用分数表示可能性的大小
用分数表示可能性的大小说课

《用分数表示可能性的大小》说课稿天长市秦栏小学岑桂岗一、说教材本节课是苏教版六年级(上册)第94-95页第八单元“可能性”的第一课时“用分数表示可能性的大小”。
这一部分内容是为了进一步加深对可能性大小的认识,属于课程标准“统计与概率”领域。
本单元是小学阶段最后一次教学可能性。
学生在以前已经初步认识了确定性事件和不确定现象,在此基础上,本单元继续教学可能性,用分数表示事件发生的可能性有多大。
所以本课的教学关键是让学生从感性描述可能性到定量刻画可能性。
《数学课程标准》提出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。
根据这个理念和本课的教学内容,并结合学生的年龄特点和认知水平,我制定了以下的教学目标:1使学生初步理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、使学生在学习用分数表示可能性大小的过程中,能进行有条理的思考。
3、使学生进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
依据本节课的教学目标,我认为本节课的教学重点是:理解并掌握用分数表示可能性的大小的基本思考方法。
而教学难点则是:在认识事件发生的不确定现象中感受统计概率的数学思想。
为了更好的进行教学,本节课所选择的教具为:课件、彩球、纸袋、纸牌.二、说教法、学法如何突出重点,击破难点,又能激发学生的学习兴趣,实现以上目标呢?根据教材特点,我采取了如下的教法和学法:教法: 1、故事导入 2、创设情境 3、直观演示学法:1、自主探究 2、合作交流 3、实践应用三、说教学程序根据新课标的教学理念,结合本节课的教学目标以及学生的学习特点,我的教学过程设计为以下5个环节:故事引入;探究交流;迁移提升;小结评价;课后作业。
第一环节是故事引入新的课程改革在数学教学方面,十分重视问题情境的创设。
因此,第一个环节是学生听故事《狄青百钱定军心》,然后小组讨论:抛100钱币,有没有可能全部正面朝上?100枚全部正面朝上的可能性有多大?由此导入新课,并揭示课题:板书:可能性的大小这是从学生感兴趣的故事出发,带领学生用数学的眼光来研究生活现象,增强学生学习的欲望,提高学生学习兴趣。
《用分数表示可能性大小》教学案例与反思

《用分数表示可能性的大小》教学案例与反思笔者曾在一次校本教研活动中全程参与了六年级数学《用分数表示可能性的大小》一课的观摩课、听课、评课活动,至今仍不忘于脑,其新颖的设计,独到的语言魅力,扣人心弦的教学过程,令每一个听课者为之忘情。
现摘取个别片断作一些反思分析,以求同仁共享之、共析之、共取之。
【片断】巧妙激疑、强调应用师出示转盘:师:能不能确定现在停在红色区域的一定是10次?生:有可能刚好是10次,也有可能多于10次,也有可能少于10次。
师:那我们用分数表示可能性又有什么价值呢?【反思】语言的魅力提问的技巧一石激起千层浪,此问设计非常之妙,巧妙的设问将学生引入思考之中。
它富有启发性,具有高起点,有力度,激发了学生的认知矛盾,是呀,我们用分数表示了可能性的大小,可为什么实际操作时又不刚好等于这个可能性呢?这样我们学习它还有什么意义呢?学生开始积极思考,并小声讨论起来。
教师适时引导:在我们的生活中有很多时候都用到分数来表示可能性的大小,比如:(1)两个厂生产一种产品,价格等其他条件都一样,甲厂的产品有30%返修,乙厂的产品有1%返修,你选择买哪个厂的产品?生:我会选择乙厂。
因为30%大于1%,说明甲厂的产品返修率比乙厂高。
