可能性大小概率
随机事件的概率

古典概型虽然比较简单,但它有多方面的应用. 箱中摸球 分球入箱
随机取数 是常见的几种模型 .
分组分配
三、概率的几何定义
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的. 把等可能推广到无限个样本点场合,人们 引入了几何概型. 由此形成了确定概率的另 一方法——几何方法. 请看演示 几何概率
n n
第1次选取
第2次选取
B
第3次选取 C 例如:n=4,
D B D B
k =3
A
C D
C
B
P 4 3 2 24
3 4
C
D
……
P4 4 3 2 1 24
从n个不同元素取 k个(允许重复)
(1k n)的不同排列总数为:
n n n n回地摸取3张
这里我们先简要复习一下计算古典概率 所用到的 基本计数原理 1. 加法原理
设完成一件事有m种方式, 第一种方式有n1种方法, 第二种方式有n2种方法, 则完成这件事总共 有n1 + n2 + … + nm …; 第m种方式有nm种方法, 种方法 . 无论通过哪种方法都可以 完成这件事,
例如,某人要从甲地到乙地去, 可以乘火车,
一、概率的统计定义
1、频率
若设n A是n次试验中事件 A发生的次数, nA 则比值 称为事件A发生的频率,记为 n n A f n ( A),即 f ( A)
n
n
nA称为事件A发生的频率。
频率具有下列性质: 性质1
性质2 性质3
0 f n ( A) 1
f n ( ) 1
若事件A与事件B互斥,即AB ,则 f n ( A B ) f n ( A) f n ( B )
可能性的大小

可能性的大小
汇报人:
目录
CONTENTS
01 添加目录标题
02 什么是可能性
03 影响可能性大小的 因素
04 计算可能性的方法
05 可能性的应用场景
06 可能性的误用和注 意事项
添加章节标题
什么是可能性
定义和概念
可能性是指在一定条件下某个事件发生的概率或可能性的大小。
可能性通常用概率来表示概率是一个介于0和1之间的实数表示事件发生的可能性。
对不确定性因素的忽视和过度自信
忽视不确定性因 素:在决策过程 中忽视不确定性 因素可能导致决 策失误
过度自信:过度 自信可能导致决 策者高估自己的 能力和判断力忽 视潜在的风险
缺乏风险意识: 缺乏风险意识可 能导致决策者忽 视潜在的风险和 挑战
缺乏信息收集和 评估:缺乏信息 收集和评估可能 导致决策者无法 全面了解情况做 出错误的决策
可能性的误用和注意事 项
概率的误解和误用
概率不等于可能性:概率是客观存在的可能性是主观判断的 概率不等于必然性:概率只是可能性的一种度量不能预测未来 概率不等于确定性:概率只是可能性的一种度量不能确定结果 概率不等于因果关系:概率只是可能性的一种度量不能解释因果关系
对小概率事件的过度反应
过度关注:对小概率事件给予过多关注导致忽视其他重要信息 过度恐慌:对小概率事件的发生产生过度恐慌影响正常生活和决策 过度预防:对小概率事件的预防措施过于严格导致资源浪费和效率降低 过度依赖:过度依赖小概率事件的预测和预防忽视其他因素的影响
概率越大表示事件发生的可能性越大;概率越小表示事件发生的可能性越小。
可能性是统计学和概率论中的重要概念广泛应用于各种领域如赌博、投资、保险等。
事件发生的可能性大小与概率的认识

小学六年级小升初数学专题复习(25)——事件发生的可能性大小与概率的认识知识归纳事件可分为确定事件和不确定事件,确定事件可分为必然事件和不可能事件.不确定事件又称为随机事件.常考题型例:一个盒子里面分别放了一些花,任意摸一朵的可能性会怎样?用线连一连【分析】根据可能性的大小进行依次分析:盒子有1朵白花,9朵红花,摸出一朵,因为9>1,所以摸出红花的可能性大,白花的可能性小;盒子有5朵白花,5朵红花,摸出一朵,因为5=5,所以摸出红花的可能性大和白花的可能性一样;盒子里有9朵白花,1朵红花,摸出一朵,因为9>1,所以摸出白花的可能性大,红花的可能性小;盒子里有10朵红花,摸出一朵,肯定是红花,不可能是白花,据此解答.解:根据分析,连线如下:【点评】此题应根据可能性的大小进行分析、解答.二、可能性的大小知识归纳事件的概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P.必然事件的概率为1.常考题型例:从如图所示盒子里摸出一个球,有种结果,摸到球的可能性大,摸到球的可能性小.【分析】(1)右边盒子里只有白球和黑球,所以摸球的结果只有两种情况;(3)白球3个,黑球1个,3>1,所以摸到白球可能性大,黑球的可能性小.解:(1)因为盒子里只有白球和黑球,所以摸球的结果只有两种情况.