高三数学一轮复习第六篇数列第3节等比数列理

合集下载

高考一轮数学复习理科课件(人教版)第3课时 等比数列

高考一轮数学复习理科课件(人教版)第3课时   等比数列

第六章 数列
高考调研
高三数学(新课标版·理)
题型三 等比数列的判定与证明
例 3 (2011·天津文)已知数列{an}与{bn}满足 bn+1an+bnan +1=(-2)n+1,bn=3+-2 1n-1,n∈N*,且 a1=2.
设 cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列.
第六章 数列
高考调研
高三数学(新课标版·理)
aq1=13, 解方程组1-a1 q=-12,
得aq1==31,, ⇒n=4
∴a2n=a1·q2n-1=1·32n-1=32n-1=37.
【答案】 37
第六章 数列
高考调研
高三数学(新课标版·理)
探究 1 (1)等比数列的通项公式 an=a1qn-1 及前 n 项 和公式 Sn=a111--qqn=a11--aqnq(q≠1)共涉及五个量 a1,an, q,n,Sn,知其三就能求另二,体现了方程思想的应用.
高考调研
高三数学(新课标版·理)
第六章 数列
第六章 数列
高考调研
高三数学(新课标版·理)
第3课时 等比数列
第六章 数列
高考调研
高三数学(新课标版·理)
2012·考纲下载
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并 能用有关知识解决相应的问题. 4.了解等比数列与指数函数的关系.
2.(2012·大连模拟)在等比数列{an}中,a1+a2=30, a3+a4=60,则 a7+a8=________.
答案 240
第六章 数列
高考调研
高三数学(新课标版·理)
3.如果-1,a,b,c,-9 成等比数列,那么( ) A.b=3,ac=9 B.b=-3,ac=9 C.b=3,ac=-9 D.b=-3,ac=-9

数学一轮复习第6章数列第3讲等比数列及其前n项和试题2理

数学一轮复习第6章数列第3讲等比数列及其前n项和试题2理

第六章 数 列第三讲 等比数列及其前n 项和1。

[2021陕西百校联考]已知等比数列{a n }的公比为q ,前4项的和为a 1+14,且a 2,a 3+1,a 4成等差数列,则q 的值为( )A.12或2 B 。

1或12C.2D.32。

[2021安徽省四校联考]已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 4=( )A.116B.18C 。

3116D.1583.[2020合肥三检][数学文化题]公元前1650年左右的埃及《莱因德纸草书》上载有如下问题:“十人分十斗玉米,从第二人开始,各人所得依次比前人少八分之一,问每人各得玉米多少斗?”在上述问题中,第一人分得玉米( ) A .70×89810-1斗 B .10×810810-710斗 C 。

10×89810-710斗 D 。

10×88810-710斗4.[2020南昌市测试]公比不为1的等比数列{a n }中,若a 1a 5=a m a n ,则mn 不可能为( ) A 。

5 B .6 C 。

8 D .95。

[2020成都市高三摸底测试]已知等比数列{a n }的各项均为正数,若log 3a 1+log 3a 2+…+log 3a 12=12,则a 6a 7=( ) A.1 B 。