这里返修可能性的大小用分数来表示可以帮助消费者做出决断。
师:再如(2)如果天气预报说今天下雨的可能性是10%,你出门会带雨伞吗?天气预报说明天下雨的可能性是90%,你出门会带雨伞吗?下雨的可能性是99%就一定会下雨吗?生思考后回答:如果天气预报说下雨的可能性是10%,我出门一般不会带雨伞,因为下雨的可能性很小;天气预报说下雨的可能性是90%,我出门会带雨伞;如果下雨的可能性是99%,不一定会下雨。
【反思】数据分析观念的培养看到学生们在课堂上表现出来的渴望和兴奋,我们也再次体会到数据所带来的火热思考,而且以上两个实例也来源于生活,学生有充分地生活体验。
通过数据来分析推断,这不正是数据分析观念吗?这样的活动多经历几次,学生会逐渐认识到数据的价值,就会越来越亲近数据,越来越喜爱数学了。
苏教版小学数学六年级上册《用分数表示可能性的大小》赛课说课稿

苏教版小学数学六年级上册《用分数表示可能性的大小》赛课说课稿一. 教材分析苏教版小学数学六年级上册《用分数表示可能性的大小》这一课,主要让学生掌握利用分数来表示可能性的大小,培养学生的随机事件概念,让学生通过实例,感受可能性的实际应用,培养学生的数据分析能力。
二. 学情分析六年级的学生已经具备了一定的分数知识,对分数的概念和运用有一定的了解。
同时,他们具备较强的观察、思考和动手操作能力,能够通过实例来理解和掌握可能性大小的表示方法。
但是,对于如何利用分数准确地表示可能性的大小,以及如何从实际问题中抽象出可能性大小的问题,仍然是学生学习的难点。
三. 说教学目标1.让学生理解随机事件的概念,掌握利用分数表示可能性大小的方法。
2.培养学生观察、思考和动手操作的能力,提高数据分析能力。
3.培养学生合作交流的意识,提高解决问题的能力。
四. 说教学重难点1.教学重点:让学生掌握利用分数表示可能性大小的方法。
2.教学难点:如何让学生理解并准确地利用分数表示可能性的大小,以及如何从实际问题中抽象出可能性大小的问题。
五. 说教学方法与手段本节课采用情境教学法、小组合作法和引导发现法进行教学。
利用多媒体课件、实物模型、游戏等手段,激发学生的学习兴趣,提高学生的参与度。
六. 说教学过程1.导入:通过一个简单的猜谜游戏,引出随机事件的概念,激发学生的学习兴趣。
2.新课导入:介绍可能性大小的概念,让学生通过实际操作,理解并掌握利用分数表示可能性大小的方法。
3.实例讲解:通过多个实际例子,让学生感受可能性大小的实际应用,巩固所学知识。
4.小组讨论:让学生分组讨论,如何利用分数表示可能性的大小,培养学生的合作交流能力。
5.练习巩固:设计一些练习题,让学生运用所学知识进行解答,及时巩固所学知识。
6.总结提升:对本节课的知识进行总结,引导学生学会从实际问题中抽象出可能性大小的问题。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点。
小学数学五年级上册《摸球游戏-用分数表示可能性的大小》知识点

2、想:同一事件发生各种类的总和。
3、算:某种情况出现的可能性占总数的几分之几,写出分数。
根据事件发生的种类,用分数表示事件发生的可能性。
运用
根据所给事件说出事物发生的可能性,用分数表示事物发生的可能性。
1、看:事件可能发生的种类。
2、算:同一事件各种类发生的总和。
4、说:把得到的结论说出来。
5、思:怎样用一个数表示事件发生的可能性。
用数据表示事件发生的可能性,以此反映事件发生可能性的大小。
表达
1、客观事件中“不可能”出现的现象——“可能性是0”。
2、客观事件中“一定能”出现的现象——“可能性是1”。
