材料力学第七章弯曲剪应力3,4,5
材料力学弯曲内力

材料力学弯曲内力材料力学是研究物质在外力作用下的变形和破坏规律的科学。
而弯曲内力则是材料力学中的一个重要概念,它在工程实践中有着广泛的应用。
弯曲内力是指在梁或梁式结构中由外力引起的内部应力状态,它是由梁的外部受力状态和几何形状决定的。
在工程设计和结构分析中,了解和计算弯曲内力是非常重要的,本文将对材料力学中的弯曲内力进行详细的介绍。
首先,我们来看一下弯曲内力的产生原理。
当梁受到外力作用时,梁内部会产生弯曲变形,这时梁内部就会产生弯曲应力。
弯曲内力包括正应力和剪应力两部分,正应力是沿梁的纵向方向产生的拉压应力,而剪应力则是梁内部产生的剪切应力。
这些内力的大小和分布是由梁的受力情况和截面形状决定的。
其次,我们来讨论一下弯曲内力的计算方法。
在工程实践中,我们通常采用梁的截面性质和外力矩的大小来计算弯曲内力。
对于矩形截面的梁,我们可以通过简单的公式来计算出弯曲内力的大小和分布。
而对于复杂形状的截面,我们则需要借助数值计算或者有限元分析来得到准确的结果。
在实际工程中,我们通常会使用专业的结构分析软件来进行弯曲内力的计算,这样可以大大提高计算的准确性和效率。
接着,我们来谈一下弯曲内力的影响因素。
弯曲内力的大小和分布受到多种因素的影响,包括外力的大小和方向、梁的截面形状和材料性质等。
在设计和分析过程中,我们需要充分考虑这些因素,以确保结构的安全性和稳定性。
此外,梁的支座条件和边界约束也会对弯曲内力产生影响,这些因素需要在计算中进行合理的考虑和处理。
最后,我们来总结一下弯曲内力的重要性。
弯曲内力是梁和梁式结构中非常重要的内部应力状态,它直接影响着结构的安全性和稳定性。
在工程设计和分析中,准确计算和合理分析弯曲内力是非常重要的,它可以帮助工程师们更好地理解和把握结构的受力情况,从而保证结构的安全性和可靠性。
总之,弯曲内力是材料力学中一个重要的概念,它在工程实践中有着广泛的应用。
通过对弯曲内力的了解和计算,我们可以更好地设计和分析工程结构,保证结构的安全性和稳定性。
材料力学弯曲剪应力

,max
S
* z ,max
Izd
FS,max
Iz S*
z ,max
d
75103 N 47.73 102m 12.5 103m
12.6 106 Pa 12.6 MPa
第15页/共68页
例题 4-13
2. 求ta ta
其中:
FS
,max
S
* za
Izd
S
* za
166
mm
21
mm
560 mm 2
思考题: 试通过分析说明,图a中
所示上、下翼缘左半部分 和右半部分横截面上与腹 板横截面上的切应力指向 是正确的,即它们构成了 “切应力流”。
第12页/共68页
例题 4-13
由56a号工字钢制成的简支梁如图a所示,试求
梁的横截面上的最大切应力tmax和同一横截面上腹 板上a点处(图b)的切应力t a 。不计梁的自重。
3 2
FS bh
第4页/共68页
2. 工字形截面梁 (1) 腹板上的切应力
t
FS
S
* z
Izd
其中
Sz*
b
h 2
2
h 2
y d
h 2
y
y
2
b
2
h
d 2
h 2
2
y
2
第5页/共68页
可见腹板上的切应力在与中性轴z垂直的方向 按二次抛物线规律变化。
第6页/共68页
(2) 在腹板与翼缘交界处:
第10页/共68页
F* N2
自由边 t1 t1
A* F* dx
N1
u
根据 d FS t可1 得d x出
材料力学-第七章弯曲剪应力

2.公式推导 (1) 取微段dx
mn
M
tt
FS
FS
b
h
z
y y
M+dM
FS
s1 m dx n
s2
M
F x
1
§7-3 弯曲剪应力和强度校核
一.矩形截面截面梁的剪应力
b
s My
Iz
mn
h
Oz y
zM
y
tt
M+dM
FS
FS
y
s1 m dx n
s2
2
假设
在hb的情况下
1.t的方向都与 FS 平行 2.t 沿宽度均布。
8.6106 Pa 8.6 MPa
17
例题 4-13
腹板上切应力沿高度的变化规律如图所示。
tmax