3 C 。

6 D .96.[2021四省八校联考]已知等比数列{a n }的公比为q ,前n 项和为S n =m —q n ,若a 5=—8a 2,则S 5= .7。

[2020大同市高三调研]已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= .8。

[2020全国卷Ⅲ,17,12分]设等比数列{a n }满足a 1+a 2=4,a 3—a 1=8。

(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.9。

届数学一轮复习第六章数列第三节等比数列及其前n项和学案理含解析

届数学一轮复习第六章数列第三节等比数列及其前n项和学案理含解析

第三节等比数列及其前n项和[最新考纲][考情分析][核心素养]1.理解等比数列的概念。

2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系。

等比数列的基本运算,等比数列的判断与证明,等比数列的性质与应用仍是2021年高考考查的热点,三种题型都有可能出现,分值为5~12分.1.数学运算2.逻辑推理‖知识梳理‖1.等比数列的有关概念(1)定义①文字语言:从错误!第2项起,每一项与它的前一项的错误!比都等于错误!同一个常数.②符号语言:错误!错误!=q(n∈N*,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么错误!G叫做a 与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G26ab.2.等比数列的有关公式(1)通项公式:a n=错误!a1q n-1.(2)前n项和公式3.等比数列的性质(1)通项公式的推广:a n=a m·q n-m(m,n∈N*).(2)对任意的正整数m,n,p,q,若m+n=p+q,则错误!a m·a n =错误a p·a q.特别地,若m+n=2p,则a m·a n=a2p.(3)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)213S m(S3m-S2m)(m∈N*,公比q≠1).(4)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是错误!等比数列.(5)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为错误!q k.►常用结论1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),错误!,{a2,n},{a n·b n},错误!仍是等比数列.2.一个等比数列各项的k次幂仍组成一个等比数列,新公比是原公比的k次幂.3.{a n}为等比数列,若a1·a2·…·a n=T n,则T n,错误!,错误!,…成等比数列.4.当q≠0且q≠1时,S n=k-k·q n(k≠0)是{a n}成等比数列的充要条件,这时k=错误!.5.有穷等比数列中,与首末两项等距离的两项的积相等,特别地,若项数为奇数时,还等于中间项的平方.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.()(2)三个数a,b,c成等比数列的充要条件是b2=ac。

