初二数学下册分式方程单元测试题
第5章 分式与分式方程 单元测试卷 2021-2022学年北师大版八年级下册数学

2021-2022学年北师大新版八年级下册数学《第5章分式与分式方程》单元测试卷一.选择题(共10小题,满分30分)1.把中的x与y都扩大为原来的3倍,这个代数式的值()A.不变B.扩大为原来的3倍C.缩小为原来的D.扩大为原来的9倍2.在代数式a+,,,,中,分式的个数是()A.2B.3C.4D.53.若分式的值为0,则x的值为()A.﹣2021B.2021C.0D.±20214.下列各分式中,是最简分式的是()A.B.C.D.5.某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.(+1)分钟D.分钟6.用换元法解方程时,若设,则原方程可化为关于y的方程是()A.2y2﹣3y+1=0B.2y2+3y+1=0C.y2﹣3y+2=0D.y2+3y+2=0 7.如果a=﹣3,b=,那么代数式的值是()A.B.C.D.8.已知﹣=3,则分式的值为()A.1B.﹣1C.D.﹣9.若关于x的分式方程的解为正数,则m的取值范围是()A.m<﹣2且m≠﹣3B.m<2且m≠﹣3C.m>﹣3且m≠﹣2D.m>﹣3且m≠210.规定一种新的运算“JQx→+∞”,其中A和B是关于x的多项式.当A的次数小于B的次数时,JQx→+∞=0;当A的次数等于B的次数时,JQx→+∞的值为A、B的最高次项的系数的商.当A的次数大于B的次数时,JQx→+∞不存在.例:JQx→+∞=0,JQx→+∞.若,则JQx→+∞的值为()A.0B.C.D.不存在二.填空题(共10小题,满分30分)11.将通分后的结果分别为.12.计算:=.13.计算:=.14.要使分式有意义,则字母x的取值范围是.15.用换元法解分式方程:,若设,则原方程可化成关于y的整式方程是.16.关于x的方程有正数解,则m取值范围是.17.一艘轮船顺水航行60km所用的时间与逆水航行40km所用时间相同,若水流速度为3km/h,则轮船在静水中的速度为km/h.18.甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,根据题意,可列方程.19.若关于x的分式方程+=有增根x=﹣2,则k的值为.20.给出下列分式:①、②、③、④,其中最简分式是(填序号).三.解答题(共7小题,满分90分)21.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x 的增大,的值(增大或减小);(2)当x>1时,随着x 的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.22.若分式有意义,求x的取值范围.23.解方程:(1)﹣=1;(2)﹣=.24.阳春三月,草长莺飞,春花烂漫,为让学生们近距离接触大自然,积累写作素材,提高写作能力.永州某中学文学社组织学生到距离学校40千米的永州植物园参观,共租用了一辆大客车和一辆小汽车,两车同时从学校出发,已知小汽车速度是大客车的1.5倍,小汽车司机小李因不留神从植物园的大门驶过,后发现路况不对,只好停下车来向路人询问,方知已经驶过植物园7千米,于是立即调头,恰好在植物园的大门口与大客车相遇,已知小李因问路而耽误了6分钟,求两车的速度分别是多少?25.(1)若A=,化简A;(2)若a满足a2﹣a=0,求A值.26.(1)计算:(﹣2)2+()0+|1−|;(2)先化简,再求值:(1﹣m+)÷,其中m=2﹣.27.已知分式,.若a是这两个分式分母的公因式,b是这两个分式的最简公分母,且,试求这两个分式的值.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:由题意,得===,∴把中的x与y都扩大为原来的3倍,这个代数式的值缩小为原来的.故选:C.2.解:在式子a+,,的分母中含有字母,都是分式,共有3个.故选:B.3.解:由题意得:x﹣2021=0且x+2021≠0,∴x=2021且x≠﹣2021,∴x的值为2021,故选:B.4.解:A、原式=,不符合题意;B、原式==x+1,不符合题意;C、原式为最简分式,符合题意;D、原式==,不符合题意.故选:C.5.解:8﹣a是1分钟后的钱,则(﹣1)为打长途电话的时间;故选:C.6.解:设,可化为2y+=3,∴2y2+1=3y,∴2y2﹣3y+1=0,故选:A.7.解:原式=(﹣)•=•=a﹣b,当a=﹣3,b=时,原式=﹣3+=﹣2,故选:D.8.解:∵﹣=3,∴y﹣x=3xy,∴原式==﹣1,故选:B.9.解:去分母得:2x﹣3(x﹣1)=﹣m,解得:x=m+3,∵关于x的分式方程的解为正数,且x≠1,∴m+3>0且m+3≠1,解得:m>﹣3且m≠﹣2,故选:C.10.解:=÷=•=,∴A的次数等于B的次数,∴JQx→+∞=,故选:C.二.填空题(共10小题,满分30分)11.解:(1)的最简公分母为12xy2,故;;.故答案为:.12.解:原式===.故答案为:.13.解:原式=•=,故答案为:.14.解:由题意得:x+4≠0,解得:x≠﹣4,故答案为:x≠﹣4.15.解:,则=,代入原方程得:+2y+3=0,方程两边同乘以y整理得:2y2+3y+1=0.故答案为:2y2+3y+1=0.16.解:去分母得:x﹣1=m+2x﹣6,解得:x=5﹣m,∵分式方程的解为正数解,∴5﹣m>0且5﹣m≠3,解得:m<5且m≠2.故答案为:m<5且m≠2.17.解:设船在静水中的速度是x千米/时.由题意得:=.解得:x=15.经检验:x=15是原方程的解.即船在静水中的速度是15千米/时.故答案为:15.18.解:12分钟=h=0.2h,设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据题意,得:,故答案是:.19.解:+=,x+2+k(x﹣2)=6,把x=﹣2代入x+2+k(x﹣2)=6中得:﹣2+2+(﹣4k)=6,∴k=,故答案为:.20.解:,原分式不是最简分式;②,是最简分式;,原分式不是最简分式;④,是最简分式;故答案为:②④.三.解答题(共7小题,满分90分)21.解:(1)∵当x>0时随着x的增大而减小,∴随着x的增大,1+的值减小;∵当x<0时随着x的增大而减小,∵=1+,∴随着x的增大,的值减小,故答案为:减小,减小;(2)∵==2+,∵当x>1时,的值无限接近0,∴的值无限接近2;(3)∵==5+,又∵0≤x≤2,∴﹣13≤≤﹣,∴﹣8≤≤.22.解:∵,∴x+2≠0且x+4≠0且x+3≠0解得x≠﹣2、﹣3、﹣4.23.解:(1)去分母得:(x+1)2﹣4=x2﹣1,解得:x=1,检验:把x=1代入得:(x+1)(x﹣1)=0,∴x=1是增根,分式方程无解;(2)去分母得:(1﹣3x)2+(3x+1)2=12,解得:x=±,检验:把x=±分别代入得:(1+3x)(1﹣3x)≠0,∴分式方程的解为x=±.24.解:设大客车的速度为x千米/小时,则小汽车的速度为1.5x千米/小时,由题意可知:,解得x=40,经检验:x=40是原方程的根.答:大客车的速度为40千米/小时,则小汽车的速度为60千米/小时.25.解:(1)A==a﹣2;(2)∵a2﹣a=a(a﹣1)=0,∴a=0或a=1,而要使得A有意义,则a+2≠0,a2﹣2a+1=(a﹣1)2≠0,a﹣1≠0,∴a≠﹣2,1,∴a=0,将a=0代入a﹣2,得A=a﹣2=0﹣2=﹣2.26.解:(1)(﹣2)2+()0+|1−|=4+1+﹣1=4+;(2)(1﹣m+)÷=•=•=•=2﹣m,当m=2﹣时,原式=2﹣(2﹣)=2﹣2+=.27.解:两分式分母的公因式为a=x﹣1,最简公分母为b=3(x+1)(x﹣1),∴==3(x+1)=﹣6,即x=﹣3.则==.==﹣.。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)(2)