18
3. 薄壁环形截面梁 薄壁环形截面梁在竖直平面
内弯曲时,其横截面上切应力 的特征如图a所示:
(1) 由于d <<r0,故认为切应
力t 的大小和方向沿壁厚 无变
化; (2) 由于梁的内、外壁上无切
即:M
dM Iz
S
* z
M Iz
S
* z
tbdx
t
S
* z
dM
Izb dx
结论:
t
FS
S
* z
Izb
4
§5.7 梁的切应力
3.切应力分布规律
t
FS
S
* z
FS ( h 2 y 2 )
I zb 2I z 4
6FS bh3
h 2 4
y2
S* z
A
*
材料力学课件第七章变曲应力(土木专业)

46470 10 8 m 4
a
y
z
138.6 106 Pa =138.6 MPa
第七章
弯曲应力
[例2] 试求图示 T 形截面梁的最大拉应力和最大压应力。已知
Iz = 7.64×106 mm4、 y1 = 52 mm、y2 = 88 mm。
解: 1)画弯矩图
梁的最大正弯矩发生
在截面 C 上,最大负弯 矩发生在截面 B 上,分
对称弯曲
对称截面梁,在纵向对称面承受横向 外力时的受力与变形形式-对称弯曲
第七章
弯曲应力
弯 曲 试 验
第七章
试验现象
弯曲应力
(纯弯与正弯矩作用)
横线为直线, 仍与纵线正交 靠顶部纵线缩短, 靠底部纵 线伸长 纵线伸长区,截面宽度减小 纵线缩短区, 截面宽度增大 弯曲假设 横截面变形后保持平面,仍与纵线正交-弯曲平面假设 各纵向“纤维”处于单向受力状态-单向受力假设
第七章
7.1 概 述
弯曲应力
F
C
a
F
D
a
B
弯曲正应力只与弯矩有关,故 通过纯弯曲梁来研究弯曲正应力.
FS
A
纯弯曲: 梁的剪力恒为零, 弯矩为常量。
F
x
F
x
M
Fa
第七章
弯曲应力
纯弯曲
第七章
弯曲应力
.2 弯曲应力
弯曲正应力
弯曲应力
梁弯曲时横截面上的
弯曲切应力
梁弯曲时横截面上的
A ydA M
yC ydA A 0 A
(c)
(a)(b)
A ydA 0
E
中性轴通过横截面形心
(a)(c)
材料力学第七章 应力状态

主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
弯曲应力(剪应力6月9日)(1)

[1 12
16
283
16
28
(14
13)2 ]
[1 12
8 103
18 10
(19
13)2 ]
26200cm4
Wz
Iz ym a x
26200 (28 13)
1748cm3
(3)正应力校核
max
M Wz
1.2 105 1748 106
1.0 1.04 1.12 1.57 2.30
(四)切应力强度条件
max
(
FQ Sz,max
I z
)max
[
]
对于等宽度截面, m ax发生在中性轴上;对于宽度变化的截面,
m ax不一定发生在中性轴上。
在进行梁的强度计算时,需注意以下问题: (1)对于细长梁的弯曲变形,正应力的强度条件是主要的,剪应
S
* z
:y以外面积对中性轴的静矩
I z :整个截面对中性轴的惯性矩
b:y处的宽度
c
yc
y
z h
b
对于矩形:
S* z
A*
yc
b(h 2
y) [ y
h 2
2
y
]
b (h2 24
y2)
弯曲应力/弯曲时的剪应力
而
Iz
1 bh3 12
6FQ bh3
( h2 4
y2)
力的强度条件是次要的。但对于较粗短的梁,当集中力较大 时,截面上的剪力较大而弯矩较小,或是薄壁截面梁时,也 需要较核剪应力强度。
材料力学梁的弯曲应力
52 y
解:(1)求截面形心
z1
8 0 2 0 1 0 12 20 0 80
z
yc
5m 2 m 8 0 2 0 12 200
(2)求截面对中性轴z的惯性矩
Iz
80 20 3 12
80 20 42 2
20 120 3 20 120 28 2 12
7.64 10 6 m4
28
2.5kN.m 4kN.m
与实验结果相符。
9
(2)应力分布规律
在线弹性范围内,应用胡克定律
sE E y
(b)
对一定材料, E=C; 对一定截面,
1
C.
