分散介质的许 多物理和化学性质都不相同,所以性 质是不均匀的,因而是多相系统。包 围胶体粒子的界面是相界面。
(一)分散(dispersion)法
直接将大块物质粉碎为小颗粒,并
使之分散于介质中。
机械分散法; 超声波(ultrasonic)
分散法; 电分散法; 胶溶法。
(二)凝聚(agglomeration)法
将分子或离子凝聚成胶体颗粒。
化学凝聚法
通过化学反应(如复分解反应、水解反应、氧化或还原反 应等)使生成物呈过饱和状态,然后粒子再结合成溶胶。
(二)沉降(sedimentation)平衡

当溶胶中颗粒的密度大 于介质时,颗粒在重力场作 用下有向下沉降的趋势;沉 降的结果使底部粒子浓度大 于上部,即造成上下的浓差, 而粒子的扩散将促使浓度趋 于均一。当沉降与扩散达平 衡时,称为沉降平衡;此时, 颗粒浓度自下而上降低,有 一个分布。
沉降平衡中粒子的分布
热力学电势ф0 :固体表面与溶液本体间的电势差 斯特恩电势фδ :斯特恩面同溶液本体之间的电势差 ξ电势:滑动面与溶液本体之间的电势差
ξ 电势的特点:
ξ 电势的绝对值小于热力学电势 的绝对值ф 0 •ξ 电势是衡量胶粒所带净电荷多 少的物理量; •ξ 电势的符号由胶粒所吸附离子
的电荷决定
•胶粒表面吸附正离子,ξ 电势为 正;胶粒表面吸附负离子,ξ 电 势为负 •少量外加电解质会对ξ 电势产生 很大的影响 •处于等电态的胶体质点不带电
(3)斯特恩双电层模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

胶体体系是介于真溶液和粗分散体系之间的一种特殊分散体系。

由于胶体体系中粒子分散程度很高,具有很大的比表面,表现出显著的表面特征,如其具特殊的光学性质和动电性质等。

一、分散体系的定义分类及研究方法(1)分散体系的定义一种或数种物质分散在另一种物质中所构成的体系叫分散体系。

被分散的物质称为分散质,起分散作用的物质称为分散介质。

可见分散体系=分散质+分散介质(2)分散体系的分类说明:a.胶体体系中分散质的大小介于溶液和粗分散体系中分散质的大小之间,若以1nm 为溶液中粒子大小的上限,而以 100nm 为粗分散体系中分散质大小的下限,则胶体中分散质的颗粒大小在(1~100)nm 之间。

b.胶体中分散质大小不同。

因此,分散质和分散介质间必有一明显的物理分界面。

这意味着胶体体系必然是非均相分散体系。

c.胶体不是特殊的物质,而是物质存在的一种特殊形式。

如硫磺分散在乙醇中为溶液,若分散在水中则为水溶胶。

d.胶体分散体系由于分散度高,具有较高的表面自由能,属热力学不稳定体系。

(3)胶体的特征和分类①.特征胶体是高度分散的、多相的、组成和结构不确定的热力学不稳定体系。

②.分类胶体分散体系包括溶胶和缔合胶体。

但大分子溶液和粗分散体系也常被作为胶体分散体系研究的对象。

这是因为a.虽然大分子溶液(也叫亲液溶胶)是热力学上稳定的体系,但由于其溶质分子的大小已进入了胶体分散体系的范围且在某些方面(如扩散性)具有胶体的特性。

b.粗分散体系与胶体分散体系同属热力学不稳定性系,它们在性质上及研究方法上有许多相似之处。

除按分散质的颗粒大小进行分类外,还可按分散质和分散介质的性质来分类。

表13-1列举了胶体分散体系的八种类型。

表13-1 多相分散系统按聚集状态的分类(4)非均相分散体系的研究方法非均相分散体系是一门综合性很强的学科领域,其研究方法除物理化学的热力学、量子力学、统计力学以及动力学等方法外,还涉及物理学中的光学、电学、流体力学和流变学。

从应用上讲,遍及生命现象、材料、食品、能源、环境等领域。

此外,近代的研究手段如光散射技术、能谱技术、超显微技术、高速离心技术及电泳散射技术等应用于胶体分散体系的研究,也极大地推动了该学科领域的理论发展。

一、布朗运动布朗运动是分散质粒子受到其周围在做热运动的分散介质分子的撞击而引起的无规则运动(图13-8)。

由于英国植物学家布朗首先发现花粉在液面上做无规则运动而得名。

1905 年爱因斯坦假设布朗运动为一随机的三维运动(与热运动相似),导出一粒子在时间 t 内沿着某一维(x)运动偏离其原来位置的平均位移的表示式为;(13-1)上式中 D 为扩散系数,它与摩擦系数 f 的关系服从爱因斯坦扩散定律:(13-2)由斯托克(Stokes)公式,若粒子为球状时:(13-3)(13-3)式中 r 为粒子半径,η为介质的粘度系数。