一、选择题1.已知一个三角形三边的长分别为5,7,a ,且关于y 的分式方程45233y a a y y++=--的解是非负数,则符合条件的所有整数a 的和为( ) A .24 B .15 C .12 D .72.分式方程3121x x =-的解为( ) A .1x = B .2x = C .3x = D .4x =3.若关于x 的不等式组52+11{231x x a >-<()无解,且关于y 的分式方程34122y a y y ++=--有非负整数解,则满足条件的所有整数a 的和为( )A .8B .10C .16D .18 4.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数5.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度 6.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-17.在一只不透明的口袋中放入5个红球,4个黑球,n 个黄球,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个球恰好是黄球的概率为25,则放入口袋中的黄球的个数n 是( )A .6B .5C .4D .38.下列各分式中,最简分式是( ) A .6()8()x y x y -+ B .22y x x y -- C .2222x y x y xy ++ D .222()x y x y -+ 9.若a =1,则2933a a a -++的值为( )A .2B .2-C .12D .12- 10.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -1 11.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题 13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.在围棋盒中有x 颗白色棋子和若干颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25;如果再往盒中放进9颗黑色棋子,取得白色棋子的概率是14.则原来围棋盒中有白色棋子________颗. 15.若55||11m m m m m --⋅=--,则m =_______. 16.观察给定的分式,探索规律:(1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数). 17.计算:262393x x x x -÷=+--______. 18.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.19.当x _______时,分式22x x -的值为负. 20.已知1112a b -=,则ab a b -的值是________. 三、解答题21.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中 1x =. 22.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 23.解下列分式方程(1)42122x x x x++=--; (2)()()21112x x x x =+++-. 24.某工程限期完成,甲队单独做正好按期完成,乙队单独做则要误期3天.现两队合作2天后,余下的工程再由乙队单独做,也正好如期完成,该工程限期多少天?25.应用题(步骤要完整)(1)一辆汽车开往距离出发地180km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min 到达目的地.求前一小时的行驶速度.(2)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工快?26.根据已知条件,求下列各式的值: ()1已知3,2m n x x ==,求32m n x +的值;()2先化简:2211121x x x x x x ⎛⎫ ⎪+++÷--⎝+⎭,然后从22x -≤≤中选取一个合适的整数作为x 的值代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的三边关系确定a 的取值范围,再根据分式方程的解是非负数确定a 的取值范围,从而求出符合条件的所有整数即可得结论.【详解】 解:45233y a a y y++=-- 去分母得:4526y a a y +-=-移项得:6y a -=-+∴6y a =-∵分式方程的解为非负数,∴60a -≥∴6a ≤,且a≠3∵三角形的三边为:5,7,a ,∴212a <<∴26a <≤,又∵a≠3,且为整数,∴a 可取4,5,6,和为15.故选:B.【点睛】本题考查了三角形的三边关系、分式方程的解,解决本题的关键是根据不等式(组)解集,求出不等式(组)的整数解.2.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 3.C解析:C【分析】先由不等式组无解,求解8,a ≤ 再求解分式方程的解2,2a y +=由方程的解为非负整数,求解2a ≥-且2,a ≠ 再逐一确定a 的值,从而可得答案.【详解】解:52+11{231x x a >-<()①②由①得:25x +>11, x >3,由②得:3x <1a +, x <1,3a + 关于x 的不等式组52+11{231x x a >-<()无解, 1+3,3a ∴≤ 19,a ∴+≤ 8,a ∴≤ 34122y a y y++=--, ()342,y a y ∴-+=-2,2a y +∴= 20,y -≠22,2a +∴≠ 2,a ∴≠ 关于y 的分式方程34122y a y y++=--有非负整数解, 20,2a +∴≥ 2,a ∴≥- 22a +为整数, 2a ∴=-或0a =或4a =或6a =或8.a =2046816.∴-++++=故选:.C【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,掌握以上知识是解题的关键.4.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 5.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 6.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 7.A解析:A【分析】根据摸到黄球的概率已知列式计算即可;【详解】由题可得:2545nn =++, 解得:6n =;经检验,6n =是原方程的根,故选:A .【点睛】本题主要考查了概率的求解,准确计算是解题的关键.8.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式; B 、22y x x y--=-x-y ,故该项不是最简分式; C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x y x y -+,故该项不是最简分式; 故选:C .