分式方程单元测试卷

合集下载

北师大版数学八年级下册第五章:《分式方程》 单元练习卷(含答案)

北师大版数学八年级下册第五章:《分式方程》 单元练习卷(含答案)

第五章:《分式方程》单元练习卷一.选择题1.计算的结果为()A.1 B.2+b C.D.2.关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣2 B.a>﹣2,且a≠﹣1C.a>﹣1 D.a>﹣1,且a≠﹣23.下列分式方程去分母后所得结果正确的是()A.去分母得,2(x+1)=(x﹣1)(x+2)﹣1B.去分母得,x+7=3x﹣7C.去分母得,(x﹣3)2﹣x+3=x(x+3)D.去分母得,3(x﹣2)=x+44.已知分式(a,b为常数)满足下列表格中的信息:则下列结论中错误的是()x的取值﹣1 1 c d分式的值无意义 1 0 ﹣1 A.a=1 B.b=8 C.c=D.d=5.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3 B.1 C.﹣1 D.﹣36.如果分式的值为0,那么x的值为()A.﹣3 B.3 C.﹣3或3 D.3或07.温州市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0.2万棵,结果提前5天完成任务,设原计划每天植树x万棵,根据题意可列方程()A.=5 B.C.=5 D.8.已知关于x的分式方程的解为正数,则k的取值范围是()A.k<﹣B.k<﹣且k≠﹣C.k>﹣D.k<且k≠﹣9.如图,数轴上有两点A,B,表示的数分别是m,n.已知m,n是两个连续的整数,且m+n =﹣1,则分式÷的值为()A.﹣1 B.1 C.3 D.﹣310.若关于x的不等式组所有整数解的和为2,且关于y的分式方程+=1的解是正数,则符合条件的所有整数k的和是()A.10 B.13 C.15 D.17二.填空题11.如果代数式在实数范围内有意义,那么实数x的取值范围是.12.如果a2+a=1,那么代数式﹣的值是.13.若关于x的方程=的解为负数,则m的取值范围是.14.若关于x的分式方程=+3无解,那么a的值为.15.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小敏通过AB时的速度.设小敏通过AB时的速度是x米/秒,根据题意列方程为.16.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为.三.解答题17.解分式方程:(1)=﹣1;(2)﹣=.18.先化简,再求值:(),其中x=+1.19.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?20.如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长是.(2)请用两种不同的方法表示图2中阴影部分的面积,并写出下列三个代数式:(a+b)2,(a﹣b)2,ab之间的等量关系;(3)利用(2)中的结论计算:x﹣y=2,xy=,求x+y的值;(4)根据(2)中的结论,直接写出m+和m﹣之间的关系;若m2﹣4m+1=0,分别求出m+和的值.21.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩;(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有30000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过78000元,那么甲厂房至少生产了多少天?参考答案一.选择题1.解:原式=,故选:D.2.解:去分母得:a+1=x﹣1,解得:x=a+2,由分式方程的解为正数,得到a+2>0,且a+2≠1,解得:a>﹣2且a≠﹣1.故选:B.3.解:A、=﹣1去分母得:2(x+1)=(x﹣1)(x+2)﹣(x+1)(x﹣1),不符合题意;B、+=1去分母得:x﹣7=3x﹣7,不符合题意;C、+=去分母得:(x﹣3)2+x+3=x(x+3),不符合题意;D、=去分母得:3(x﹣2)=x+4,符合题意.故选:D.4.解:A.根据表格数据可知:当x=﹣1时,分式无意义,即x+a=0,所以﹣1+a=0,解得a=1.所以A选项不符合题意;B.当x=1时,分式的值为1,即=1,解得b=8,所以B选项不符合题意;C.当x=c时,分式的值为0,即=0,解得c=,所以C选项不符合题意;D.当x=d时,分式的值为﹣1,即=﹣1,解得d=,所以D符合题意.故选:D.5.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.6.解:∵分式的值为0,∴|x|﹣3=0且x+3≠0,解得:x=3.故选:B.7.解:设原计划每天植树x万棵,根据题意可列方程=5,故选:A.8.解:∵=,∴=,∴x+4=﹣5k,∴x=﹣4﹣5k,由题意可知:解得:k<或k≠,故选:B.9.解:原式=•=﹣,∵m,n是两个连续的整数,且m+n=﹣1,∴m=﹣1,n=0,则原式=﹣=﹣3,故选:D.10.解:不等式组整理得:,解得:﹣2<x≤,由整数解之和为2,得到整数解为﹣1,0,1,2,∴2≤<3,解得:﹣3≤k<7,分式方程去分母得:2y+1﹣k=y﹣2,解得:y=k﹣3,由分式方程的解为正数,得到k﹣3>0,且k﹣3≠2,解得:k>3且k≠5,综上,k的范围是3<k<7,且k≠5,即整数k=4,6,之和为4+6=10.故选:A.二.填空题11.解:根据题意知3﹣x≠0,解得x≠3,故答案为:x≠3.12.解:原式=﹣===,当a2+a=1时,原式=1,故答案为:1.13.解:∵=,∴x=,∵x<0,∴<0,解得m>5.故答案为:m>5.14.解:=+3,去分母得:5﹣a=x+3(x+2),将x=﹣2代入上式得:5﹣a=﹣2,所以a=7.故答案为:7.15.解:设小敏通过AB时的速度是x米/秒,可得:.故答案是:.16.解:设小江每小时分拣x个物件,则小李每小时分拣(x+20)个物件.根据题意,得=.故答案是:=.三.解答题17.解:(1)去分母得:3x+3=x2﹣2x﹣x2+x+2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:1﹣3x=6x﹣2,解得:x=,经检验x=是增根,分式方程无解.18.解:()===,当x=+1时,原式==.19.解:设科普类图书平均每本的价格是x元,则文学类图书平均每本的价格为(x﹣5)元,根据题意可得:=﹣100,解得:x=20,经检验得:x=20是原方程的根,答:科普类图书平均每本的价格是20元.20.解:(1)由图可得,图2中的阴影部分的正方形的边长是a﹣b,故答案为:a﹣b;(2)图2中阴影部分的面积:(a﹣b)2和(a+b)2﹣4ab,三个式子(a+b)2,(a﹣b)2,ab之间的等量关系:(a﹣b)2=(a+b)2﹣4ab;(3)∵x﹣y=2,xy=,∴(x+y)2=(x﹣y)2+4xy=4+5=9,∴x+y=±3;(4)根据(2)中的结论,可得,∵m2﹣4m+1=0,且m不能为0,∴,∴,∴.21.解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600.答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩.(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤78000,解得:m≥40.答:甲厂房至少生产了40天.。