高考数学一轮复习全套课时作业6-3等比数列

高考数学一轮复习全套课时作业6-3等比数列

题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。

2024年高考数学一轮复习课件(新高考版) 第6章 §6.3 等比数列

2024年高考数学一轮复习课件(新高考版)  第6章 §6.3 等比数列

2024年高考数学一轮复习课件(新高考版)第六章 数 列§6.3 等比数列考试要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.等比数列有关的概念(1)定义:如果一个数列从第 项起,每一项与它的前一项的比都等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的,公比通常用字母q (q ≠0)表示.(2)等比中项:如果在a 与b 中间插入一个数G ,使 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2= .2同一个公比a ,G ,b ab2.等比数列的通项公式及前n项和公式a1q n-1(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=.(2)等比数列通项公式的推广:a n=a m q n-m.(3)等比数列的前n项和公式:当q=1时,S n=na1;当q≠1时,S n=________= .3.等比数列性质(1)若m +n =p +q ,则,其中m ,n ,p ,q ∈N *.特别地,若2w =m +n ,则 ,其中m ,n ,w ∈N *.(2)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为 (k ,m ∈N *).a m a n =a p a q q mS2n-S n S3n-S2n(4)等比数列{a n}的前n项和为S n,则S n,,仍成等比数列,其公比为q n.(n为偶数且q=-1除外)增减常用结论1.等比数列{a n}的通项公式可以写成a n=cq n,这里c≠0,q≠0.2.等比数列{a n}的前n项和S n可以写成S n=Aq n-A(A≠0,q≠1,0).3.数列{a n}是等比数列,S n是其前n项和.判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(2)当公比q >1时,等比数列{a n }为递增数列.( )(3)等比数列中所有偶数项的符号相同.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( )√×××1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分不必要条件√B.必要不充分条件C.充要条件D.既不充分也不必要条件若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.2.设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6等于√A.31B.32C.63D.64根据题意知,等比数列{a n}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数1,3,9或9,3,1为____________.∴这三个数为1,3,9或9,3,1.第二部分例1 (1)(2022·全国乙卷)已知等比数列{a n}的前3项和为168,a2-a5=42,则a6等于√A.14B.12C.6D.3方法一 设等比数列{a n}的公比为q,易知q≠1.所以a6=a1q5=3,故选D.方法二 设等比数列{a n}的公比为q,所以a6=a1q5=3,故选D.(2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一√设第一个音的频率为a ,相邻两个音之间的频率之比为q ,那么a n =aq n -1,根据最后一个音的频率是最初那个音的2倍,得a 13=2a =aq 12,即q = ,1122思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,a n,S n,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.跟踪训练1 (1)设正项等比数列{a n}的前n项和为S n,若S2=3,S4=15,则公比q等于√A.2B.3C.4D.5∵S2=3,S4=15,∴q≠1,(2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是A.插入的第8个数为B.插入的第5个数是插入的第1个数的倍C.M>3√D.N<7设该等比数列为{a n},公比为q,则a1=1,a13=2,插入的第5个数为a6=a1q5,插入的第1个数为a2=a1q,112112-要证M >3,即证-1- >3,112112-112121-即证 >4,1122N =M +3.1122112121 所以 >5,所以-1- >4,即M >4,112112 所以N =M +3>7,故D 错误.例2 已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等比数列;②数列{S n+a1}是等比数列;③a2=2a1.注:如果选择不同的组合分别解答,则按第一个解答计分.选①②作为条件证明③:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),解得q=2,所以a2=2a1.选①③作为条件证明②:因为a2=2a1,{a n}是等比数列,所以公比q=2,选②③作为条件证明①:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),因为a2=2a1,所以A(q-1)=A,解得q=2,所以当n≥2时,a n=S n-S n-1=Aq n-2(q-1)=A·2n-2=a1·2n-1,所以{a n}为等比数列.思维升华(3)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.跟踪训练2 在数列{a n}中,+2a n+1=a n a n+2+a n+a n+2,且a1=2,a2=5.(1)证明:数列{a n+1}是等比数列;所以(a n+1+1)2=(a n+1)(a n+2+1),因为a1=2,a2=5,所以a1+1=3,a2+1=6,所以数列{a n+1}是以3为首项,2为公比的等比数列.(2)求数列{a n}的前n项和S n.由(1)知,a n+1=3·2n-1,所以a n=3·2n-1-1,√∵a1,a13是方程x2-13x+9=0的两根,∴a1+a13=13,a1·a13=9,又数列{a n}为等比数列,等比数列奇数项符号相同,可得a7=3,(2)已知正项等比数列{a n}的前n项和为S n且S8-2S4=6,则a9+a10+a1124+a12的最小值为______.由题意可得S8-2S4=6,可得S8-S4=S4+6,由等比数列的性质可得S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2,当且仅当S4=6时等号成立.综上可得,a9+a10+a11+a12的最小值为24.思维升华(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2023·六安模拟)在等比数列{a n}中,若a1+a2=16,a3+a4=24,则a7+a8等于√A.40B.36C.54D.81在等比数列{a n}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,∵a1+a2=16,a3+a4=24,(2)等比数列{a n}共有奇数个项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1等于√A.1B.2C.3D.4∵a n=192,√∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,第三部分1.(2023·岳阳模拟)已知等比数列{a n}满足a5-a3=8,a6-a4=24,则a3等于√A.1B.-1C.3D.-3设a n=a1q n-1,∵a5-a3=8,a6-a4=24,2.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k等于√A.2B.3C.4D.5令m=1,则由a m+n=a m a n,得a n+1=a1a n,所以a n=2n,所以a k+1+a k+2+…+a k+10=2k (a1+a2+…+a10)=215-25=25×(210-1),解得k=4.3.若等比数列{a n}中的a5,a2 019是方程x2-4x+3=0的两个根,则log3a1+log3a2+log3a3+…+log3a2 023等于√。

高考数学(理)一轮复习人教A版-第六章 第3节 (2)

高考数学(理)一轮复习人教A版-第六章 第3节 (2)