【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.9.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 10.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】原式=211m mm m---=21m mm--=(1)1m mm--=m,故选:A.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第II卷(非选择题)请点击修改第II卷的文字说明11.C解析:C【分析】根据a b,可以判断各个选项中的式子是否正确,从而可以解答本题;【详解】∵a bA、22a ab b+≠+,故该选项错误;B、22a ab b-≠-,故该选项错误;C、33a ab b=,故该选项正确;D、22a ab b≠,故该选项错误;故选:C.【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x个,则实际每小时生产口罩2x个,依题意得:3000300052x x-=故选:D.【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键 解析:92【分析】 解方程得到2a b =,代入代数式即可得到结论. 【详解】 解:44a b b a+=, 两边同时乘以a b 得:2()44a a b b +=⨯, ∴2a b=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】 本题考查了分式的化简求值,求得a b的值是解题的关键. 14.6【分析】先根据白色棋子的概率是得到一个方程再往盒中放进9颗黑色棋子取得白色棋子的概率变为再得到一个方程解方程组即可求得答案【详解】解:设原来盒中有白色棋子x 颗黑色棋子y 颗则有解得则原来围棋盒中有白 解析:6【分析】 先根据白色棋子的概率是25,得到一个方程,再往盒中放进9颗黑色棋子,取得白色棋子的概率变为14,再得到一个方程,解方程组即可求得答案. 【详解】解:设原来盒中有白色棋子x 颗,黑色棋子y 颗,则有25194x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩, 解得69x y =⎧⎨=⎩. 则原来围棋盒中有白色棋子6颗.故答案为:6.【点睛】本题考查概率的应用问题,利用概率公式求数量,掌握列举法求概率的方法,通过黑、白两色棋子设未知数,利用概率构造方程组是解题关键.15.5或-1【分析】分m-5=0和m-5≠0两种情况分别求解【详解】解:若m-5=0∴m=5若m-5≠0∵∴∴m=-1或1(舍)故答案为:5或-1【点睛】本题考查了等式的性质分式有意义的条件解题的关键是解析:5或-1【分析】分m-5=0和m-5≠0两种情况分别求解.【详解】解:若m-5=0,∴m=5,若m-5≠0, ∵55||11m m m m m --⋅=--, ∴||1m =, ∴m=-1或1(舍),故答案为:5或-1.【点睛】本题考查了等式的性质,分式有意义的条件,解题的关键是注意分类讨论.16.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键17.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 18.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.20.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=,∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 三、解答题21.11x +,2【分析】根据分式的运算法则先进行化简,然后代入1x =计算即可.【详解】 原式22121111x x x x x x x -++⎛⎫=-÷ ⎪---⎝⎭, ()()()211111x x x x +-=⨯-+ 11x =+当1x =时,原式==. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.22.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义.23.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.6天【分析】设该工程期限是x 天,则乙队需要(x+3)天完成工程,根据题意可得,甲乙合作2天完成的任务+乙做(x-2)天完成的任务=1,据此列方程.【详解】解:设该工程限期x 天 根据题意,得1122133x x x x -⎛⎫++=⎪++⎝⎭ 解得6x =经检验,6x =是原分式方程的解,且符合题意答:该工程限期6天.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.25.(1)60km /h ;(2)乙队快【分析】(1)直接根据题意表示出变化前后的速度,进而利用所用时间得出等式求出答案; (2)由“甲队单独施工1个月完成了总工程的三分之一”知甲的工作效率为13,设乙队如果单独施工x 个月能完成总工程,则乙的工作效率为1x ,根据(甲的工作效率+乙的工作效率)×12=1-13,由此可列方程,从而问题得解. 【详解】解:(1)设前一小时的行驶速度为xkm/h ,根据题意可得:1801804011.560x x x -+=-,解得:x=60, 检验得:x=60是原方程的根,答:前一小时的行驶速度为60km/h .(2)设乙队如果单独施工x 个月能完成总工程.依题意列方程:( 113+x )×12=1-13. 解方程得:x=1.经检验:x=1是原分式方程的解.答:乙队单独施工1个月可以完成总工程,所以乙队的施工进度快.【点睛】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据,找到关键描述语,找到合适的等量关系是解决问题的关键.26.()1108;()2221x x -+;x=-2时,6或x=2时,23 【分析】(1)利用幂指数运算的逆运算原式()()32mn x x =⋅,当3,2m n x x ==时,整体代入求值即可;(2)先化简分式,从不等式中可选取-2或2,可任选一个代入求值即可.【详解】解: ()1原式=32m n x x ⋅()()32mn x x =⋅, 当3,2m n x x ==时,原式108=;()2原式=22112111x x x x x x x x ⎛⎫ +--+⎝⨯-⎭+-+⎪,=()()21211x x x x x -⨯-+, 221x x -=+, 在22x -≤≤范围内有整数x=-2,-1,0,1,2,使分式有意义的x 的值:x=-2,2,当2x =-时,原式6=;当2x =时,原式23=. 【点睛】本题考查幂指数运算求值,和分式化简求值,掌握幂指数运算求值的方法,和分式化简求值方法是解题关键.。
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。
北师大版八年级数学下册第五章 《分式与分式方程》 单元测试卷(1)含答案