分式单元测试题(含答案)

分式单元测试题(含答案)

(时间:60分钟,满分:100分)一、填空题:(每题2分,共22分)1.当x_______时,分式13x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式293x x --的值为零. 3.分式311,,46y xy x xyz-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成.6.若分式方程1x x a ++=2的一个解是x=1,则a=_______. 7.若分式13x-的值为整数,则整数x=_______. 8.已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元.10.已知224(4)4A Bx C x x x x +=+++,则B=______. 11.若1x +x=3,则421x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式:3,7a b a +,x 2+12y 2,5,1,18x x π-其中分式有( ) A .1个 B .2个 C .3个 D .4个13.如果把分式2x x y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变14.下列约分结果正确的是( )A .2222881212x yz z x y z y =B .22x y x y --=x-yC .2211m m m -+--=-m+1D .a m a b m b+=+ 15.与分式x y x y-++相等的是( ) A .x y x y +- B .x y x y -+ C .-x y x y -+ D .x y x y+-- 16.下列分式一定有意义的是( )A .21x x +B .22x x +C .22x x -- D .23x x + 17.已知a 2+b 2=6ab 且a>b>0,则a b a b+-的值为( )A B C .2 D .±218.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖xm ,那么所列方程正确的是( )A .48048020x x --=4 B .4804804x x -+=20 C .48048020x x -+=4 D .4804804x x --=20 三、计算题;(每题3分,共12分)19.2224422a a a a a a +-+-+ 20.11a --1-a21.2242()4422x x x x x x x ---÷-++-; 22.1-22244x y x y x y x xy y--÷+++.四、解答题(每题4分,共8分)23.321(1)x x x x +---=0 24.5425124362x x x x -+=---五、解答题(每题6分,共18分)25.先化简,再用你喜爱的数代入求值:2232214()2442x x x x x x x x x+---÷--+-26.若235x y z ==,且3x+2y-z=14,求x ,y ,z 的值.27.阅读下列材料: x+1x =c+1c 的解是x 1=c ,x 2=1c; x-1x =c-1c (即x+1x -=c+1c -)的解是x 1=c ,x 2=-1c; x+2x =c+2c 的解是x 1=c ,x 2=2c; x+3x =c+3c 的解是x 1=c ,x 2=3c ; ……(1)请观察上述方程与解的特征,猜想方程x+m x =c+m c (m ≠0)的解,并验证你的结论;(2)利用这个结论解关于x 的方程:x+2211a x a =+--.六、解决问题(共26分)28.(8分)甲,乙两地相距19km ,某人从甲地出发去乙地,先步行7km ,•然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.29.(8分)甲,乙两组学生去距学校4.5km的敬老院打扫卫生,•甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,•如果步行的速度是骑自行车的速度的13,求步行和骑自行车的速度各是多少.30.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300•枝以上(•不包括300枝),可以按批发价付款:购买300枝以下(包括300枝),只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元.(1)这个学校八年级的学生总数在什么范围内(2)若按批发价购买6枝与按零售价购买5枝的价格相同,那么这个学校八年级学生有多少人参考答案1.≠3 =322.=-3 3.12x 3yz 4.222222332326x y b a x y ab ab x y --- 5.ab a b+ 6.0 7.2或4 8.-1 9.150 10.-•1 •11.1812.B 13.D 14.C 15.C 16.A 17.A 18.C19.22a - 20.221a a -- 21.82x + 22.-y x y + 23.无解 24.无解 25.2x x - 26.x=4,y=6,z=10 27.(1)x 1=c ,x 2=m c (2)x 1=a ,x 2=11a a +- 28.•步行速度为5km/h ,骑自行车速度为20km/h29.步行速度为6km/h ,•骑自行车速度为18km/h •30.(1)人数多于240人,不大于300人 (2)300人第7章测试卷讲评课Ⅰ.本题针对第7题●反馈 若31a +表示一个整数,则整数a 可以取哪些值 Ⅱ.本题针对第11题●反馈 已知x=12,求351x x x ++的值. Ⅲ.本题针对第26题●反馈1 已知1x -1y=3,求55x xy y x xy y +---的值. ●反馈2 已知234x y z ==,求2222323x y z xy yz xz -+-+的值. ●反馈3 已知4x-3y-6z=0,2x+4y-14z=0,求22222223657x y z x y z ++++的值. Ⅳ.本题针对第28,29题●反馈 某商场家电部送货人员与销售人员人数之比为1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有送货人员和销售人员多少名.参考答案Ⅰ.反馈:2,0,-2,-4Ⅱ.反馈:由x=12,得, 所以(2x-1)2=5,即x 2-x-1=0,x 2=x+1, 所以33322255532331(1)(1)11x x x x x x x x x x x x x x xx x x +++++++========Ⅲ.反馈1:72反馈2:173反馈3:1Ⅳ.反馈:原来送货人有14人,销售人员有112人.&。