(2)因为白球3个,黑球1个,所以3>1,所以摸到白球可能性大,黑球的可能性小.故答案为:两,白,黑.【点评】此题考查可能性的大小,数量多的摸到的可能性就大,根据日常生活经验判断.三、事件发生的可能性大小语言描述知识归纳定义:用语言描述事件的发生的可能性大小.例子:因为盒子里共有1000个红球,1个白球,则共有1001个球;任意摸一个球,白球摸到的概率为总球数的,红球占总球数的,白球摸到的概率很小,但也有可能.常考题型例:口袋中有4个红球,如果每次任意摸出一个球,要使摸出红球的可能性是,应再往袋中放个白球.要使摸到红球的可能性小于,至少要再放个黄球.【分析】(1)因为红球有4个,由题意知:要使摸出红球的可能性是,用除法求出球的总个数,再减去4即可;(2)假设摸到的红球的可能性是,则用除法求出球的总个数,再减去4,因为要使摸到红球的可能性小于,所以至少要再多放1个黄球.解:(1)4÷-4=6-4=2(个)答:应再从袋中放2个白球.(2)4÷-4+1=12-4+1=8+1=9(个)答:至少要再放9个黄球.故答案为:2,9.【点评】根据已知一个数的几分之几是多少,求这个数,用除法解答,进而得出结论.四、概率的认识知识归纳1.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=P,概率从某种数量上刻画一个不确定事件发生的可能性的大小.2.事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P.3.事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0.常考题型例:有一个箱子里放着一些黄色乒乓球,为了估计球的数量,我们把20个白色乒乓球放入箱子中,充分搅拌混合后,任意摸出30个球,发现其中有3个白球.你估计箱子里原来大约有多少个黄色乒乓球?【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,求出白球的概率之后,白球的数量已知,再除以概率,就是球的总量,减去白球的数量即为黄球的数量.解:摸到白球的概率是3÷30=20÷-20=200-20=180(个)答:估计箱子里原来大约有180个黄色乒乓球.【点评】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= 是解题关键.一.选择题(共6小题)1.8个同学在一起,其中小希的年龄不是最大的,那么小希的年龄是最小的概率是()A.B.C.D.2.给正方体涂上红蓝两种颜色,要使掷出红色的可能性比蓝色大一些,应该选择()涂法.A.2面红色,4面蓝色B.3面红色,3面蓝色C.4面红色,2面蓝色3.一种彩票的中奖率是1%,那么买100张彩票是否会中奖?()A.可能会中奖B.一定会中奖C.一定不会中奖4.任意转动转盘,转盘停止后,指针指向()A.单数的可能性大B.双数的可能性大C.单、双数的可能性相同5.白菜()是树上结的.A.一定B.很有可能C.不可能6.指针停在下面()颜色上的可能性大.A.蓝色、紫色B.红色、黄色C.白色、绿色二.填空题(共6小题)7.把扑克牌中的红桃A、K和黑桃Q、J均匀混合后,从中任意抽出一张牌,如果按花色分类有种可能的结果;如果按字母分类有种可能的结果。
什么是概率与可能性

什么是概率与可能性在我们的日常生活中,我们经常会使用到概率和可能性这两个概念。
它们用来描述事件发生的可能性大小,是我们理解和预测世界的重要工具。
本文将探讨概率与可能性的概念、应用和计算方法。
一、概率的定义与理解概率,指的是某个事件发生的可能性大小,通常用一个介于0和1之间的数字来表示。
0表示不可能事件,1表示必然事件。
在实际应用中,概率可以用百分比(%)或分数表示。
概率的计算可以通过数学方法进行,常见的计算方法包括古典概率、几何概率和统计概率。
古典概率是通过对事件发生的样本空间进行统计,计算事件发生的可能性。
几何概率是通过对事件发生的几何模型进行计算,计算事件发生的可能性。
统计概率是通过数据统计和分析的方法,计算事件发生的可能性。
二、可能性的概念与应用可能性,指的是某个事件发生的可能性大小,是对概率的一种描述。
可能性与概率是相互关联的概念,都用来描述事件发生的可能性大小,但在具体应用中,可能性通常更多用于对事物、情况或假设的描述和评估。
可能性的计算通常是通过主观判断或经验推理进行的。
在某些情况下,我们可以通过观察和总结过去的经验,来对事件发生的可能性进行估计。
例如,如果我们知道某个地区在过去10年中发生了3次地震,那么我们可以估计该地区未来一年发生地震的可能性。