第八章分式单元测试卷(1)(满分:100分时间:60分钟)一、选择题(每题4分,共32分)1.若分式2366aa-=-,则a的值是( )A.6 B.-6 C.1-6 D.12.如果把分式xx y-中的x和y都扩大2倍,那么分式的值( )A.扩大2倍B.缩小12C.缩小14D.不变3.(2011.湛江)化简22a ba b a b---的结果是( )A.a+b B.a-b C.a2-b2D.14.一件工作,甲单独做需要a小时完成,乙单独做需要b小时完成,那么甲、乙两人合作完成需要( )A.11a b⎛⎫+⎪⎝⎭小时B.1ab小时C.1a b+小时D.aba b+小时5.分式方程1111x x+=+-的解是( )A.x=1 B.x=-1 C.x=0 D.x=1 26.已知关于x的方程211x ax+=-解是正数,则a的取值范围是( )A.a>-1 B.a>-1且a≠0 C.a<-1 D.a<-1且a≠-2 7.任意给定一个非零数,按下列程序计算,最后输出的结果是( )A.m B.m2C.m+1 D.m-18.已知两个分式A=24 4x-,B1122x x-+-,其中x≠±2,则A和B的关系是( )A.相等B.互为倒数C.互为相反数D.A大于B 二、填空题(每题4分,共24分)9.若()()333434aa-=-成立,则a的取值范围是_______.10.化简:293x x -=-_______. 11.在分式3x x 、313a a b ++、22m n m n +-和222x x-中,最简分式是_______. 12.若分式21x -与1互为相反数,则x 的值是_______. 13.(2011.安顺)某市2011年起调整居民用水价格,每立方米水费上涨20%,小方家2010年12月份的水费是26元,而2011年5月份的水费是50元.已知小方家2 011年5月份的用水量比2010年12月份多8立方米,设2010年居民用水价格为x 元/立方米,则所列方程为______________.14.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫-= ⎪⎝⎭_______. 三、解答题(共44分)15.(10分)计算: (1)215293m m m----; (2)22221244a b a b a b a ab b ---÷+++.16.(5分)(2011.贵阳)在三个整式x 2-1,x 2+2x +1,x 2+x 中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当x =2时分式的值.17.(8分)解下面的方程: (1)544101236x x x x -++=--; (2)21124x x x -=--.18.(5分)在解题目“当x=2012时,求代数式2224421142x x x xx x x-+-÷-+-+的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同的结果.你认为他说得有道理吗?请说明理由.19.(6分)(2011.淮安)七(1)班的大课间活动丰富多彩,小峰与小月进行跳绳比赛.在相同的时间内,小峰跳了100下.小月跳了110下,如果小月比小峰每分钟多跳20下,那么小峰每分钟跳多少下?20.(10分)阅读材料:关于x的方程:11x cx c+=+的解是x1=c,x2=1c;11x cx c-=-(即11x cx c--+=+)的解是x1=c,x2=-1c;22x cx c+=+的解是x1=c,x2=2c;33x cx c+=+的解是x1=c,x2=3c……(1)请观察上述方程与解的特征,比较关于x的方程m mx cx c+=+(m≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解下面关于x的方程:①33415xx+=++;②2211x ax a+=+--.参考答案一、1.B 2.D 3.A 4.D 5.C 6.D 7.C 8.C二、9.a≠3 10.x+3 11.313aa b++12.-1 13.()50268120%x x-=+14.5三、15.(1)原式=33m+(2)原式=-ba b+16.本题答案不唯一17.(1)x=2是原方程的增根,原方程无解(2)x=-3218.有道理19.200下20.(1)x1=c,x2=mc(2)①x1=4,x2=-25②x1=a,x2=11aa+-。
第五章分式与分式方程+单元测试+2022-2023学年八年级下册数学北师大版

第五章分式与分式方程(单元测试)一、单选题 1.分式方程113023162x x --=--的根是( ) A .310x = B .16x = C .3x = D .2x =2.要使分式31x -有意义,x 的取值应满足( ) A .1x > B .1x ≠ C .0x ≠ D .x 为任意实数3.若分式293x x -+无意义,则x 的取值为() A .0B .-3C .3D .3或-3 4.若分式方程2()8(1)5x a a x +=--的解为15x =-,则a 等于( ) A .56 B .5 C .56- D .-55.《九章算术》是中国古代数学名著,其中记载:每头牛比每只羊贵1两,20两买牛,15两买羊,买得牛羊的数量相等,则每头牛的价格为多少两?若设每头牛的价格为x 两,则可列方程为( )A .20151x x =+B .20151x x =-C .20151x x =+D .20151x x=- 6.若分式方程311x m x x -++=2无解,则m =( ) A .﹣3B .﹣2C .﹣1D .0 7.若分式3(1)(2)x x --有意义,则( ) A .x≠1 B .x≠2 C .x≠1且x≠2 D .x≠1或x≠28.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,列方程正确的是( )A .()233x x =-B .()233x x =-C .23x =D .23x x =-9.“杭州城市大脑”用大数据改善城市交通,实现了从治堵到治城的转变.数据表明,杭州上塘高架路上共22km 的路程,利用城市大脑后,车辆通过速度平均提升了15%,节省时间5分钟,设提速前车辆平均速度为xkm /h ,则下列方程正确的是( )A .()22225115-=+%x xB .()2222111512-=+%x x C .()22225115-=+%x x D .()2222111512-=+%x x二、填空题三、解答题21.山西省平遥县政府为进一步挖掘“双林寺、老醯水镇、平遥古城”的旅游价值,计划在2019年开工建设一条途完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若先让甲队施工且甲队参与该项工程施工的时间不超过36天,则乙队加入后至少要施工多少天才能完成该项工程?22.先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11822x x ->⎧⎨-≥⎩.23.按要求化简:(a ﹣1)÷22111a a a ab -+⋅+,并选择你喜欢的整数a ,b 代入求值. 小聪计算这一题的过程如下:解:原式=(a ﹣1)÷2(1)(1)a a ab +-…① =(a ﹣1)•2(1)(1)ab a a +-…① =21ab a +…① 当a =1,b =1时,原式=12…①以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;还有第_____步出错(填序号),原因:_____.请你写出此题的正确解答过程.24.由于新冠肺炎疫情暴发,某公司根据市场需求代理A 、B 两种型号的空气净化器,每台A 型净化器比每台B 型净化器进价多200元,用5万元购进A 型净化器与用4.5万元购进B 型净化器的数量相等.(1)求每台A 型、B 型净化器的进价各是多少元?(2)公司计划购进A 、B 两种型号的净化器共50台进行试销,其中A 型净化器为m 台,购买资金不超过9.8万元,试参考答案:。