3、客观事件中“有可能”出现的现象——“可能性是对应的分数”。
3、数:某种情况发生的数量。
4、算:算出此情况出现的可能性占总数的几分之几,写出分数。
找到事件发生的所有情况,求出某种情况出现的可能性占总数的几分之几。
创新
小学数学五年级上册《摸球游戏-用分数表示可能性的大小》知识点
教学点
陈述性知识
程序性知识
策略性知识
认知
1、生活中的事物有可能发生,也有可能不发生。
2、客观事物发生的可能性有大有小。
3、可以用数据来反映事物发发生的可能性。
3、比:各事件发生可能性的大小。
第八单元《可能性》2、用分数表示可能性的大小

第八单元《可能性》2、用分数表示可能性的大小引言在我们日常生活中,我们常常要面对各种各样的决策。
有时候,我们需要判断某个事件发生的可能性,这就需要我们用一定的方式来表示可能性的大小。
除了常见的使用百分比来表示可能性的方法外,我们还可以使用分数来表示可能性的大小。
本文将介绍如何用分数来表示可能性的大小,并探讨其应用场景。
用分数表示可能性的大小分数表示可能性的基本概念在介绍如何用分数表示可能性的大小之前,首先简单介绍一下分数的基本概念。
分数是用一个数字表示一个数与整体之间的比例关系,由一个分子和一个分母组成,分子表示数的一部分,分母表示整体的分割数。
使用分数表示可能性的大小时,我们可以将分子看作是事件发生的次数或数量,将分母看作是总的次数或数量。
通过将事件发生的次数或数量除以总的次数或数量,可以得到一个分数,这个分数表示了事件发生的可能性的大小。
分数表示可能性的示例下面通过一个简单的示例来说明如何用分数表示可能性的大小。
假设在一个班级中,有30个学生。
有10个学生参加了一个足球比赛,事件A表示某个学生被选为比赛的队长。
事件A发生的可能性可以用分数来表示。
分子是参加比赛并被选为队长的学生的数量,即1。
分母是总的学生数量,即30。
因此,事件A发生的可能性可以表示为1/30。
分数表示可能性的优势相比于使用百分比来表示可能性的大小,使用分数来表示可能性有一些优势。
首先,分数更加精确。
使用百分比时,只能以整数的形式表示,例如50%、75%等。
而使用分数时,可以更加精确地表示可能性的大小,例如1/30、3/4等。
其次,分数可以更好地比较可能性的大小。
使用分数时,可以直接进行比较,例如1/30比1/60的可能性更大。
而使用百分比时,比较可能性的大小需要先将百分比转换为小数,然后再进行比较。
最后,使用分数可以更好地进行计算。
使用分数时,可以进行加减乘除等运算,方便进行可能性的计算。
而使用百分比时,进行计算可能需要先将百分比转换为小数,再进行计算,增加了额外的步骤。
课件:用分数表示可能性的大小

用分数表示可能性的大小
你还能想到什么问题?
用分数表示可能性的大小
请把你想到的问题写下来!
用分数表示可能性的大小
摸到红桃的可能性是
( (
) )
用分数表示可能性的大小
用分数表示可能性的大小
用分数表示可能性的大小
1 • 2枚都是正面的可能性是 4 • 3枚都是正面的可能性是 1 8
1 • 4枚都是正面的可能性是 16 …… • 100枚都是正面的可能性是 1
126 7650 6002 2822 9401 4967 0320 5376 1 2 100
回师时,按原先所约,把钱取下。 将士们一看,原来那些铜币两面都是 铸成一样的。 对狄青来说,一百个钱面全部朝上, 是个必然事件,但在别人看来,却是 几乎不可能出现的。 这个故事给人的启示是:“观察 一种现象,不能忽视它的前提。”
正面
背面
• 阅读教材第94、95页,还有什么 问题吗?