三、概率与可能性的应用举例概率与可能性在许多领域和行业都有着广泛的应用。
以下是一些常见的应用举例:1. 金融投资:投资者可以通过对市场和投资品种的概率和可能性进行评估,来制定投资策略和决策。
他们可以根据过去的数据和趋势,计算股票、货币或商品等的概率和可能性,以指导自己的投资决策。
2. 风险管理:在风险管理中,概率和可能性被广泛用于评估和控制潜在风险。
例如,保险公司可以通过计算患病或事故发生的概率和可能性,来确定保险费率和赔偿金额。
3. 市场营销:在市场营销中,概率和可能性可以用于确定产品或服务的需求和市场规模。
企业可以通过市场调研和数据分析,计算消费者对产品的需求和购买意愿的概率和可能性。
《可能性的大小》教案设计

《可能性的大小》教案设计一、教学内容本节课选自人教版《数学》八年级上册第十一章《随机事件与概率》的第一节《可能性的大小》。
具体内容包括:了解可能性大小的概念,学会运用概率知识解决实际问题;掌握如何用列表法、树状图法计算简单事件的可能性大小。
二、教学目标1. 知识与技能:使学生理解可能性大小的概念,掌握计算可能性大小的基本方法,能运用列表法、树状图法解决实际问题。
2. 过程与方法:通过实践情景引入,培养学生观察、分析、解决问题的能力,提高学生的逻辑思维能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作、探究的学习精神,增强学生的自信心。
三、教学难点与重点教学难点:如何运用列表法、树状图法计算可能性大小。
教学重点:理解可能性大小的概念,掌握计算可能性大小的基本方法。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入利用多媒体课件展示一个摸球的实验,让学生观察并思考:从袋子中随机摸出一个球,摸到红球的可能性是多少?2. 例题讲解讲解摸球的例题,引导学生通过列表法、树状图法计算可能性大小。
3. 随堂练习让学生独立完成练习题,巩固所学知识。
5. 课堂小结让学生回顾本节课所学内容,加深对知识点的理解。
六、板书设计1. 可能性大小的概念2. 计算可能性大小的基本方法(1)列表法(2)树状图法3. 注意事项七、作业设计1. 作业题目(1)从一副去掉大小王的52张扑克牌中,随机抽取一张,求抽到红桃的可能性。
(2)一个袋子里有5个红球、3个蓝球和2个绿球,随机摸出一个球,求摸到红球的可能性。
2. 答案(1)红桃的可能性为1/4。
(2)摸到红球的可能性为5/10,即1/2。
八、课后反思及拓展延伸1. 反思本节课的教学效果,了解学生在学习过程中存在的问题,及时调整教学方法。
2. 拓展延伸:让学生思考如何运用概率知识解决生活中的实际问题,培养学生的创新意识和应用能力。
概率的基本概念和计算

性质:概率的对称 性意味着事件A和B 是对称的,即它们 的发生概率相等。
举例:例如,抛掷一枚 硬币正面朝上的概率等 于反面朝上的概率,因 此硬币抛掷具有对称性。
应用:概率的对称性 在概率论和统计学中 有着广泛的应用,如 赌博、保险等领域。
概率的可数可加性
定义:如果事件A和B是互斥的,则P(A∪B)=P(A)+P(B)
概率的乘法原则:两个独立事件的 概率乘积等于它们各自概率的乘积。
概率的公理化定义
概率是描述随机事件发生可能性大小的数值,取值范围在0到1之间。 必然事件的概率为1,不可能事件的概率为0。 概率具有可加性,即两个独立事件的概率之和等于它们概率的直接概率。 概率具有有限可加性,即对于有限个两两互斥事件,其概率之和等于它们概率的直接概率。
概率在日常生活中的应用
天气预报:通过概率计算预测未来天气情况,帮助人们安排出行和活动。 保险业:保险公司使用概率计算风险,制定合理的保险费率。
医学研究:通过概率统计方法分析大量数据,发现疾病与基因、环境等因素的关系。 经济学:经济学家使用概率模型预测市场趋势和经济状况,帮助投资者做出决策。
概率在科学实验中的应用
完备性是概率论中 的一个基本性质, 它保证了概率空间 的完整性和一致性。
完备性也是概率论中一 个重要的数学工具,它 被广泛应用于概率论和 统计学中的各种问题。
概率的完备性是概率 论中的一个基本概念 ,它对于理解概率论 和统计学中的各种概 念和原理非常重要。
概率的对称性
定义:如果一个事 件A的概率等于其逆 事件B的概率,则称 事件A具有对称性。
概率的统计定义
概率是描述随 机事件发生的 可能性大小的
数值。
概率可以通过 长期实验中某 一事件发生的 次数与总次数 的比值来估算。
概率的定义

概率的定义表示一个事件发生的可能性大小的数,叫做该事件的概率。
它是随机事件出现的可能性的量度,同时也是概率论最基本的概念之一。