由式(13-1)、(13-2)、(13-3)不难得出:(13-4)(13-5)式(13-4)提供了由 D、η求粒子半径的方法。

而式(13-5)除用于从已知的 L、η、r、T 和 t 等已知量求外,还提供了一种测定亚佛加德罗常数 L 的方法。

三、沉降和沉降平衡(1)沉降胶粒受到重力的作用而下沉的过程称为沉降。

因分散介质对分散质产生浮力,其方向与沉降方向相反,故净重力:(13-8)上式中假设粒子为半径r的球体,ρ和ρ0分别为粒子和介质的密度,g为重力加速度。

由于在沉降过程中粒子将与介质产生摩擦作用,摩擦阻力F可表示为(13-9)式(13-9)中η、υ分别表示介质的粘度和粒子的运动速度。

当F G=F时,粒子作匀速运动,由(13-8)、(13-9)式,可得:(13-10)上式指出沉降速度与r2成正比。

因此,大粒子比小粒子沉降快。

当粒子很小时,由于受扩散和对流影响,基本上已不沉降。

利用重力沉降的原理,可设计出测量和估算粗分散体系中粒子半径分布的仪器,沉降天平即为其中之一(图13-10)。

这种天平的一个臂浸入正在沉降的粗分散体系中,通过测量浸入臂质量随时间增加的变化曲线,利用式(13-10)可得颗粒半径。

如果是多分散体系,还可测定颗粒大小分布。

这种测定方法称为"沉降分析",已成功地应用于粘土等物质的粒度分布测定。

图13-10 扭力天平图13-11 沉降平衡(2)沉降平衡胶体粒子在重力作用下的沉降必然导致浓度差的出现,而浓度梯度又使得粒子朝着沉降的反方向扩散。

当沉降与扩散速率相等时,则体系达到沉降平衡。

这时溶胶粒子密度分布随高度变化关系与大气层中空气密度随高度分布情况类似,位置愈高处密度愈低(见图13-11)。

当体系达平衡时,由波尔兹曼分布律可导出粒子的分子浓度C随高度χ的分布关系为(13-11)写成对数形式(13-12) 若胶粒为球状粒子,则(13-13) 代入式(13-12)得:(13-14) 上式称为贝林(Perrin)公式,它表达了粒子分布与粒子半径以及高度的关系。

式(13-14)也可用于不同高度 h 处大气压力p的计算。

例1.估算在 298.15K 时,大气层中氧气的浓度降低一半所需的高度差。

解:对大气分子,无需进行浮力校正,即ρ -ρ=ρ。

代入(13-14)得:五、渗透压和唐南平衡(1)渗透压渗透压是一种依数性,同其它依数性相比,它在测定溶质的摩尔质量方面有更高的精度。

特别是对于摩尔质量很大的大分子化合物,仅有渗透压的测定具有实际价值,因为其它依数性的响应值太小。

由于大分子化合物常为多分散体系,只能用平均摩尔质量以表示其性质。

平均摩尔质量的表示与采用的实验方法有关,如依数性主要取决一溶质分子的数目,因此,由渗透压法测得的摩尔质量为数均摩尔质量:而光散射则取决于每一粒子的质量,因此,所测摩尔质量为质均摩尔质量。

数均摩尔质量n(13-23)n i 、Mi表示 i 物质的物质的量和摩尔质量W质均摩尔质量(13-24) 对偏离理想情况的实际溶液,常用维里展开式表示渗透压与浓度关系:(13-25)C B 为溶质 B 的质量浓度,A2、A3……称为第二、第三、…… 维里系数。

若只考虑第二维里系数,则(13-26)以实验数据作图,在低浓区内应为一直线,外推至 C B →0,所得截距为(13-27)利用上式,可求出n值。

此法适用范围为n=(10~103)kg·mol -1。

(2)唐南平衡许多大分子化合物本身就是电解质,能在溶液中电离成聚离子和能通过半透膜的小离子,唐南平衡指的是半透膜两侧小离子的渗透平衡。

设有一蛋白质钠盐 NaP 的溶液(α 相)以半透膜与另一 NaCl 溶液(β 相)隔开,见图13-12 ,NaP 离解为 Na + 和 P -,Na + 和 Cl - 能透过半透膜,而 P - 则不能。