sy
——横截面上某点处的应力与此点距中性轴的距离y成比例。
当 y0时,s0;
应力为零的点的连线。
s s yyma 时 x, ma.x
M
与实验结果相符。
10
(3)由静力平衡方程确定中性轴的位置及应力计算公式
Iz
即使最大拉、压应力同时达到许用应力值。 y
c
y2
z
y1
压边
39
(二)、合理安排载荷和支承的位置,以降低
M
值。
max
1、载荷尽量靠近支座:
F
F
A
A
B
B
0.8L
0.5L
L
L
0.25FL (+)
M 图
0.16FL (+)
M 图
40
F
F
A
BA
B
0.9L
L
L
0.09FL
(+)
M 图
M 图
41
2、将集中力分解为分力或均布力。
材料力学第七章
若应力状态由主应力表示,并且在max 0 和 min 0 的情况下,则式(7-7) 成为
max min
max
min
2
1 3
2
进一步讨论,由式(7-4)和式(7-6)可知
tan
21
1 tan 20
上式表明1 与 0 之间有如下关系:
1
0
4
可见,切应力取得极值的平面与主平面之间的夹角为 45 。
若三个主应力中,只有一个主应力不等于零,这样的应力状态称为 单向应力状态。若三个主应力中有两个不等于零,称为二向应力状态或 平面应力状态。若三个主应力皆不为零,称为三向应力状态或空间应力 状态。
第二节 平面应力状态分析——解析法
一、斜截面上的应力
图 7-1 所示为平面应力状态的最一般情况。已知 x , y , xy 和 yx 。现 在研究图中虚线所示任一斜截面上的应力,设截面上外法向 n 与 x 轴的夹角 为 。
令 d /d 0 ,由式(7-1)可得
x
2
y
sin
2
xy
cos 2
0
解得
(7-3)
tan 20
2 xy x y
通过运算,可以得到斜截面上正应力的极值为
(7-4)
max min
x
y 2
x
2
y
2
2 xy
(7-5)
由式(7-4)可知, 取得极值的角0 有两个,二者相差 90 ,即最大正应 力 max 和最小正应力 min ,二者分别作用在两个相互垂直的截面上。当 0 , 取得极值时,该斜截面上的切应力 0 ,即正应力就是主应力。
(a)
(b) 图7-6
例 7-4 悬臂梁受力如图 7-7(a)所示。试求截面 n n 上 A 点处的主应力 大小和方向,并按主平面画出单元体。
第七章-弯曲应力(1) (2)
M
z
Q
横截面上内力 横截面上切应力
横截面上正应力
Q dA
A
M y dA
A
切应力和正应力的分布函数不知道,2个方程确定不了
切应力无穷个未知数、正应力无穷个未知数,实质是 超静定问题 解决之前,先简化受力状态 —— 理想模型方法
8
横力弯曲与纯弯曲 横力弯曲 ——
剪力Q不为零 ( Bending by transverse force ) 例如AC, DB段
E
A
(-) B
D
(+) 10kN*m
y2
C
拉应力
a
e
压应力
y1
压应力 B截面
b
d
拉应力 D截面
危险点:
a, b, d
33
(3)计算危险点应力 拉应力
a
e
压应力
校核强度
M B y2 a Iz 30 MPa (拉) M B y1 b Iz
70 MPa (压)
压应力 B截面
b
d
强度问题 弯曲问题的整个分析过程: 弯曲内力 弯曲应力 弯曲变形 刚度问题
5
本章主要内容
7.1 弯曲正应力 7.2 弯曲正应力强度条件 7.3 弯曲切应力及强度条件 7.4 弯曲中心 7.5 提高弯曲强度的一些措施
这一堂课先效仿前人,探求出来弯曲正应力
公式,然后解决弯曲正应力强度问题
6
知道公式会用,不知推导,行不行?不行。
2
解:1 画 M 图求有关弯矩
qLx qx M1 ( ) 2 2
2
2
x 1
60kNm
M max qL / 8 67.5kNm
材料力学弯曲应力