人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。
但如果一件事情发生的概率是1/n,不是指n次事件里必有一次发生该事件,而是指此事件发生的频率接近于1/n这个数值。
概率的频率定义随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。
另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。
R.von 米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。
从理论上讲,概率的频率定义是不够严谨的。
A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。
百万分之一概率黑白配双胞胎概率的严格定义设E是随机试验,S是它的样本空间。
对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。
这里P(·)是一个集合函数,P(·)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……概率的古典定义如果一个试验满足两条:(1)试验只有有限个基本结果;(2)试验的每个基本结果出现的可能性是一样的。
这样的试验,成为古典试验。
对于古典试验中的事件A,它的概率定义为:P(A)=m/n,n表示该试验中所有可能出现的基本结果的总概率数目。
m表示事件A包含的试验基本结果数。
这种定义概率的方法称为概率的古典定义。
概率的统计定义在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。
可能性大小教学设计

可能性大小教学设计可能性大小教学设计1教材分析人教版三年级上册的《可能性的大小》是属于[统计与概率]里中概率的起始知识之一,本节课主要目标是让学生知道随机事件的可能发生的结果,并通过简单的试验让学生体会事件发生的可能性是有大小的,概括出初步判断可能性大小的方法,体会单次事件发生的不确定性,并进行运用。
其中让学生体会事件发生的可能性大小,理解数量越多发生的可能性越大,数量越少发生的可能性越小是本节课的重难点,因为对于这点认识学生的生活经验高于数学经验,如果在实验的过程中,发生小概率事件,也就是说数量少的反而出现的次数多时,学生可能将生活经验与之相联系,产生认识的迷惘,一旦处理不好会使整节课陷入混乱状态。
因此处理起来要慎之又慎,只要引导学生了解试验少的时候,试验结果不一定与预测的可能性大小相符,但随着试验次数的增加,试验结果将越来越接近预测的可能性大小。
学情分析基于以上的认识,我构建了“从生活中来,到生活中去”的基本设想,打算通过不同情境的创设引导学生去“猜想——验证——感悟”,最终建立起高于生活的可能大小的认识。
从生活中来,就是尊重学生的原有的生活经验,创设“猜球”的情境,勾起学生已有的对于“可能性大小”的认知,初步判断出“数量多的发生的可能性大,数量少的发生的可能性小”。
生活经验要通过验证才能上升到理论认识,而其中的“小概率”事件,是提升原有认知的关键之处。
因此,我采用了4:2的比例放球,排除一切干扰因素,组织小组摸球,比较、分析数据,体验概括出当摸球次数少时,是有可能发生小概率事件的,但当摸球次数越多原有猜想就越明显,从而使学生站在了数学的高度。
最后,通过“摸奖”游戏,让学生体验随机事件的不确定性,最终完成对“概率”的初步体验。
到生活中去,就是尊重数学的基本使命——去指导,去解决生活中的实际问题。
因此,我创设了“闯关游戏”,让数学以生动有趣的形式回归生活,使学生在轻松的氛围里,主动的去运用知识、解决生活问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率
教学目标:
1、理解随机事件的定义,概率的定义;
2、会用列举法求随机事件的概率;利用频率估计概率(试验概率);
3、体会随机观念和概率思想,逐步学习利用列举法分析问题和解决问题,提高解决实际问题的能力。
重难点:
1.计算简单事件概率的方法,主要是列举法(包括列表法和画树形图法)。
2.利用频率估计概率(试验概率)。
教学过程
一 知识梳理
1.基本概念
(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;
(2)不可能事件是指一定不能发生的事件;
(3)随机事件是指在一定条件下,可能发生也可能不发生的事件;
(4)随机事件的可能性
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.