《分式与分式方程》单元测试卷含答案精选全文完整版

可编辑修改精选全文完整版《分式与分式方程》单元测试卷班级:姓名:得分:一.选择题(共10小题)1.(2020•衡阳)要使分式有意义,则x的取值范围是()A.x>1B.x≠1C.x=1D.x≠0 2.(2020•雅安)分式=0,则x的值是()A.1B.﹣1C.±1D.0 3.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=4.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.5.(2016•来宾)当x=6,y=﹣2时,代数式的值为()A.2B.C.1D.6.(2020•随州)÷的计算结果为()A.B.C.D.7.(2020•天津)计算+的结果是()A.B.C.1D.x+1 8.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.9.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3B.1C.0D.﹣1 10.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59二.填空题(共10小题)11.(2020•柳州)分式中,x的取值范围是.12.(2019•内江)若+=2,则分式的值为.13.(2020•河池)方程=的解是x=.14.(2020•济南)代数式与代数式的值相等,则x=.15.(2020•潍坊)若关于x的分式方程+1有增根,则m=.16.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.17.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.18.(2017•沈阳)•=.19.(2020•济宁)已知m+n=﹣3,则分式÷(﹣2n)的值是.20.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.三.解答题(共7小题)21.(2020•宜宾)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).22.(2020•西宁)先化简,再求值:,其中.23.(2020•郴州)解方程:=+1.24.(2019•西宁)若m是不等式组的整数解,解关于x的分式方程+1=.25.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?26.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?27.(2020•山西)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.参考答案一.选择题(共10小题)1.B;2.A;3.D;4.D;5.D;6.B;7.A;8.B;9.C;10.B;二.填空题(共10小题)11.x≠2;12.﹣4;13.﹣3;14.7;15.3;16.﹣=2;17.x=1;18.;19.;20.a≤4且a≠3;三.解答题(共7小题)21.;22.;23.;24.;25.;26.;27.三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)(3)

一、选择题1.已知113x y -=,则代数式21422x xy yx xy y----的值( )A .4B .9C .-4D .-82.若关于x 的方程 2033x a x x ++=++有增根,则 a 的值为( ) A .1B .3C .4D .53.分式293x x --等于0的条件是( )A .3x =B .3x =-C .3x =±D .以上均不对4.若整数a 使得关于x 的不等式组3(1)32(1)x ax x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 5.下列变形不正确...的是( ) A .1a ba b a b -=-- B .1a ba b a b+=++ C .221a b a b a b+=++ D .221-=-+a b a b a b6.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣27.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定8.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m-+-=- D .22112323x x x x--=--- 9.若分式12x -有意义,则x 的取值范围是( ) A .0x ≠B .2x ≠-C .2x ≠D .x 取任意实数10.小红和小丽分别将9000字和7500字的两篇文稿录入计算机,…,求两人每分钟各录入多少字?设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…”表示的缺失的条件应为( ) A .两人每分钟录入字数的和是220字B .所用时间相同,两人每分钟录入字数的和是220字C .所用时间相同,小红每分钟录入字数比小丽多220字D .所用时间相同,小丽每分钟录人字数比小红多200字 11.如果a ,b ,c 是正数,且满足1a b c ++=,1115a b b c a c++=+++,那么a ba b b a cc c +++++的值为( ) A .1- B .1C .2D .1212.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( ) A .3000300052x x -=+ B .3000300052x x -= C .3000300052x x -=+ D .3000300052x x-= 二、填空题13.先化简再求值:214111x x x -⎛⎫-÷ ⎪--⎝⎭,其中2x =. 14.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--,则方程2(2)14x x ⊗-=--的解是__________. 15.一艘轮船在静水中的速度为a 千米/时,若A 、B 两个港口之间的距离为50千米,水流的速度为b 千米/时,轮船往返两个港口之间一次需____________小时. 16.若分式11x -值为整数,则满足条件的整数x 的值为_____. 17.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;如果假分式2412+++x x x 的值为整数,则x 的负整数值为______.18.氢原子的半径约为0.00000000005m ,用科学记数法表示为______ m . 19.