八年级上册数学单元测试卷-第十二章 分式和分式方程-冀教版(含答案)

八年级上册数学单元测试卷-第十二章 分式和分式方程-冀教版(含答案)

八年级上册数学单元测试卷-第十二章分式和分式方程-冀教版(含答案)一、单选题(共15题,共计45分)1、下列各式从左到右变形正确的是()A. B. C. D.2、甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A. B. C. D.3、若分式的值为零,则x的值是()A.0B.1C.﹣1D.﹣24、化简﹣的结果是()A.x+1B.x﹣1C.1﹣xD.﹣x﹣15、 + 的运算结果正确的是()A. B. C. D.a+b6、计算的结果为()A. B. C.﹣1 D.27、计算的结果是()A.a﹣bB.b﹣aC.1D.-18、为祝福祖国70周年华诞,兴义市中等职业学校全体师生开展了以“我和我的祖国、牢记初心和使命”为主题的演讲比赛,为奖励获奖学生,学校购买了一些钢笔和毛笔,钢笔单价是毛笔单价的1.5倍,购买钢笔用了1200元,购买毛笔用了1500元,购买的钢笔数比毛笔少35支,钢笔、毛笔的单价分别是多少元?如果设毛笔的单价为x元/支,那么下面所列方程正确的是()A. B. C.D.9、要时分式有意义,则x应满足的条件为()A.x≠2B.x≠0C.x≠±2D.x≠﹣210、若关于x的分式方程=2﹣有增根,则m的值为()A.﹣3B.2C.3D.不存在11、要使得分式有意义,那么应满足()A. B. C. D.12、下列分式的运算正确的是( )A. B. C. D.13、要使分式有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-114、如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.15、甲打字员计划用若干小时完成文稿的电脑输入工作,两小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A.17小时B.14小时C.12小时D.10小时二、填空题(共10题,共计30分)16、若﹣=2,则的值是________.17、若分式的值为零,则x的值为________.18、使代数式有意义的x的取值范围是________19、使分式有意义的的取值范围是________20、已知分式的值为负数,则的取值范围为________.21、当x________时,分式有意义.22、计算:+=________ .23、要使分式有意义,则x的取值范围是________.24、若分式的值为零 , 则________.25、计算:()2=________ .三、解答题(共5题,共计25分)26、先化简再从1,0,这三个数中选个合适的数作为的值代入求值.27、先化简,再求值:(﹣)•,其中x=4.28、列方程或方程组解应用题:九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的1.5倍,求慢车的速度.29、先化简,再求值:(﹣)÷•,其中a= + ,b= ﹣.30、西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务.问原计划每天铺多少千米,计划多少天完成?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、D5、C6、C7、D9、D10、C11、B12、B13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。

八年级分式单元测试题

八年级分式单元测试题

八年级分式单元测试题一、选择题(每题3分,共15分)1. 下列式子是分式的是()A. (x)/(2)B. (x + 1)/(2)C. (1)/(x + 1)D. (x)/(π)解析:分式的定义是分母中含有字母的式子。

A选项分母为2,是常数;B选项分母为2,是常数;C选项分母为x + 1,含有字母x,是分式;D选项分母为π,π是常数。

所以答案是C。

2. 若分式(x 1)/(x + 2)的值为0,则x的值为()A. 1.B. 1.C. 2.D. -2.解析:分式的值为0的条件是分子为0且分母不为0。

由分子x 1 = 0,解得x = 1,当x = 1时,分母x+2=1 + 2 = 3≠0。

所以答案是A。

3. 化简frac{a^2-b^2}{a b}的结果是()A. a bB. a + bC. (a + b)/(a b)D. (a b)/(a + b)解析:根据平方差公式a^2-b^2=(a + b)(a b),所以frac{a^2-b^2}{a b}=((a + b)(ab))/(a b)=a + b。

答案是B。

4. 计算(2)/(x 1)+(3)/(1 x)的结果是()A. -1.B. 1.C. (1)/(x 1)D. (5)/(x 1)解析:先将(3)/(1 x)化为-(3)/(x 1),则(2)/(x 1)+(3)/(1 x)=(2)/(x 1)-(3)/(x 1)=(2 3)/(x 1)=-(1)/(x 1)=-1。

答案是A。

5. 若分式方程(x)/(x 3)=2+(k)/(x 3)有增根,则k的值为() A. 3 B. 0 C. -3 D. 1 解析:分式方程有增根,就是分母为0,即x 3 = 0,解得x = 3。