...第3节等比数列及其前n项和最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知识梳理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a na n-1=q(n≥2,q为非零常数).(2)如果三个数a,G,b成等比数列,那么G叫做a与b的等比中项,其中G=±ab.2. 等比数列的通项公式及前n项和公式(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=a1q n-1;通项公式的推广:a n=a m q n-m.(2)等比数列的前n项和公式:当q=1时,S n=na1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[常用结论与微点提醒]1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n},⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n ,则其前n 项和为S n =a (1-a n)1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(必修5P53AT1(2)改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12解析 由题意知q 3=a 5a 2=18,即q =12.3.(2018·湖北省七市联考)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8B .9C .10D .11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 C4.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 65.(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 {a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2, ∴b 2=b 1·q =2,则a 2b 2=22=1.答案 1考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=(2)(2017·江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q . 由⎩⎨⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎨⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1), 则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32. 答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解. 2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.【训练1】 (1)(2018·武昌调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1=( ) A .-2B .-1C.12D.23(2)(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析 (1)由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2中得a 1+32a 1=3×32a 1+2,解得a 1=-1,故选B.(2)设等比数列{a n }的公比为q ,∴⎩⎨⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎨⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12, ∴a 1a 2…a n =a n 1q1+2+…+(n -1)=2-n 22+7n2.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *,可知n =3或4时,t 有最大值6.又y =2t 为增函数.所以a 1a 2…a n 的最大值为64. 答案 (1)B (2)64考点二 等比数列的性质及应用【例2】 (1)(必修5P68BT1(1))等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A .12B .10C .8D .2+log 35(2)(2018·云南11校调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A .40B .60C .32D .50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)由数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度. 2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练2】 (1)(2018·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A .- 3B .-1C .-33D. 3(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.解析 (1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝⎛⎭⎪⎫-7π3=-tan π3=- 3.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a3a=73.答案 (1)A (2)73考点三 等比数列的判定与证明【例3】 (2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.【训练3】 (2017·安徽“江南十校”联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2),又由题意知a 1-2a 1=-3,所以a 1=3,则S 1-1+2=4, 所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.基础巩固题组(建议用时:40分钟)一、选择题1.已知{a n },{b n }都是等比数列,那么( ) A .{a n +b n },{a n ·b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D .{a n +b n },{a n ·b n }都不一定是等比数列 解析 两个等比数列的积仍是一个等比数列. 答案 C2.(2018·太原模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( ) A .2B .4C. 2D .2 2解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q =4.答案 B3.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏B .3盏C .5盏D .9盏解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则依题意S 7=381,公比q =2.∴a 1(1-27)1-2=381,解得a 1=3.答案 B4.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B .-18C.578D.558解析 因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18. 答案 A5.(2018·昆明诊断)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的A .-2B .- 2C .± 2D. 2解析 根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2. 答案 B 二、填空题6.(2018·河南百校联盟联考改编)若等比数列{a n }的前n 项和为S n ,a 5=40,且S 6+3a 7=S 8,则a 2等于________.解析 由S 6+3a 7=S 8,得2a 7=a 8,则公比q 为2,所以a 2=a 523=4023=5. 答案 57.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×⎝ ⎛⎭⎪⎫12n -1=12n .答案 12n8.(2018·成都诊断)已知数列{a n }中,a 1=2,且a 2n +1a n =4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________.解析 由a 2n +1a n=4(a n +1-a n )得,a 2n +1-4a n +1a n +4a 2n =0,∴(a n +1-2a n )2=0,a n +1a n =2,∴数列{a n }是首项a 1=2,公比为2的等比数列,∴S 9=2(1-29)1-2=1 022.答案 1 0229.(2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得 ⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)得S n =a 1(1-q n )1-q =-2[1-(-2)n ]1-(-2)=23[(-2)n -1],则S n +1=23[(-2)n +1-1],S n +2=23[(-2)n +2-1],所以S n +1+S n +2=23[(-2)n +1-1]+23[(-2)n +2-1]=23[2(-2)n-2]=43[(-2)n -1]=2S n , ∴S n +1,S n ,S n +2成等差数列.10.(2018·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个等差数列,a n =a 1+(n -1)d =2n -1. (2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 即3n -12≤n 2,又n ∈N *,所以n =1或2.能力提升题组 (建议用时:20分钟)11.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n -1)2B.12(9n -1) C .9n -1 D.14(3n -1) 解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B12.(2018·东北三省三校联考)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.解析 由题意知2b n =a n +a n +1,a 2n +1=b n ·b n +1,∴a n +1=b n b n +1,当n ≥2时,2b n =b n -1b n +b n b n +1,∵b n >0,∴2b n =b n -1+b n +1,∴{b n }成等差数列,由a 1=1,a 2=3,得b 1=2,b 2=92,∴b 1=2,b 2=322,∴公差d =22,∴b n =n +122,∴b n =(n +1)22, ∴a n =b n -1b n =n (n +1)2. 答案 a n =n (n +1)213.(2017·合肥模拟)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.(1)解 设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1. (2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾. 故数列{a n +1}不是等比数列.。