(5)概率
一般地,在大量重复试验中,如果事件A 发生的频率m n
会稳定在某个常数P 附近,•那么这个常数P 就叫做事件A 的概率,记为P (A )=P .
(6)可能性与概率的关系
事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.(图6-30)
(7)古典概率
一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,•事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=m n
. (8)几何图形的概率
概率的大小与面积的大小有关,•事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结果组成图形的面积.
2.概率的理论计算方法有:①树状图法;②列表法.
3.通过大量重复实验得到的频率估计事件发生概率的值
4.利用概率的知识解决一些实际问题,如利用概率判断游戏的公平性等
三 典型例题
例1、下列事件中,是必然事件的是( )
A.购买一张彩票中奖一百万
B.打开电视机,任选一个频道,正在播新闻
C.在地球上,上抛出去的篮球会下落
D.掷两枚质地均匀的骰子,点数之和一定大于6
例2.在一场足球比赛前,甲教练预言说:“根据我掌握的情况,这场比赛我们队有 60%的机会获胜”意思最接近的是( )
A.这场比赛他这个队应该会赢
B.若两个队打100场比赛,他这个队会赢60场
C.若这两个队打10场比赛,这个队一定会赢6场比赛.
D.若这两个队打100场比赛,他这个队可能会赢60场左右.
例3一个袋中装有6个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球,摸到白球的概率是( )
例4.用树状图法求下列事件的概率:
(1)连续掷两次硬币,两次朝上的面都相同的概率是多少?
(2)连续掷三次,至少出现两次正面朝上的概率是多少
例5.在一个口袋中有4个完全相同的小球,把它们分别标号l 、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜. ①若小明摸出的球不放回,求小明获胜的概率.
②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
例6.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD .BD 上的点,EF∥AB,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( )
A .
B .
C .
D .
例7.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.
例8.一个密封不透明的盒子里有若干个白球, 在不允许将球倒出来的情况下, 为估计白球的个数, 小刚向其中放入8个黑球, 摇匀后从中随机摸出一个球记下颜色, 再把它放回盒中, 不断重复, 共摸球400次, 其中88次摸到黑球. 估计盒中大约有白球( )
A 、28个
B 、30个
C 、36个
D 、42个
例9. 一个不透明的袋子中装有三个完全相同的小球,分别标有数字3,4,5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.
1112....9323A B C D
例10.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.
(1)用树状图或列表法求出小明先挑选的概率;
(2)你认为这个游戏公平吗?请说明理由.
四 课堂小结
1本章的主要内容是随机事件的定义,概率的定义;
2.计算简单事件概率(古典概率类型)的方法,主要是列举法(包括列表法和画树形图法);. 3利用频率估计概率(试验概率)即通过大量重复试验,对获得的数据进行统计整理,求出频率,然后进行研究分析,得出某一随机事件发生的概率。
五 课堂练习
1.下列事件中必然发生的是( )
A .随意翻到一本书的某页,这页的页码是奇数
B .地球上,抛出的铁球最后总往下落
C .购买一张彩票,中奖
D .篮球队员在罚球线上投篮一次,投中
2.给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A.61 B. 31 C.21 D.3
2
3.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是( )
A .0.2
B .0.3
C .0.4
D .0.5
4.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面 图案是中心对称图形的概率为( )
A . 14
B .12
C . 34
D . 1
5.一个口袋中有4个相同的小球,分别与写有字母A ,B ,C ,D ,随机地抽出一个小球后放回,再随机地抽出一个小球.
(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;
(2)求两次抽出的球上字母相同的概率.
6.一个盒中装着大小、外形一模一样的x 颗白色弹珠和y 颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠 颗.
7.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).
(1)用树状图或列表法表示(x,y)所有可能出现的结果;
(2)求使分式+有意义的(x,y)出现的概率;
(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.
8.某校初三年级(1)班要举行一场毕业联欢会.规定每个同学分别转动下图中两个可以自由转动的均匀转盘A、B(转盘A被均匀分成三等份.每份分別标上1.2,3三个钕宇.转盘B被均匀分成二等份.每份分别标上4,5两个数字).若两个转盘停止后指针所指区域的数字都为偶数(如果指针恰好指在分格线上.那么重转直到指针指向某一数字所在区域为止).则这个同学要表演唱歌节目.请求出这个同学表演唱歌节目的概率(要求用画树状图或列表方法求解)。