用分数表示可能性的大小
1、成语里的数学 十拿九稳 百发百中 智者千虑,必有一失。
2、游戏里的数学
• 掷两枚铜币会出现四种可能。(正,正)、(正, 反)、(反,正)、(反,反)。 • 两枚都是正面的可能性是四分之一。 • 掷三枚铜币会出现八种可能。 (正,正,正)、(正,正,反)、 (正,反,正)、(正,反,反)、(反,正,正)、 (反,正,反)、(反,反,正)、(反,反,反)。 • 三枚都是正面的可能性是八分之一。
一共有两种情况,乒乓球可能在左手, 也可能在右手,猜对或猜错的可能性是相
1 等的,都是 2 。
用分数表示可能性的大小
口袋里原来有一些球, 现在放入一个黄球。从中任 意摸一个球,摸到黄球的可 能性是几分之几?
《用分数表示可能性的大小》的教学设计与意图
佣分数表示可能性的大小》的教学设计与意图江苏江阴市晨光实验小学徐顺湘教学内容苏教版小学数学六年级上册第94页至96页。
教学目标1.从学生熟悉的生活事件人手.让学生经历从定性描述到定量刻画的过程.加深对可能性大小的认识。
2.使学生初步理解并掌握用分数表示可能性大小的基本思维方法。
会用分数表示简单事件发生的可能性,进一步深化分数意义的理解。
3.体验数学知识来源于生活又服务于生活。
进一步体会数学知识间的内在联系.感受数学思考的严谨性与数学学习的趣味性.教学过程一、复习导入1.出示3个装球的I Z:l袋.在每个口袋里任意摸一个球。
说说摸到红球的可能性(1号袋:3个黄球;2号袋:1个红球、1个黄球;3号袋:3个红球)。
2.引导学生用0、l表示可能性的大小。
(1)出示l号口袋。
师:在l号E l袋中任意摸一个,不可能摸到红球,那么摸到红球的可能性我们能不能用一个数来表示?生:摸到红球的可能性是0。
(2)出示3号E l袋。
师:在3号E l袋中任意摸一个。
一定能摸到红球,我们能不能也用一个数表示摸到红球的可能性?你是怎么想的?生:摸到红球的可能性是l。
(3)小结:1号口袋不可能摸到红球。
摸到红球的可能性用0来表示.3号口袋一定能摸到红球.摸到红球的可能性用l来表示。
(设计意图:在学生初步理解和掌握可能性大小相关知识的基础上。
选取两个特例:只装3个黄球的1号口袋和只装3个红球的3号1:2袋。
凭借学生的生活经验,分别用0和l表示可能性的大小.从定性描述可能性大小到定量刻画可能性的大小.为引出用分表示可能性的大42;2010数学/备课参考小作了很好的铺垫。
新知的教学建立在学生已有的认知基础上.教学过程显得自然而顺畅,学生学得轻松。
)二、用几分之一的分数来表示可能性的大小1.用1/2表示可能性的大小(1)出示2号口袋。
师:2号口袋中,摸到红球的可能性的大小,你觉得可以用哪个数来表示?先自己想一愆,然后与同桌互相说一说。
(2)交流。
2024年《用分数表示可能性大小》评课稿(5篇)
《用分数表示可能性大小》评课稿(5篇)《用分数表示可能性大小》评课稿(精选5篇)《用分数表示可能性大小》评课稿篇1听了蔡老师的《用分数表示可能性的大小》一课,我有以下感受:整节课紧凑而有层次。
本课教学内容丰富,教学紧凑,课中大量的教学信息让人感到多而不乱。
环节过渡自然,教师引导与学生自主学习融为一体,在有层次的练习中,学生的知识层面得到提升,学生学得轻松、愉快。
蔡老师能轻松自如的驾驭课堂,每个环节的教学都很清晰,知识衔接紧凑。
本课出现的拖课现象,主要还是设计的练习过多。
教学严谨,关注语言的完整性。
关于可能性,学生是有生活经验和知识经验的,本课的重点是让学生由对可能性大小的定性描述过渡到定量刻画,用完整的话描述可能性这对学生把知识学扎实尤为重要。