方程两边同时乘以x 3得到x = 2(x 3)+k,把x = 3代入得3 = 2×(3 3)+k,解得k = 3。

答案是A。

二、填空题(每题3分,共15分)6. 当x=______时,分式\frac{1}{x 2}\)无意义。

练习-分式方程 单元测试3

练习-分式方程 单元测试3

分式方程 单元测试人教版八下一、填一填,要相信自己的能力!(每小题3分,共24分)1.要使分式15x x++的值为13,则x 的值为____________.2.分式方程13122x x x --=--的解为 . 3. 已知公式1221P P V V =,用P 1、P 2、V 2表示V 1=________. 4. 已知方程531)1()(2-=-+x a a x 的解为51-=x ,则a =_________.5. 若使23--x x 与232+-x x 互为倒数,则x 的值是________. 6. 若方程kx x +=+233有负数根,则k 的取值范围是__________. 7. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.8. 为改善环境,张村拟在荒山上种植960棵树,由于共青团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程________.二、选一选,看完四个选项再做决定!(每小题3分,共24分) 1. 下列方程中①35x -=1,②3x =2,③15x x ++=12,④2x +2x =5中是分式方程的有( )A .①② B.②③ C.③④ D.②③④ 2. (2006年南宁)以下是方程1112x x x--=去分母后的结果,其中正确的是( ) A.211x --= B.211x -+= C.212x x -+=D.212x x --=3. (2006年定西)方程2312x x=-的解是( ) A.1B.2 C.3 D.3-4. (2006年泸州)如果分式12-x 与33+x 的值相等,则x 的值是( ). (A)9 (B)7 (C)5 (D)35.若关于x 的方程35ax x =-有正数解,则a 的取值范围是( ). (A )3a < (B )3a > (C )3a ≥ (D )3a ≤6. 若分式方程2axx +=2的解是2,则a 的值是( ) A .1 B .2 C .3 D .47. 若分式方程xx k x x x k +-=----2225111有增根1-=x ,那么k 的值为( ) A.1 B. 3 C.6 D. 98. 某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx 三、做一做,要注意认真审题!(每小题8分,共32分)1.解分式方程:(1)解分式方程:23222x x x -=+-. (2)解方程:12x -+ 3 =12xx--.2.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数. 3. 阅读下列材料: 解方程11322x x x -=---. 解:方程的两边都乘以2x -,约去分母,得113(2)x x =---.解这个整式方程,得2x =.检验:当2x =时,20x -=,所以2是增根,原方程无解. 请你根据这个方程的特点,用另一种方法解这个方程.4.近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽今年5月份每升汽油的价格是多少(备选题):小明和小芳同时从张庄出发,步行15千米到李庄,小芳步行的速度是小明步行速度的1.2倍,结果比小明早到半小时.((2)根据题意及表中所得到的信息列方程,求二人每小时各走几千米?四、推广探索(共20分)1. (探究题)先阅读下列一段文字,然后解答问题: 已知:方程x-1x =112的解是x 1=2,x 2=-12. 方程x-1x =223的解是x 1=3,x 2=-13. 方程x-1x =334的解是x 1=4,x 2=-14. 方程x-1x=445的解是x 1=5,x 2=-15. 问题:观察上述方程及其解,再猜想出方程x-1x =101011的解. 把你解题得到的收获用语言表述出来,和你的同伴互相交流.2. 编一道可化为一元一次方程的分式方程的应用题,并解答.编题要求:(1)要联系实际生活,其解符合实际;(2)根据题意列出的分式方程只含有两个分式,不含常数项,分式的分母均含有未知数,并且可化为一元一次方程;(3)题目完整,题意清楚.参考答案 一、1.1; 2. 0x =; 3. V 1=221PV P ; 4. 5=a ; 5. 41; 6. 32≠>k k 且;7. 答案不唯一,如231x -,2||11x x +-,1||1x -等; 8. 960x -96020x +=4; 二、三、1.(1)27x =;(2)2x =是增根,原方程无解; 2. 解:(1)设乙工程队单独完成这项工程需要x 天,根据题意得:101120140x x ⎛⎫++⨯= ⎪⎝⎭解之得:60x = 经检验:60x =是原方程的解. 答:乙工程队单独完成这项工程所需的天数为60天. ······· 5分 (2)解:设两队合做完成这项工程所需的天数为y 天,根据题意得: 1114060y ⎛⎫+=⎪⎝⎭解之得:24y = 答:两队合做完成这项工程所需的天数为24天. ········· 8分 3. 解法一:∵11322x x x -=---, ∴11322x x x --=---,∴232x x -+=--, ∴-1=-3. ∴原方程无解.解法二:∵11322x x x -=---, ∴121322x x x -+=---, ∴111322x x =+---, ∴11222x x =---, ∴0=-2.∴原方程无解.4. 解:设去年5月份汽油价格为x 元/升,则今年5月份的汽油价格为1.6x 元/升, ·· 1分 根据题意,得15015018.751.6x x-=. ····················· 4分 整理,得15093.7518.75x -=.解这个方程,得3x =. ·························· 6分 经检验,3x =是原方程的解.························ 7分所以1.6 4.8x =.答:今年5月份的汽油价格为4.8元/升. ··················· 8分(备选题);(1)(2)根据题意,得151511.22x x -=, 解得5x =,经检验5x =是原方程的解,所以小明的速度是5千米/小时,小芳的速度是6千米/小时. 四、1. x 1=11,x 2=-111; 2. 析解:编题:甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用时间与乙做6个所用的时间相等,求甲、乙每小时各做多少个?设甲每小时做x 个,则乙每小时做2x -()个,根据题意,得1062x x =-,解得5x =.经检验,5x =是原方程的根,∴5x =.答略.提示:本题考查列分式方程解应用题和逆向思维能力.解题时应着重从以下三个方面入手:第一:根据题意,确定一个有实际意义的是数字,当作所列方程的一个根,建立一个符合题设要求的等式;第二:把上述等式中确定好的数字用未知数x 代替,变等式为分式方程;第三:根据列出的分式方程编出应用题.B 组(竞赛提高版,共20分)1.(6分)方程18272938x x x x x x x x +++++=+++++的解是 . 2.(6分)当m =______时,关于x 的方程223242mx x x x +=--+会产生增根. 3. (8分)某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的23,厂家需付甲、丙两队共5500元. (1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?(备选题: 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:(1)乙车每次所运货物量是甲车每次所运货物量的几倍;(2)现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元(按每运1吨付运费20元计算).参考答案:1. 112-;提示:原方程可化为(2)(3)(8)(9)x x x x ++=++,解之得x =112-. 2.6或-4;提示:把原方程去分母,得(1)5m x -=,因为原方程会产生增根,则2x =或2x =-,分别代入求解即可.3. 设甲队单独做x 天完成,乙队单独做y 天完成,丙队单独做z 天完成,则 111611110112315x y y z x z +=+=+=⨯⎧⎨⎪⎪⎪⎩⎪⎪⎪,,. 解方程组,得 ∴x y z ===⎧⎨⎪⎩⎪101530,,. (2)设甲队做一天应付给a 元,乙队做一天应付给b 元,丙队做一天应付给c 元.则有()()()6870010950055500a b b c a b +=+=+=⎧⎨⎪⎩⎪,,. 解方程组,得 a b c ===⎧⎨⎪⎩⎪800650300,,. ∵10a=8000(元),15b=9750(元),∴由甲队单独完成此工程花钱最少.(备选题答案):解法1:设这批货物共有T 吨.甲车每次运t 甲吨,乙车每次运t 乙吨. ………………………………………………………………………1分(l )∵2a·t 甲=T ,a·t 乙=T ,∴t 甲∶t 乙=l∶2.………………2分即乙车每次运货量是甲车的2倍.………………3分 (2)由题意列方程…………………5分由(1)知,t 乙=2t 甲,解方程,得T=540.………………6分∵甲车运180吨,丙车运540-180=360(吨),∴丙车每次运货量也是甲车的2倍.∴甲车车主应得运费乙、丙车主各得运费:…………………7分答;(1)乙车每次运货量是甲车每次运货量的2倍;(2)应付甲车车主运费2160元,付乙、丙两车车主运费各4320元.………………8分解法2:(l)同解法1;………………2分(2)设甲车每次运t甲吨,乙车每次运2t甲吨,丙车每次运t丙吨.………3分…………… 5分这批货物总量为180+180×2=540(吨).…………6分以下同解法1.。