2021版新高考数学一轮教师用书:第6章 第3节 等比数列及其前n项和 Word版含答案

2021版新高考数学一轮教师用书:第6章 第3节 等比数列及其前n项和 Word版含答案

第三节 等比数列及其前n 项和[考点要求] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.(对应学生用书第106页)1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的数学表达式为a n +1an =q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1=a m q n -m .(2)前n 项和公式:S n =⎩⎨⎧na 1(q =1),a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1).[常用结论]等比数列的常用性质1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍然是等比数列.3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,其中当公比为-1时,n 为偶数时除外.一、思考辨析(正确的打“√”,错误的打“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(5)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) [答案] (1)× (2)× (3)× (4)× (5)× 二、教材改编1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4 D .±42.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A .13 B .-13 C .19 D .-193.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________. 4.一种专门占据内存的计算机病毒开机时占据内存1 MB ,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB(1 GB =210 MB).(对应学生用书第106页)考点1 等比数列的基本运算等比数列基本量运算的解题策略(1)等比数列的通项公式与前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,已知其中三个就能求另外两个(简称“知三求二”).(2)运用等比数列的前n 项和公式时,注意分q =1和q ≠1两类分别讨论.1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ) A .3 B .4 C .5 D .62.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 3.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知a 3=32,S 3=92,则a 2=________. 4.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .抓住基本量a 1, q ,借用方程思想求解是解答此类问题的关键,求解中要注意方法的择优. 考点2 等比数列的判定与证明判定一个数列为等比数列的常见方法(1)定义法:若a n +1a n =q (q 是不为零的常数),则数列{a n }是等比数列;(2)等比中项法:若a 2n +1=a n a n +2(n ∈N +,a n ≠0),则数列{a n }是等比数列; (3)通项公式法:若a n =Aq n -1(A ,q 是不为零的常数),则数列{a n }是等比数列.设数列{a n }中,a 1=1,a 2=53,a n +2=53a n +1-23a n ,令b n =a n +1-a n (n ∈N *) (1)证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.[逆向问题] 已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ,若不存在,请说明理由.[解] (1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21. (2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1, ∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2, ∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).(1)证明一个数列为等比数列常用定义法与通项公式法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)已知等比数列求参数的值,常采用特殊到一般的方法求解,如本例的逆向问题.[教师备选例题]设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n-a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列;(2)求{a n }和{b n }的通项公式. 考点3 等比数列性质的应用等比数列性质的应用可以分为3类 (1)通项公式的变形. (2)等比中项的变形.(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)[一题多解]已知数列{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( ) A .7 B .5 C .-5 D .-7 (2)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2B .73C .310 D .1或2(3)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.在解决等比数列的有关问题时,要注意挖掘隐含条件,特别关注项a n 或和S n 的下角标数字间的内在关系,活用性质,减少运算量,提高解题速度.[教师备选例题]数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式a n =________.12×⎝ ⎛⎭⎪⎫13n -1 [设此数列{a n }的公比为q ,由题意,知S 奇+S 偶=4S 偶,所以S 奇=3S 偶,所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64,所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1q n -1=12×⎝ ⎛⎭⎪⎫13n -1.]1.已知数列{a n }是等比数列,若a 2=1,a 5=18,则a 1a 2+a 2a 3+…+a n a n +1(n ∈N +)的最小值为( )A .83 B .1 C .2 D .32.等比数列{a n }满足a n >0,且a 2a 8=4,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 9=________.。