教学中,蔡教师时刻要求学生说完整的话,加深对可能性大小的认识。
蔡老师用的是本班学生上的课,整堂课学生的回答基本都是完整、清晰的。
可见其平时的教学比较严谨,对学生语言的完整性的训练比较到位。
注重培养学生的思维能力。
如摸牌游戏中让学生思考从6张牌中任意摸一张,摸到红桃的可能性是几分之几,并说出是怎么想的,鼓励学生从多个角度进行思考,以促使学生更加透彻地把握问题的实质,丰富学生对基本思考方法的体验。
再追问还有摸到什么牌的可能性也是12,让学生有一个逆向的思考,培养了学生思维的灵活性。
活动多样。
本课结合学生熟悉的游戏活动(如摸球、摸牌、猜密码等),让学生经历知识的形成过程。
在游戏活动中引导学生探索事件发生的可能性,驱动了学生的情感投入,让学生在经历一系列有意义的数学活动中,逐步丰富起对可能性大小的体验,理解并掌握用分数表示各种事件发生的可能性的大小的意义和方法。
值得商榷的地方:本课课堂气氛活跃,学生参与的积极性高。
但本课中多次出现了集体回答的现象,学生独立思考的时间过少。
《用分数表示可能性大小》评课稿篇2在数学组的“有效课堂研讨”活动中,我执教西师版小学六年级上册第七单元“可能性”,在与同事们的研讨中,我慢慢地对教材有了更深入的认识,对本学段数学课标对概率的要求有了更深入的理解,对课堂教学的有效性有了更深入的认识。
用分数表示可能性的大小
用分数表示可能性的大小引言在日常生活中,我们经常需要评估一件事情发生的可能性大小。
为了更准确地表示某个事件的概率或可能性,人们提出了一种用分数来表示可能性大小的方法。
本文将介绍这种方法的基本原理和应用。
分数表示可能性的概念分数是一种用来表示数量关系的数学工具,可以将一个数值分成若干等份。
在用分数表示可能性大小时,我们通常使用0到1之间的分数,其中0表示不可能发生,1表示肯定会发生。
分数表示可能性的方法百分数法百分数是一种常见的分数表示方法,用百分号表示。
在百分数法中,将一个事件发生的可能性表示为一个介于0和100之间的数值。
例如,如果某个事件发生的可能性为80%,则可以用分数表示为0.80。
十进制表示法十进制表示法是一种更精确的表示方法,它可以将可能性划分为更小的等份。
在十进制表示法中,一个事件发生的可能性可以用一个介于0和1之间的十进制数来表示。
例如,如果某个事件发生的可能性为0.75,则可以用分数表示为3/4。
分数表示法除了用十进制数表示可能性大小外,还可以直接使用分数来表示。
在分数表示法中,一个事件发生的可能性可以用一个分数来表示,分子表示事件发生的等份数量,分母表示总共等份的数量。
例如,如果某个事件发生的可能性为2/5,则可以用分数表示为2/5。
分数表示可能性的应用场景概率统计在概率统计中,分数表示可能性大小是一种常用的方法。
通过将可能性转化为数值,可以方便地进行统计和分析。
例如,在掷骰子的游戏中,每个点数出现的可能性均等,可以用分数1/6来表示每个点数的可能性大小。
风险评估在风险评估中,分数表示可能性大小可以帮助我们评估不同事件的风险程度。
通过将可能性转化为分数,可以对不同事件进行比较,并采取相应的风险控制措施。
例如,对于某个项目的失败风险,如果其可能性为3/10,则表示该项目的失败风险较高,需要采取相应的措施来降低风险。
信用评估在信用评估中,分数表示可能性大小可以用来评估借款人违约的可能性。
“用分数表示可能性的大小”教学设计与反思
表示可能性大小的认识 。 教学过程 :
教学重点 : 理解 并 掌握 用 分数 表 示可 能性 的
大小。
用 几 分 之 一 表 示 可 能 性 大 小 的 思 考 方 法 。例 2教 学 用 几 分 之 几 表 示 事 件 发 生