若关于x 的方程12x -+3=12ax x --有增根,则a =_____. 20.已知114y x-=,则分式2322x xy yx xy y +---的值为______.三、解答题21.某工程限期完成,甲队单独做正好按期完成,乙队单独做则要误期3天.现两队合作2天后,余下的工程再由乙队单独做,也正好如期完成,该工程限期多少天?22.先化简,再求值:222422244x x xxx x x--⎛⎫-+÷⎪+++⎝⎭,其中22x=-.23.在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数51()32127()2ax xybx xx⎧+<⎪⎪=⎨⎪--+≥⎪⎩的性质及其用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x的取值范围是全体实数,下表列出了变量x与y的几组对应数值:x…52--1122314325234...y (012)8331762651332-…____________(2)描点、连线:在平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:__________________(3)已知函数12733y x=-+,并结合两函数图象,直接写出当y1>y时,x的取值范围____________________24.阅读下列材料:我们在使用完全平方公式222()2a b a ab b ±=±+时,可以把这个公式分成三部分:a b ±称为加减项;②22a b +称为平方项;③ab 称为乘积项在以上三部分中,已知任意两部分都可以求得第三部分. 例:若225,21a b a b +=+=,求ab 的值. 解:由5a b +=可得22()5a b +=22225a b ab ++=把2221a b +=代入上式得21225ab += 2ab =请结合以上方法解决下列问题:(1)若2238,13a b ab +==,求+a b 的值;(2)若2410a a -+=,求221a a +的值. 25.计算:()22163x y x⋅. 26.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论.【详解】 解:由11xy =3,得y xxy -=3,即y -x =3xy ,x -y =-3xy ,则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xyxy xy----=4.故选:A . 【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.2.A解析:A 【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x 的值,代入整式方程求出a 的值即可. 【详解】解:分式方程去分母得:20x a ++=, 由分式方程有增根,得到x+3=0,即x=-3, 把x=-3代入整式方程得:320a -++=,解得1a = 故选:A . 【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.3.B解析:B 【分析】根据分式等于0的条件:分子为0,分母不为0解答. 【详解】由题意得:290,30x x -=-≠, 解得x=-3, 故选:B . 【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键.4.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >,∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.5.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a b a b a b a b--=---,故此项正确; B. =1a b a b a b a b a b++=+++,故此项正确; C.22a ba b ++为最简分式,不能继续化简,故此项错误;D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.6.C解析:C 【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可. 【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1,∴满足条件的整数x 可能是0、﹣2、﹣3, 故选:C . 【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键.7.A解析:A 【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案. 【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍, 故选:A . 【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.8.A解析:A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】 解:A 、1122x xx x+--=---,故A 不正确; B 、b a a b c c --+=-,故B 正确; C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.9.C【分析】根据分式有意义的基本条件计算即可. 【详解】∵分式12x -有意义, ∴x-2≠0,∴2x ≠, 故选C . 【点睛】本题考查了分式有意义的条件,熟记有意义的条件,熟练转化成不等式是解题的关键.10.B解析:B 【分析】根据工作时间=工作总量÷工作效率,从而得出正确答案. 【详解】解:设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…“表示的缺失的条件应补为所用时间相同,两人每分钟录入字数的和是220字, 故选:B . 【点睛】本题主要考查了由实际问题抽象出分式方程,根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.11.C解析:C 【分析】先根据题意得出a=1-b-c ,b=1-a-c ,c=1-a-b ,再代入原式进行计算即可. 【详解】解:∵a ,b ,c 是正数,且满足a+b+c=1, ∴a=1-b-c ,b=1-a-c ,c=1-a-b , ∴a b a b b a cc c +++++ =111a ca b b c a ca b b c ----++--+++ =1113a b b c a c++-+++ =53- =2 故选:C本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.12.D解析:D 【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解. 【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个, 依题意得:3000300052x x-= 故选:D . 