高考总复习一轮数学精品课件 第六章 数列 第三节 等比数列

高考总复习一轮数学精品课件 第六章 数列 第三节 等比数列
= √2,
解得
1 = 5√2-5.
(2)由题意,a2=2a1+2,即a1q=2a1+2,①
a3=2(a1+a2)+2,即a1q2=2(a1+a1q)+2,②
联立①②可得a1=2,q=3,则a4=a1q3=54.故选C.
考点二
等比数列的判断与证明
典例突破
例2.已知数列{an}中,a1=1,它的前n项和Sn满足2Sn+an+1=2n+1-1.
则a6+a8=(a1+a3)q5=1×q5=-32,
所以q5=-32,
10 + 12

5 + 7
=
( 5 + 7 ) 5
=q5=-32.
5 + 7
(2)方法一:设等比数列{an}的公比为q,则由a2a4a5=a3a6,a9a10=-8,
1 = 1,
1 ·1 3 ·1 4 = 1 2 ·1 5 ,
)
D.2
答案 A
解析由已知 a3=S3-S2=2,公比
4
q=
3
=
4
=2,所以
2
3
a1= 2

=
2
22
=
1
.
2
3.(2023全国甲,理5)设等比数列{an}的各项均为正数,前n项和为Sn,若
a1=1,S5=5S3-4,则S4=(
15A. 8) Nhomakorabea65
B. 8
C.15
D.30
答案 C
解析设等比数列{an}的公比为q,易知q>0,且q≠1.