的 可 能 性 , 完 成 书 上 第 ( ) , 着 让 先 1题 接 学 生 自己 提 问题 ,小 组 内 进 行 合 作 、 探
师 : 么 是 “ 半 多 1 ” 什 一 张 ? 出示 : ( ) ( ) 2 5
出示 : 口
口 _ 5 = 2
师 : 1 例 2有 什 么 相 同 点 与 不 同 点 ? 例 和
【 设计意 图 : 如果说例 1中果汁的 变化只有一 次, 么例 2 那
中小明的邮票张数从 “ 原来” “ 到 现在” 生了两次变化 , 发 并且和 例 1 比 , 2还要求列式解答。 因此 , 相 例 在例 2教 学中 , 必须让 学生体 验到从 “ 原来” 现在” 到“ 的变化过程 , 并且根据变化顺序
( 据提 示 , 桌 交 流 想 法 , 再 顺 势 小 结 ) 根 同 师 教学后记 :
有条理地倒推 到原来。 】
三、 适度拓展 。 提升体验
1 补 充 条件 , 整 理 , 后 列 式 解 答 。 . 先 再 最
小明原来有一些邮票 ,
,
我再一次教 学了“ 解决问题 的策略一
倒推” 这一课 , 最终
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、如果有80位顾客,每人转动指针一次, 一定有(10)次停在红色区域, (30)次停在黄色区域, (40)次停在蓝色区域。
3、随着客流量的增加,转到红色区域可能性的大小会有 变化吗?为什么?
设计要求:
1、在正方体六个面都标上数字,使正方体落 1 下后“1”朝上的可能性是6 。 2、落下后数字“1”和“2”朝上的可能性相等。 3、落下后数字“1” 朝上的可能性是
右
用猜左右的方法决定由谁先发球,公平吗?为什么?
一共有2种情况,乒乓球可能在左手,也可能
在右手,猜对猜错的可能性是相等的,都是
1 2
。
(1)
1 2
1 3
1 4
1 10
摸到红球可能性的大小与球的总数有关。
把牌几分之几? 摸到红桃2的可能性是几分之几?
2、如果有80位顾客,每人转动指针一次, 可能有(10)次停在红色区域, (30)次停在黄色区域, (40)次停在蓝色区域。
幸运大转盘
某超市举行周年庆中大奖活动,只要 购物满100元,就有一次中大奖的机会,可 以到转盘上转1次,中一等奖者奖励不锈钢 保温杯一个,中二等奖者奖励奥妙洗衣粉 一袋,中三等奖者奖励康师傅方便面一袋。 1、请你猜猜中奖规则是怎样的?为什么?
3
2
5
5
1
从下面的口袋里任意摸一个球,摸到红球的可能性 是几分之几?
幸运大转盘
某超市举行周年庆中大奖活动,只要 购物满100元,就有一次中大奖的机会,可 以到转盘上转1次,中一等奖者奖励不锈钢 保温杯一个,中二等奖者奖励奥妙洗衣粉 一袋,中三等奖者奖励康师傅方便面一袋。 1、请你猜猜中奖规则是怎样的?为什么?
1 2
,
“2”朝上的可能性是
1 3
。
三 圆 三 圆 圆 钢 钢 角 角 规 规 规 笔 笔 尺 尺 一 一 一 一 一 一 一 个 个 个 支 支 副 副
天津馆
西藏馆
北京馆
贵州馆
江西馆
吉林馆
上海馆
山西馆
摸到每张牌的可能性都是
1
6
。
摸到( )的可能性是( )。为什么?
从下面的口袋里任意摸一个球,摸到红球的可能性 是几分之几?
1 5
2 5
3 5
4 5
摸到红球可能性的大小与红球的个数有关。
(1)
1 2
1 3
1 4
1 10
摸到红球可能性的大小与球的总数有关。
(2)
1 5
2 5
3 5
4 5
摸到红球可能性的大小与红球的个数有关。 摸到红球可能性的大小既与球的 总数有关,又与红球的个数有关。