【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.;【分析】先计算括号内的代数式然后化除法为乘法进行化简然后代入求值【详解】当时原式【点睛】本题考查了分式的化简求值注意先把代数式化简然后再代入求值解析:12x -+;-【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值. 【详解】214111x x x -⎛⎫-÷ ⎪--⎝⎭22114x x x x --=⋅-- 12x -=+当2x =时,原式== 【点睛】本题考查了分式的化简求值.注意先把代数式化简,然后再代入求值.14.【分析】根据题中的新运算法则列出分式方程再根据分式方程的解法解答即可【详解】解:∴方程为:去分母得解得:经检验是原方程的解故答案为:x=5【点睛】本题考查了新定义的运算法则的计算分式方程的解法解题的 解析:5x =【分析】根据题中的新运算法则列出分式方程,再根据分式方程的解法解答即可. 【详解】 解:211(2)(2)4x x x ⊗-==---∴方程为:12144x x =--- 去分母得124x =-+, 解得:5x =,经检验,5x =是原方程的解, 故答案为:x=5. 【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.15.【分析】假设A 到B 顺流B 到A 逆流根据流程速度时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长两式相加即可求解【详解】解:假设A 到B 顺流B 到A 逆流∵轮船在静水中的速度为千米/时水流的速度为千米解析:22100aa b - 【分析】假设A 到B 顺流,B 到A 逆流,根据流程、速度、时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长,两式相加即可求解. 【详解】解:假设A 到B 顺流,B 到A 逆流,∵轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时,A 、B 两个港口之间的距离为50千米∴轮船往返A 到B 需要花费的时长为:5050a b a b++- ()()()()5050a b a b a b a b -++=+-()()50505050a b a ba b a b -++=+-22100aa b =-故答案为:22100a a b -. 【点睛】 本题考查列代数式,解题的关键是明确题意,熟练掌握路程、时间、速度三者之间的关系,列出相应的代数式.16.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x 的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】 解:因为分式11x -有意义,所以x-1≠0,即x≠1, 当分式11x -值为整数时, 有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.17.【分析】先把分式化为真分式再根据分式的值为整数确定的值【详解】解:分式的值为整数或的负整数值为故答案为:【点睛】本题考查了利用分式的性质对分式进行变形解题的关键是理解真分式的定义解析:1-、3-、5-【分析】先把分式化为真分式,再根据分式的值为整数确定x 的值.【详解】 解:2412+++x x x ()223=2x x +-+ 3=22x x +-+ 分式2412+++x x x 的值为整数, 21x ∴+=±或3x =±1x ∴=-、3-、5-、1∴x 的负整数值为1x =-、3-、5-,故答案为:1-、3-、5-.【点睛】本题考查了利用分式的性质对分式进行变形,解题的关键是理解真分式的定义. 18.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:用科学记数法 解析:11510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法把0.0000 0000 005表示为5×10-11.故答案为:5×10-11.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根因此可将原方程去分母然后将增根代入求a 的值【详解】解:去分母得1+3x ﹣6=ax ﹣1∵方程有增根所以x ﹣2=0x =2是方程的增根将解析:1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,因此可将原方程去分母,然后将增根代入求a 的值.【详解】解:去分母,得 1+3x ﹣6=ax ﹣1,∵方程有增根,所以x ﹣2=0,x =2是方程的增根,将x =2代入上式,得1+6﹣6=2a ﹣1,解得a =1,故答案为1.【点睛】本题考查分式方程的增根,掌握增根是分式方程化为整式方程后产生的使分式方程的分母为0的根是解答的关键.20.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键解析:11 2【分析】先根据题意得出x-y=4xy,然后代入所求的式子,进行约分就可求出结果.【详解】∵114 y x-=,∴x-y=4xy,∴原式=2()383112422x y xy xy xyx y xy xy xy-++==---,故答案为:112.【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.三、解答题21.6天【分析】设该工程期限是x天,则乙队需要(x+3)天完成工程,根据题意可得,甲乙合作2天完成的任务+乙做(x-2)天完成的任务=1,据此列方程.【详解】解:设该工程限期x天根据题意,得1122133xx x x-⎛⎫++= ⎪++⎝⎭解得6x=经检验,6x=是原分式方程的解,且符合题意答:该工程限期6天.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.22.2x--;【分析】首先把括号里进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.【详解】解:222422244 x x xxx x x--⎛⎫-+÷⎪+++⎝⎭=222244(2)22x x x x x x--+++- =222(2)(2)22x x x x xx --++- =2x --当2x =时,原式=2)2=--【点睛】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.23.(1)251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩;(2)函数图象见解析;当1x >时,y 随x 的增大而减小;(3)12x <或3x > 【分析】(1)代入1x =-和12x =即可求解; (2)利用描点作图法画出图象,再根据图象写出性质即可;(3)联立函数解析式,求出交点,即可得出结论.【详解】解:(1)当1x =-时,513a -+=,解得23a =; 当12x =时,1272b --+=,解得2b =; ∴y 与x 的函数关系式为:251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩; (2)函数图象如下:函数性质:当1x >时,y 随x 的增大而减小;(3)当1x ≤时,25332733y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,可得122x y ⎧=⎪⎨⎪=⎩;当1x >时,2272733y x x y x ⎧=--+⎪⎪⎨⎪=-+⎪⎩,可得313x y =⎧⎪⎨=⎪⎩, ∴当y 1>y 时,x 的取值范围为12x <或3x >. 