由于膜两侧的溶液要随时保持电中性,因此,达平衡后,β 相中 Na + 和 Cl - 必减少同样的量,而 α 相中 Na + 和 Cl - 各增加 X 而 P - 不变。

终态时膜两侧各物质的浓度如图13-12(b)所示。

按热力学要求,平衡时膜两边 NaCl 的化学势相等,因而其活度也应相等:(13-28)(13-29)稀溶液中活度可用浓度代替,可写出(13-30)(13-31)唐南平衡指出,渗透平衡时,膜两边的 Na+和 Cl-的浓度不等。

实际上,渗透作用是由于渗透膜两边的浓差而引起的,故(13-32)上式可有两种极端情况:a .(13-33) 这相当于β相中为纯溶剂的情况。

b .(13-34) 这种情况与大分子化合物不电离时相似。

例2. 298K 时,在膜两边离子初始浓度分布如下:膜内膜外离子R+Cl-Na+Cl-C/mol·dm-30.1 0.1 0.5 0.5 计算平衡后离子浓度的分布情况及渗透压Π。

解:平衡时膜内外离子浓度分布为膜内膜外离子R+Cl-Na+Na+Cl-C/mol·dm-30.1 0.1+x x 0.5-x 0.5-x∵x(0.1+x)=(0.5-x)2解得x=0.23 mol·dm-3一、丁铎尔效应当一束强烈的光线射入溶胶后,在入射光的垂直方向或溶胶的侧面可以看到一发光的圆锥体(如图13-13所示)。

这种被丁铎尔(Tyndall)首先发现的现象称为"丁铎尔效应"。

丁铎尔效应是光散射现象的结果。

光散射是指当入射光的波长大于分散质粒子的尺寸时,在光的前进方向之外也能观察到的发光现象。

反之,当入射光的波长小于分散质粒子的尺寸时,则发生光的反射。

如悬浮液体系由于光的反射而呈混浊状。

散射光的强度可用雷利(Rayleign)公式表示:(13-35)式中I0及入分别为入射光的强度及波长;V为每个分散质粒子的体积;ρ为粒子的数密度;n及n0分别为分散质及分散介质的折射率;θ为散射角,即观察的方向与入射光方向间的夹角;l 为观察者与散射中心的距离。

由式(13-35)可知:(1)散射强度与粒子大小成正比。

(2)分散质与分散介质的折射率相差愈小,散射愈弱。

(3)散射强度与入射光波长的四次方成反比。

由于丁铎尔效应是胶粒对光散射作用的宏观表现,因此,可用它来鉴别真溶液,大分子溶液和溶胶。

真溶液:由于粒子很小,散射光极弱。

大分子溶液:虽然粒子大小与溶胶粒子大小相近,但由于它是均相体系,分散质与分散介质间的折射率相差很小,因此,丁铎尔效应远比非均相的憎液溶胶弱。

可见:憎液溶胶的丁铎尔现象十分明显;大分子溶液则较弱;而真溶液则弱到难以觉察。

由于一般的粗分散体系的粒子尺寸大于入射光的波长,不能产生光散射。

因此,利用丁铎尔效应也可鉴别分散体系的种类。

例3.为什么晴朗的天空呈蓝色?为什么雾天行驶的车辆必须用黄色灯?答:从雷利散射公式可知,散射强度与入射光的波长四次方成反比,即波长越短的光散射越多。

在可见光中,蓝色光的波长较红光和黄色光的波长短,因此,大气层这个气溶胶对蓝色光产生强烈的散射作用,而波长较长的黄色光则被散射少而透过的多。

这就是为什么万里晴空呈现蔚蓝色和雾天行驶的汽车必须用黄色灯的原因。

一、电动现象在外加直流电场或外力作用下,表面带电的胶粒与周围介质作相对运动时产生的现象叫电动现象。

它包括电泳、电渗、沉降电势和流动电势。

电泳(Electrophoresis):在外加电场作用下,胶粒在分散介质中朝着某一电极迁移的现象。

电渗(Eeletro-osmosis):在由胶粒形成的多孔性物质或带电表面两端施加一定电压,毛细管中液体朝着某一电极移动的现象。

沉降电势(Sedimentation Potential):无外加电场时,胶粒在外力(重力或离心力)作用下相对于静止的液体介质运动时所形成的电势差。

(属电泳的逆过程)。

流动电势(Streaming Potential):无外加电时,在外力作用下,液体介质相对于静止的胶粒表面作定向流动时所形成的电势差(属电渗的逆过程)。

相关文档
最新文档