人教版苏科版初中数学—分式与分式方程(单元测试卷)

人教版苏科版初中数学—分式与分式方程(单元测试卷)

班级小组姓名成绩(满分120)一、选择题(共10小题,每小题3分,共30分)1.式子32x,4x y -,x y +,21x π+,53ba 中是分式的有()A.1个B.2个C.3个D.4个2.若分式21x x -+的值为0,则x 的值为()A.1-B.0C.2D.1-或23.下列等式中不一定成立的是()A.2y xy x x=B.y yxxππ=C.y yzxxz=D.22(2)(2)y y x x x x +=+4.化简111a a a+--的结果为()A.1-B.1C.11a a +-D.11a a+-5.化简分式2221()111x x x ÷+--+的结果是()A.2B.21x +C.21x -D.2-6.使分式2113x x+-的值为负的条件是()A.0x <B.0x >C.13x >D.13x <7.化简211m m mm--÷的结果是()A.mB.1mC.1m -D.11m -8.若实数a ,b 满足1ab =,设11a bM a b =+++,1111N a b =+++,则M ,N 的大小关系是()A.MN>B.M N =C.M N <D.不确定9.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x 人,那么x 满足的方程是()A.4800500020xx =-B.4800500020x x =+C.4800500020x x=-D.4800500020x x =+10.已知2112x x x =-+,则221x x +的值为()A.12B.14C.7D.4二、填空题(共6小题,每小题3分,共18分)11.计算:111x x x -=--.12.计算321(a a的结果是.13.要使分式2939x x -+的值为0,则x 可取.14.若分式32a +无意义,且2401b b -=+,那么a b=.15.计算:12121m m m m ++=++.16.要使分式12x x -+的值是非负数,则x 的取值范围是.三、解答题(共8题,共72分)17.(8分)化简:1()2221a aa a -÷++.18.(8分)计算:21222223()()32a b c a b -----÷-.19.(8分)先化简式子2211(21x x x x x x x+-÷--+,然后请选取一个你最喜欢的x 值代入求出这个式子的值.20.(8分)已知123x y z==,求214y zx +.21.(8分)若x 、y 满足2|2|(23)0x x y -+--=.求:22221244x y x y x y x xy y ---÷+++的值.22.(10分)化简2221432a a a a a a+---- ,并求值,其中a 与2、3构成ABC ∆的三边,且a 为整数.23.(10分)已知22(1)(2)12x A B Cx x x x x x +=++++++,试求2A B C ++的值.24.(12分)市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年文学书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?。

八年级数学下册《分式》单元测试卷(附答案)

八年级数学下册《分式》单元测试卷(附答案)