可得 5
8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以 4S2=S1+3S3,所以 4× a1 1 q2 =a1+3× a1 1 q3 ,
1 q
1 q
所以 4(1+q)=1+3(1+q+q2),解得 q Nhomakorabea 1 . 3
所以
an=a1qn-1=
1 3n
.故选
A.
反思归纳 等比数列基本运算的方法策略
(1)将条件用a1,q表示,在表示Sn时要注意判断q是否为1; (2)解方程(组)求出a1,q,消元时要注意两式相除和整体代入; (3)利用a1,q研究结论.
解析:由等比数列的性质和定义进行解题,由等比中项性质得
(3x+3)2=x·(6x+6),因 x+1≠0,得 x=-3.所以
a4=(6x+6)· 3x 3 =18· x 12 =-24.故选 A.
x
x
2.已知数列{an}是公比 q≠±1 的等比数列,则在{an+an+1},{an+1-an},
那么 G = b ,即 G2= ab . aG
2.等比数列的通项公式 (1)设等比数列{an}的首项为a1,公比为q,q≠0,则它的通项公式an= a1qn-1. (2)通项公式的推广an=am·qn-m .
3.等比数列的前 n 项和公式
na1,
q 1,
Sn=
a1
1 qn
1 q
a1 anq , q 1. 1 q
所以
a5=
a7 q2
=
2 4
=
1 2
.故选
A.
(2)(2015 赤峰市高三统考)等比数列{an}的首项 a1= 1 ,前 n 项和为 Sn,若 3
S1,2S2,3S3 成等差数列,则{an}的通项公式为( )
(A)an=
1 3n
(B)an=3n
(C)an=
1 3n 1
(D)an=
1 31 n
解析: (2)设等比数列{an}的公比为 q,因为 S1,2S2,3S3 成等差数列,
an an 1
,{nan}这四个数列中,是等比数列的有(
C
)
(A)1 个 (B)2 个 (C)3 个 (D)4 个
解析:若{an}是公比 q≠±1 的等比数列,
则{an+an+1},{an+1-an},
an
是等比数列,
an1
而{nan}不是等比数列.
3.(2015 河南三市第三次调研)设 Sn 为等比数列{an}的前 n 项和,8a2+a5=0,则 S5 等于( A ) S2 (A)-11 (B)-8 (C)5 (D)11
答案: 51
考点专项突破 在讲练中理解知识
考点一 等比数列的基本运算 【例 1】 (1)(2015 河北石家庄二模)等比数列{an}的前 n 项和为 Sn,已知 S3=a2+5a1,a7=2,则 a5 等于( )
(A) 1 2
(B)- 1 (C)2 2
(D)-2
解析:(1)设等比数列{an}的公比为 q,因为 S3=a2+5a1, 所以 a1+a2+a3=a2+5a1,即 a3=4a1, 所以 a1q2=4a1,所以 q2=4. 又 a7=2,
4.等比数列的常见性质
(1)在等比数列{an}中,若m+n=p+q=2k(m,n,p,q,k∈N*),则
am·an=ap·aq=. (2)若数列{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),
1 an
,{
a
2 n
},
{an·bn},
an
仍然是等比数列.
bn
(3)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即 an,an+k,an+2k,an+3k,…为等比数列,公比为qk.
当q=1时,{an}是常数列.
6.等比数列与指数函数的关系 当 q≠1 时,an= a1 ·qn,可以看成函数 y=cqx,是一个不为 0 的常数与指数函
q 数的乘积,因此数列{an}各项所对应的点都在函数 y=cqx 的图象上.
夯基自测
1.等比数列x,3x+3,6x+6,…的第四项等于( A ) (A)-24 (B)0 (C)12 (D)24
.
解析:b2=ac⇒ b2=(5+2 6 )(5-2 6 )=1, 由于 b>0,故 b=1.
答案:1
5.在等比数列{an}中,各项均为正值,且a6a10+a3a5=41,a4a8=5,则
a4+a8=
.
解析:因为(a4+a8)2= a42 +2a4a8+ a82 =a6a10+2a4a8+a3a5 =41+2×5=51. 又数列各项为正, 所以 a4+a8= 51 .
知识梳理
1.等比数列的相关概念 (1)定义:如果一个数列从第 2 项起,每一项与它的前一项的比等于同一个 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的 公比 ,通常用
字母 q(q≠0)表示.符号表示为 an q n 2 ,q 为常数.
an 1
(2)等比中项:如果三个数 a,G,b 成等比数列,则 G 叫做 a 和 b 的等比中项,
解析:因为 8a2+a5=0, 所以 8a2+a2q3=0. 又 a2≠0,所以 q=-2,
a1 1 q5
所以 S5 = 1 q = 1 q5 =-11.
S2 a1 1 q2 1 q2
1 q
4.(2015 高考广东卷)若三个正数 a,b,c 成等比数列,其中 a=5+2 6 ,
c=5-2 6 ,则 b=
第3节 等比数列
最新考纲 1.理解等比数列的概念. 2.掌握等比数列的通项公 式与前 n 项和公式.
3.能在具体的问题情境中识别数列的 等比关系,并能用有关知识解决相应的 问题. 4.了解等比数列与指数函数的关系.
知识链条完善 考点专项突破 类题探源精析
知识链条完善 把散落的知识连起来
【教材导读】 1.如何推导等比数列的通项公式?采用什么方法? 提示:可采用累积法推导. 2.b2=ac是a,b,c成等比数列的什么条件? 提示:必要而不充分条件,因为b2=ac时,不一定有a,b,c成等比数列 (如a=0,b=0,c=1),而a,b,c成等比数列,则必有b2=ac. 3.如何推导等比数列的前n项和公式?采用了什么方法? 提示:可用错位相减法推导.
(4)公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成 等比数列,其公比为qn,当公比为-1时,Sn,S2n-Sn,S3n-S2n不一定构成等 比数列.
5.等比数列的单调性
当q>1,a1>0或0<q<1,a1<0时,{an}是递增数列; 当q>1,a1<0或0<q<1,a1>0时,{an}是递减数列;
相关文档
最新文档