【点睛】本题考查函数图象,掌握待定系数法求解析式、描点作图等方法是解题的关键. 24.(1)±8;(2)14【分析】(1)根据示例提供的方法可以求得a+b 的值;(2)根据a 2-4a+1=0,通过变形可以求得所求式子的值.【详解】解:(1)∵a ,b 满足a 2+b 2=38,ab=13,∴222()2a b a b ab +=+-,即:38=(a+b )2-2×13,解得,a+b=8或a+b=-8,(2)∵a 2-4a+1=0, ∴140a a -+=, ∴14a a+=,∴21()16a a +=, ∴221216a a ++=, ∴22114a a +=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法,利用数形结合的思想解答.25.3212x y【分析】按照分式乘法和幂的运算法则计算即可.【详解】 解:()22163x y x⋅. 421363x y x=⨯, 3212x y =.【点睛】本题考查了分式乘法和幂的运算,解题关键是熟练运用分式乘法和幂的运算法则进行计算.26.(1)甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服;(2)选择甲工厂较好.【分析】(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服,根据工作时间=工作总量÷工作效率结合甲工厂单独完成任务比乙工厂单独完成任务多用10天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用总费用=每天需要的费用×工作时间,可分别求出选择甲、乙两工厂所需费用,比较后即可得出结论.【详解】解:(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服, 依题意得:12001200101.5x x-=, 解得:x=40, 经检验,x=40是原方程的解且符合题意,∴1.5x=60.答:甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服.(2)选择甲工厂所需费用为200×120040=6000(元);选择乙工厂所需费用为350×120060=7000(元).∵6000<7000,∴从经济角度考虑,选用甲工厂较好.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题3分,共30分)
1.分式2232b a c ,c b a 443-,c
a b 225的最简公分母是 ( ) A.12a 2b 4c 2 B.24a 2b 4c 2 C.24a 4b 6c D.12a 2b 4c
2.下列分式中,最简分式是( ) A.a b b a -- B.22x y x y ++ C.242x x -- D.222
a a a ++- 3.计算2111111x x ⎛
⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭
的结果为( ) B.1+x C.
1x x + D.11
x - 4.下列各式计算正确的是( ) A.22
2a ab b a b b a
-+=-- B.2232()x xy y x y x y ++=++ C.23546x x y y ⎛⎫= ⎪⎝⎭ D.11x y x y -=-+- 5.下列关于分式方程增根的说法正确的是( )
A.使所有的分母的值都为零的解是增根;
B.分式方程的解为零就是增根
C.使分子的值为零的解就是增根;
D.使最简公分母的值为零的解是增根
6.解分式方程2236111
x x x +=+--,分以下四步,其中,错误的一步是( ) A.方程两边分式的最简公分母是(x-1)(x+1)
B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6
C.解这个整式方程,得x=1
D.原方程的解为x=1
7.当x=( )时,125x x x x
+--与互为相反数. A.65 B.56 C.32 D.23
8.下列各式中,计算正确的是( ) A. x y x y x y 2=+ B. 1=÷y x x y C.94232b a b a =⎪⎪⎭
⎫ ⎝⎛ D. 222=-+-x y y y x x 9.若3x=2y,则2
2
94x y 的值等于 ( )
A.32
B.1
C.8116
D.27
8 10.某人生产一种零件,计划在30天内完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件设原计划每天生产x 个,列方程式是( ) A.3010256x x -=+ B.3010256x x +=+ C.3025106x x =++ D.301025106
x x +=-+ 二、填空题(每小题3分,共30分)
1.不改变分式的值,把分式144132
a b a b +-的分子与分母中各项的系数都化为整数,其结果 . 2.当x= 时,分式2x x x
-的值为0. 3.若方程87178=----x
x x 有增根,则增根是 . 4.在分式
12111F f f =+中,12f f ≠-,则F= . 5.当x= ,2x-3 与543
x + 的值互为倒数. 6.当x ,y 满足关系 时,分式
y x y x -+22无意义. 7.已知分式
b a a +23的值为3
5,若a ,b 的值都扩大到原来的5倍,则扩大后分式的值是 . 8.要使分式x --12的值为正数,则x 的取值范围是 . 9.若工厂原计划a 天生产b 件产品,现在需要提前x 天完成,则现在每天要比原来多生产产品 件.
10.若定义“*”运算为y
x xy y x +=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1*1,则=2*3 1.
1132422x x +=--; 2.21212339
x x x -=+--. 四、计算化简(每题5分,共15分) 1.222299369
x x x x x x x +-++++; 2.23111x x x x -⎛⎫÷+- ⎪--⎝⎭ 3.
五、解答题(10分) 1.若关于x 的方程211333
x x k x x x x ++-=-- 有增根,求增根和k 的值. x x x x x x x --+⋅+÷+--36)3(446222
六 解下列各题(8分)
1 已知b ab a b ab a b a ---+=-2232,311求 的值
2 若0<x<1,且x
x x x 1,61-=+求 的值 七 先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭
⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值
八、列方程解应用题(共25分)
1.李某承包了40亩菜地和15亩水田,根据市场信息,冬季瓜菜需求量大,他准备把水田改造为菜地,使改完后水田占菜地的10%,问应把多少水田改为菜地
2.某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到在B 地,他又骑自行车从B 地返回A 地,结果往返所用的时间相等,求此人步行的速度.。