八年级数学下册《分式》单元测试卷(附答案)一 、选择题1.若分式x +12-x有意义,则x 满足的条件是( ) A.x ≠-1 B.x ≠-2 C.x ≠2 D.x ≠-1且x ≠22.如果分式的值为0,那么x 的值为( ) A.﹣1 B.1 C.﹣1或1 D.1或03.下列计算错误的是( )A.a 3·a ﹣5=a ﹣2B.a 5÷a ﹣2=a 3C.a 3﹣3a 3=﹣2a 3D.(﹣1+2)0=14.方程2x +1x -1=3的解是( ) A.-45 B.45C.-4D.4 5.分式中的x ,y 都扩大为原来的3倍,则分式的值( )A.扩大为原来的9倍B.扩大为原来的3倍C.没变D.缩小为原来的136.化简:等于( ). A. B.xy 4z 2 C.xy 4z 4 D.y 5z7.计算x +1x -1x 的结果为( ) A .1 B .x C.1x D.x +2x8.分式方程1x -1﹣2x +1=4x 2-1的解是( ) A.x =0 B.x =﹣1 C.x =±1 D.无解9.清明节前,某班分成甲、乙两组去距离学校4 km 的烈士陵园扫墓.甲组步行,乙组骑自行车,11+-x x x+y +y x 22他们同时从学校出发,结果乙组比甲组早20 min 到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h ,则x 满足的方程为( )A.4x -42x =20B.42x -4x =20C.4x -42x =13D.42x -4x =1310.甲、乙两地之间的高速公路全长200 km ,比原来国道的长度减少了20 km.高速公路通车后,某长途汽车的行驶速度提高了45 km/h ,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x km/h.根据题意,则下列方程正确的是( )A. B. C. D.11.若关于x 的分式方程m -1x -1=2的解为正数,则m 的取值范围是( ) A.m >-1 B.m ≠1 C.m >1 D.m >-1且m ≠112.已知x 2+5x+1=0,则x+1x的值为( ) A.5 B.1 C.﹣5 D.﹣1二 、填空题13.要使分式有意义,则x 的取值范围是 .14.计算30×(12)-2+|-2|= . 15.计算:12xy 5x÷(-8x 2y)=________. 16.若代数式1x -2和32x +1的值相等,则x=________. 17.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x 天,可列方程为 .18.小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为 .三 、解答题19.化简:(2m 2n ﹣2)﹣23m ﹣3n 3.2145180200·x-=x 2145220200·x-=x 2122045200·x =x+2118045200·x =x+20.化简:12x 2y 5z 2÷4xy 215z 2;21.化简:2x +y 3x 2y +x -2y 3x 2y -x -y 3x 2y.22.化简:.23.先化简x 2-4x 2-9÷(1﹣1x -3),再从不等式2x ﹣3<7的正整数解中选一个使原式有意义的数代入求值.24.在解分式方程2-x x -3=13-x-2时,小玉的解法如下: 解:方程两边都乘以x -3,得2-x=-1-2.①移项,得-x=-1-2-2.②解得x=5.③(1)你认为小玉从哪一步开始出现了错误________(只填序号),错误的原因是)111(1222+-+÷+-x x x x x________________;(2)请你写出这个方程的完整解题过程.25.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?参考答案1.C.2.B3.B.4.D5.B.6.B7.A8.D.9.C10.C.11.D12.C13.答案为:x≠﹣﹣114.答案为:6;15.答案为:-310x2 16.答案为:717.答案为:520+45x=1.18.答案为:(x+2)(﹣0.5)=12.19.解:原式=2﹣2m﹣4n4•3m﹣3n3=34m﹣7n720.解:原式=9xy.21.解:原式=23xy.22.解:原式=. 23.解:原式=(x +2)(x -2)(x +3)(x -4); 不等式2x ﹣3<7,解得:x <5,其正整数解为1,2,3,4,当x =1时,原式=14. 24.解:(1)① 去分母时漏乘常数项(2)去分母,得2-x=-1-2(x -3).去括号,得2-x=-1-2x +6.移项,合并,得x=3.检验,将x=3代入x -3=0,所以原方程无解.25.解:设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时, 根据题意得:,解得x =4经检验,x =4原方程的根,答:客车由高速公路从甲地到乙地需4时.26.解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件, 依题意有7 8001.5x +30=6 400x,解得x =40, 经检验,x =40是原分式方程的解,且符合题意,1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6 40040=160, 160-30=130(元),130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2) =4 680+1 920-640=5 960(元). 11 x答:售完这批T恤衫商店共获利5 960元.。

(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试(有答案解析)

(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试(有答案解析)