材料力学弯曲应力材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而弯曲应力是材料在受到弯曲载荷时所产生的应力。
弯曲应力的研究对于工程结构设计和材料选用具有重要意义。
本文将从弯曲应力的概念、计算公式、影响因素等方面进行详细介绍。
弯曲应力是指在材料受到弯曲载荷作用下,横截面上的应力分布情况。
在弯曲过程中,材料上部受到压应力,下部受到拉应力,而中性面则不受应力影响。
根据梁的理论,弯曲应力与弯矩、截面形状以及材料性质有关。
在工程实践中,我们通常使用梁的弯曲应力公式来计算弯曲应力的大小。
梁的弯曲应力公式可以表示为:\[ \sigma = \frac{M \cdot c}{I} \]其中,σ为弯曲应力,M为弯矩,c为截面中性轴到受拉或受压纤维的距离,I为截面的惯性矩。
从公式中可以看出,弯曲应力与弯矩成正比,与截面形状和材料性质有关,截面越大,惯性矩越大,弯曲应力越小。
影响弯曲应力的因素有很多,主要包括载荷大小、截面形状、材料性质等。
首先是载荷大小,当外力作用在梁上时,产生的弯矩大小将直接影响弯曲应力的大小。
其次是截面形状,截面形状不同将导致截面惯性矩不同,进而影响弯曲应力的大小。
最后是材料性质,材料的弹性模量、屈服强度等参数也会对弯曲应力产生影响。
在工程实践中,我们需要根据具体的工程要求和材料性质来选择合适的截面形状和材料类型,以使得结构在受到弯曲载荷时能够满足强度和刚度的要求。
同时,还需要合理设计结构,减小弯曲应力集中的区域,避免出现应力集中而导致的破坏。
综上所述,弯曲应力是材料在受到弯曲载荷时产生的应力,其大小与弯矩、截面形状和材料性质有关。
在工程实践中,我们需要根据具体的工程要求和材料性质来计算和分析弯曲应力,以保证结构的安全可靠。
同时,合理设计结构和选择合适的材料也是降低弯曲应力的重要手段。
希望本文对于弯曲应力的理解和应用能够有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F* N2
自由边 t1 t1
A* F* dx
N1
u
根据 d FS t1 d x可得出
t1
FS S z*
I z
FS
I z
u
h 2
2
FS uh
2Iz 从而由切应力互等定理可
知,翼缘横截面上距自由边为u
b
h 2
2
h 2
y d
h 2
y
y
2
b
2
h
d 2
h 2
2
y
2
可见腹板上的切应力在与中性轴z垂直的方向 按二次抛物线规律变化。
(2) 在腹板与翼缘交界处:
t min
FS Izd
Ip
π
r03
FS,max
Iz S*
z ,max
d
75103 N 47.73 102m 12.5 103m
12.6 106 Pa 12.6 MPa
例题 4-13
2. 求ta ta
其中:
FS
,max
S
* za
Izd
S
* za
166
mm
21
mm
560 mm 2
S* z
FN II FN I t bdx
即:M
dM Iz
S
* z
M Iz
S
* z
tbdx
t Sz* d M
Izb dx
结论:
t
FS
S
* z
Izb
§5.7 梁的切应力
z
FS
h2 (
y2)
I zb 2I z 4
6FS bh3
h 2 4
整个环形截面对于中性
轴z的惯性矩Iz可利用整个截 面对于圆心O的极惯性矩得 到,如下:
Ip
A
2
d
A
2π
r0
r02
2π
r03
及
Ip
2d A
A
A
y2 z2 d A
y2 d A
A
z2 d A
A
Iz Iy 2Iz
得出:
Iz
1 2
21
mm 2
940 103 mm3
于是有:
ta
75 103 N 940 106 m3 65586 108 m4 12.5 103 m
8.6106 Pa 8.6 MPa
例题 4-13