一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >- 2.已知113x y -=,则代数式21422x xy y x xy y ----的值( ) A .4B .9C .-4D .-8 3.分式方程3121x x =-的解为( ) A .1x =B .2x =C .3x =D .4x = 4.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数 5.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0B .x >-4C .x ≠0D .x >-4且x ≠0 6.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变7.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3 C .6 D .118.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 9.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( )A .4-B .0C .3D .610.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯= B .6608400147660840010x x ⨯=++ C .660840014147660840010x x ⨯=⨯++ D .7840066010146608400x x ++⨯= 11.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0 C .-3 D .-412.下列变形不正确的是( )A .1122x x x x +-=---B .b a a b c c--+=- C .a b a b m m -+-=- D .22112323x x x x--=--- 二、填空题13.已知实数m 、n 均不为0且22227m mn n m n mn--=-+,则11m n -=______. 14.(1)分解因式39x x -= ______________.(2)已知5a b +=,3ab =,则22a b += ________.(3)某种球形冠状病毒的直径大约为0.000000102m ,这个数用科学记数法表示为________________________.15.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 16.某种病毒的直径为0.0000000028米,用科学记数法表示为______米.17.有意义,则x 的取值范围是______________. 18.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.19.计算22a b a b a b-=-- _________. 20.要使分式3 x 2-有意义,则 x 的取值范围是___________. 三、解答题 21.(1)计算: 02202013(3)(1)2-π-+-+--() (2)解方程:3231x x =+- 22.解方程:21113x x x++=. 23.解方程:(1)25231x x x x +=++; (2)23111x x x -=--. 24.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 25.计算:(2933a a a+--)÷3a a +. 26.(1)化简:221111x x x ⎛⎫÷- ⎪-+⎝⎭(2)先化简再求值:22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭,其中2=a .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m +3=x ﹣1,再由整式方程的解为非负数得到m +4≥0,由整式方程的解不能使分式方程的分母为0得到m +4≠1,然后求出不等式的公共部分得到m 的取值范围.【详解】解:去分母得m +3=x ﹣1,整理得x =m +4,因为关于x 的分式方程311m x x-=--1的解是非负数, 所以m +4≥0且m +4≠1,解得m ≥﹣4且m ≠﹣3,故选:B .【点睛】 本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.A解析:A【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论. 【详解】解:由11x y =3,得y x xy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4. 故选:A .【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.3.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 4.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 5.D解析:D【分析】 若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x+>0, ∴x +4>0,x≠0,∴x >−4且x ≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 6.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,故该说法不符合题意;B、22623=23432m n m nm n m n⨯--⨯--,故分子、分母的中m扩大2倍,n不变,分式的值没有扩大2倍,故该说法不符合题意;C、226212=32438m n m nm n m n-⨯--⨯-,故分子、分母的中n扩大2倍,m不变,分式的值发生变化,故该说法不符合题意;D、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.7.B解析:B【分析】根据分式方程的解为正整数解,即可得出a=0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a<5,找出a的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x=121a+,∵x≠3,∴121a+≠3,即a≠3,又∵分式方程有正整数解,∴a=0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51 yy a≤⎧⎨-⎩>,∴a−1<4,解得,a<5,∴a=0,1,2,∴0+1+2=3,故选:B.本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.8.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a<5;综合以上两点得出整数a的值,从而得出答案.【详解】解:分式方程122x ax-=-,去分母,得:2(x-a)=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5xx a≥⎧⎨>⎩的解集是x≥5,∴1≤a<5,且a≠2,则整数a的值为1、3、4共3个,故选:C.【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.9.C解析:C【分析】先对分式方程进行求解,即用含k的代数式表示分式方程的解,然后根据题意可进行求解.【详解】解:由3211kx x+=--可得:52xk=+,∵分式方程的解为非负数,且1x≠,∴52k+≥且512k+≠,解得:5k≥-且3k≠-∴满足条件的有5-、1-、3、6,∴它们的和为51363--++=;故选C.本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.10.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x+,∴由题意得6608400147 660840010x x⨯=++,故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.11.A解析:A【分析】根据分式的值为0的条件可以求出x的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34xx-+的值为0;故选:A.【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.12.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A、1122x xx x+--=---,故A不正确;B 、b a a bc c --+=-,故B 正确; C 、a b a b m m-+-=-,故C 正确; D 、22112323x x x x--=---,故D 正确. 故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.二、填空题13.【分析】将原分式化简得再两边同时除以即可得结果【详解】由得所以则故答案为:【点睛】本题考查了分式的化简求值观察式子得到已知与未知的式子之间的关系是解题的关键 解析:163【分析】 将原分式化简得163n m mn -=,再两边同时除以mn 即可得结果. 【详解】 由22227m mn n m n mn--=-+得24414m mn n m n mn --=-+ 所以163n m mn -=,则11163m n -= 故答案为:163【点睛】 本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键. 14.x (x +3)(x -3)19【分析】(1)先提取公因式x 再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不解析:x (x +3)(x -3) 19 71.0210-⨯【分析】(1)先提取公因式x ,再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:(1)39x x -=x(x 2-9)= x(x +3)(x -3);(2)∵5a b +=,3ab =,∴22a b +=(a+b)2-2ab=25-6=19;(3)0.000000102=71.0210-⨯.故答案为:(1)x(x +3)(x -3);(2)19;(3)71.0210-⨯.【点睛】本题考查了因式分解,完全平方公式,科学记数法等知识,熟练掌握各知识点是解答本题的关键.15.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.16.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000000解析:92.810-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000000028=2.8×10-9,故答案为:92.810-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.18.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.20.x≠2【分析】根据分式有意义得到分母不为0即可求出x 的范围【详解】解:要使分式有意义须有x-2≠0即x≠2故填:x≠2【点睛】此题考查了分式有意义的条件分式有意义的条件为:分母不为0解析:x≠2【分析】根据分式有意义得到分母不为0,即可求出x 的范围.【详解】 解:要使分式3 x 2-有意义,须有x-2≠0,即x≠2, 故填:x≠2.【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0. 三、解答题21.(1)1;(2)9x =【分析】(1)根据绝对值的性质、零指数幂、负整数次幂和有理数的乘方进行计算即可; (2)把分式方程化成整式方程求解,最后验根.【详解】解:(1)原式=31411=+-+=;(2)3231x x =+- 去分母得:()()3123x x -=+,去括号得:3326x x -=+,移项、合并得:x =9,检验:把x =9代入方程,各分母都不为0,∴x =9是方程的解.【点睛】本题考查实数的运算、解分式方程,解题的关键是掌握实数的相关性质和解分式方程的方法.22.43x =- 【分析】先去分母将分式方程化为整式方程,求解整式方程并验根即可.【详解】解:去分母得:3(21)13x x ++=,去括号得:6313x x ++=,移项合并同类项得:34x =-,系数化为1得:43x =-. 经检验43x =-是该方程的根. 【点睛】本题考查解分式方程.注意解分式方程一定要验根.23.(1)无解;(2)2x =【分析】(1)先去分母,把分式方程转化成整式方程,求出方程的解,再进行检验即可; (2)先去分母,把分式方程转化成整式方程,求出方程的解,再进行检验即可.【详解】解:(1)25231x x x x +=++ 方程两边同乘以()1x x +,得523x x +=,解整式方程得,1x =-,检验:当1x =-时,()10x x +=,因此1x =-不是原分式方程的解,∴原分式方程无解;(2)23111x x x -=-- 方程两边同乘以()()11x x +-,得()()2113x x x +--=解方程得,2x =检验:当2x =时,()()110x x +-≠所以,原分式方程的解2x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要检验.24.原式1x=,1x=时,原式1=;或2x=时原式12=.【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x<3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:2111 x xxx x⎛⎫-+÷⎪++⎝⎭=2(1)(1)11x x x xx x --++⋅+=221 x xx-+=1x,∵x(x+1)≠0,∴x≠0,x≠-1,∵整数x满足-1≤x<3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.a【分析】首先提出负号使括号内变为2933aa a⎛⎫-⎪--⎝⎭,然后根据平方差公式、除法法则进行化简即可.【详解】原式229393(3)3333a a a a aa aa a a a a a⎛⎫+-+=-÷=÷=+⋅= ⎪---+⎝⎭【点睛】本题考查了平方差公式、分式的化简,重点是掌握乘法公式在分式化简中的计算方法.26.(1)21x-,(2)21a+,2-【分析】(1)先计算括号内的分式减法,再算除法即可;(2)先依据分式运算法则和顺序化简,再代入求值即可.【详解】解:(1)221111x x x ⎛⎫÷- ⎪-+⎝⎭, 2211111x x x x x +⎛⎫=÷- ⎪-++⎝⎭, 221·1x x x x+=-, ()()21·11x x x x x +=+-,21x =-; (2)22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭, ()()()()22212·1112a a a a a a a--=++-+-, 22(1)11a a a a -=-++, 21a =+, ∵2=a ,∴a=2(不符合题意,舍去)或a=-2,把a=-2代入,原式2221-+==-. 【点睛】本题考查了分式的运算和分式化简求值,解题关键是熟练运用分式的运算法则和运算顺序解题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程
一 ;填空题
1.当x =______时,
15x x ++的值等于12. 2.当x =______时,424x x --的值与54x x --的值相等. 3.若11x -与11
x +互为相反数,则可得方程___________,解得x =_________. 4.若方程212
x a x +=--的解是最小的正整数,则a 的值为________. 5. 分式方程2131x x =+的解是_________ 6. 若关于x 的分式方程311x a x x
--=-无解,则a = . 二、选择题
7.下列方程中是分式方程的是( )
(A )(0)x x x π
π=≠ (B )111235x y -= (C )32x x x π=+ (D )11132
x x +--=- 8.解分式方程12133x x x +-=,去分母后所得的方程是( ) (A )13(21)3x -+= (B )13(21)3x x -+=
(C )13(21)9x x -+= (D )1639x x -+=
9..化分式方程2213405511x x x
--=---为整式方程时,方程两边必须同乘( ) (A )22(55)(1)(1)x x x --- (B )25(1)(1)x x --
(C )25(1)(1)x x -- (D )5(1)(1)x x +-
10.下列说法中错误的是( )
(A )分式方程的解等于0,就说明这个分式方程无解
(B )解分式方程的基本思路是把分式方程转化为整式方程
(C )检验是解分式方程必不可少的步骤
(D )能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解.
11.解分式方程2236111
x x x +=+--,下列说法中错误的是( ) (A )方程两边分式的最简公分母是(1)(1)x x +-
(B)方程两边乘以(1)(1)x x +-,得整式方程2(1)3(1)6x x -++=
(C)解这个整式方程,得1x =
(D) 原方程的解为1x =
12.下列结论中,不正确的是( )
(A )方程
231x x =+的解是2x = (B )方程2311
x x =+-的解是5x =- (C )方程2122x x x =-++的解是4x = (D )方程3233x x x =+--的解是3x =
13.关于x 的方程
211x a x +=-的解是正数,则a 的取值范围是 A .a >-1
B .a >-1且a ≠0
C .a <-1
D .a <-1且a ≠-2
三、解答题 14.解方程:(1)
512552x x x +=-- (2) 2373226
x x +=++
(3)
2236111x x x +=+-- (4) 214111x x x +-=--
15若关于x 的方程233x k x x =+--无解,求k 的值. 16. 方程2512x x
=-的解是 . 17.当m 取 时,方程
323-=--x m x x 会产生增根. 18..已知关于x 的方程32
2=-+x m x 的解是正数,则m 的取值范围为 . 19.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .
20.甲、乙制作某种零配件,甲每天比乙多做5个,甲制作75个零件所用的天数与乙制作50个零件的天数相等,则甲、乙每天制作的零件数分别为________________.
21.轮船顺水航行46千米和逆水航行34千米所用的时间恰好相等,水的流速是每小时3千米,则轮船在静水中的速度是_________千米/时.
二、选择题
1.一件工程甲单独做a 小时完成,乙单独做b 小时完成,甲、乙二人合作完成此项工作需要的小时数是 ( )
(A )a +b (B )b a 11+ (C )b a +1 (D )b
a a
b + 2.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-x
x 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 4
3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )
A .8 B.7 C .6 D .5
4.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据
题意可得方程为
A .18%)201(400160=++x x
B .18%)201(160400160=+-+x
x C.
18%20160400160=-+x x D.18%)201(160400400=+-+x x 5.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若 按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?
6.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的.....13%...给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台? (1)设购买电视机x 台,依题意填充下列表格:

目 家电种类
购买数量(台) 原价购买总额(元) 政府补贴返还比例 补贴返还总金额(元) 每台补贴返
还金额(元)
冰箱 40 000 13%
电视机 x 15 000 13%
(2)列出方程(组)并解答.
7. 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
(1)试销时该品种苹果的进货价是每千克多少元?
(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?
8.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?
9.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?
10.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.。

相关文档
最新文档