腹板上切应力沿高度的变化规律如图所示。
tmax
b
2
h
在中性轴处:
t max
FS
S
* z ,max
Izd
FS Izd
b
2
h
d 2
h 2
2
对于轧制的工字钢,上式中的 Iz 就是型 钢表中给出的比值 I x ,此值已把工S字z*,m钢ax 截面的 翼缘厚度变化和圆角S等x 考虑在内。
t
t
y
FNⅠ
FNII
z
y
A*
y
y A*
dFS
FNⅠ
y A*
FNII
FNI A* sⅠdA
A*
M y1 Iz
dA
M Iz
A*
y1 dA
M Iz
Sz*
FNⅡ A* (s Ⅱ)dA
A*
(M
dM ) y1 dA Iz
M
dM Iz
A*
y1 dA
M
dM Iz
处有平行于翼缘横截面边长的
切应力t1,而且它是随u按线性
规律变化的。
思考题: 试通过分析说明,图a中
所示上、下翼缘左半部分 和右半部分横截面上与腹 板横截面上的切应力指向 是正确的,即它们构成了 “切应力流”。
例题 4-13
由56a号工字钢制成的简支梁如图a所示,试
求梁的横截面上的最大切应力tmax和同一横截面上 腹板上a点处(图b)的切应力t a 。不计梁的自重。
N1
u
但是,如果从长为dx的梁段中 用铅垂的纵截面在翼缘上截取如图 所示包含翼缘自由边在内的分离体 就会发现,由于横力弯曲情况下梁 的相邻横截面上的弯矩不相等,故 所示分离体前后两个同样大小的部 分横截面上弯曲正应力构成的合力 FN*1和FN*2 不相等,因而铅垂的纵截
面上必有由切应力t1′构成的合力。
(a) 横截面上与y轴相交的 各点处切应力为零;
(b) y轴两侧各点处的切应 力其大小及指向均与y轴对 称。
薄壁环形截面梁横截面上的最大切应力tmax
在中性轴z上,半个环形截面的面积A*=pr0,其
形心离中性轴的距离(图b)为2r0 ,故求tmax时有
S
* z
π
r0
2r0 π
π
2r02
例题 4-13
解: 1. 求tmax
梁的剪力图如图c所示,由图可见FS,max=75kN。 由型钢表查得56a号工字钢截面的尺寸如图b所示,
Iz=65 586 cm4和Iz/S * z,max=47.73cm。d=12.5mm
例题 4-13
tmax
FS
,max
S
* z ,max
Izd
§5.7 梁的切应力
2.公式推导 (1) 取微段dx
mn
M
tt
FS
FS
b
h
z
y y
M+dM
FS
s1 m dx n
s2
M
F x
§7-3 弯曲剪应力和强度校核
一.矩形截面截面梁的剪应力
b
s My
Iz
mn
h
Oz y
zM
y
tt
M+dM
FS
FS
y
s1 m dx n
s2
假设
在hb的情况下
1.t的方向都与 FS 平行 2.t 沿宽度均布。
(3) 翼缘上的切应力
翼缘横截面上平行于 剪力FS的切应力在其上、 下边缘处为零(因为翼缘的 上、下表面无切应力),可 见翼缘横截面上其它各处 平行于FS的切应力不可能 大,故不予考虑。分析表 明,工字形截面梁的腹板 承担了整个横截面上剪力 FS的90%以上。
F* N2
自由边 t1 t1
A* F* dx
y2
S* z
A*
y* C
b
h
y
y
h 2
y
2
2
b 2
h2 4
y2
bh3 I z 12
b
F
S
h y
t
y
z
t max
t
t max
3 2
FS bh
2. 工字形截面梁 (1) 腹板上的切应力
t
FS
S
* z
Izd
其中
Sz*
3. 薄壁环形截面梁 薄壁环形截面梁在竖直平面
内弯曲时,其横截面上切应力 的特征如图a所示:
(1) 由于d <<r0,故认为切应
力t 的大小和方向沿壁厚 无变
化; (2) 由于梁的内、外壁上无切
应力,故根据切应力互等定理 知,横截面上切应力的方向与 圆周相切;
(3) 根据与y轴的对称关系 可知: