《必修一》1.1.1集合的含义与表示导学案
人教课标A版数学必修一1.1.1集合的含义与表示教案

1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。
高中数学《1.1.1集合的含义与表示》导学案 新人教A版必修

高中数学《1.1.1集合的含义与表示》导学案新人教A版必修1、1、1集合的含义与表示》导学案新人教A版必修1【学习目标】1、知道集合的含义,掌握元素与集合的属于关系。
2、掌握集合的特点和集合的表示方法,以及常用数集的记法。
3、提高学生分析问题和解决问题的能力。
【学习重难点】学习重点:集合的含义与表示方法。
学习难点:表示法的恰当选择。
【知识链接】【预习案】1、集合的含义(1)一般地,我们把研究的_____统称为元素,把一些元素组成的总体叫做_____、(简称为集)(2)只要构成两个集合的元素是一样的,我们就称这两个集合是_____的、2、集合的特征集合元素具有____、____、_____。
3、常见的数集及其记法自然数集(非负整数集)记为____;正整数集记为____;整数集记为____;有理数集记为____;实数集记为____。
4、元素与集合的关系如果是集合A的元素,就说属于集合A,记作_____;如果不是集合A的元素,就说不属于集合A,记作_______。
5、集合的表示方法(1)图示法(2)自然语言(3)字母表示(4)列举法:______________________________________、教学反思注意:在花括号内不多,不漏,元素之间用“,”隔开、(5) 描述法:______________________________________、(6)注意:表示元素的符号及取值范围,共同特征、6、集合的分类(1)_____:含有有限个元素的集合、例如,A={1,2}、(2)_____:含有无限个元素的集合、例如,N、(3)_____:不含任何元素的集合,记作、例如,{x|x2+1=0,x∈R}=、(注:对于无限集,不宜采用列举法、)【预习反馈】例1:判断下列元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数; (2)我国的小河流; (3)中国的直辖市; (4)身材较高的人、例2:用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合、例3:用描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合、【探究案】1、求方程组的解集【检测案】。
湖北省武汉为明学校人教版高中数学必修一:1.1.1(1)导学案

课题:1.1.1 集合的含义与表示(1)第1课时集合的含义班级: 姓名: 小组: 评价:【学习目标】(1)学生通过观察8个例子,能准确说出集合的含义;(2)学生通过阅读“集合元素与集合的关系”,能准确判断一个元素是否属于某个集合;(3)学生通过实例,能用教师要求的方法:自然语言、图形语言、列举法表示集合,并能说出集合的三个特征与记住常用数集。
【重点难点】重点:集合的含义.难点:元素的三个特性的应用.【导学流程】一、导入由一个实际问题入手,导入课题二、深入学习1.阅读教材第2页8个例子,思考:(1)例(3)到例(8)也都能组成集合吗?它们的元素分别是什么?(学生口答)2.学生归纳总结出集合的概念和集合元素的三个特性:(1)一般地,我们把研究对象统称为,把一些元素组成的总体叫做,简称集。
集合通常用的拉丁字母表示,集合的元素用的拉丁字母表示.(2)一般地,元素的三个特性是指,,。
3.判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.(分组讨论,小组派代表口答)4.学生阅读教材第3页,明确元素与集合的关系:如果a是集合A的元素,就说a集合A,记作:a A;如果a不是集合A的元素,就说a集合A,记作:a A. 问题记录典例分析:类型一集合的概念例1考察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2014年在校的所有高个子同学;(4)3的近似值的全体.类型二元素的三个特性的应用例2 已知集合A有三个元素: a-3,2a-1,a2+1,集合B也有三个元素0,1,x.(1)若-3∈A,求a的值;(2)若x2∈B,求实数x的值;(3)是否存在实数a,x,使A=B.类型三元素与集合的关系例3数集A满足条件:若a∈A,a≠-1,则1∈A.1+a(1)若2∈A,写出A中的其他两个元素;(2)若A为单元素集合,求a.三、堂测堂练A 组:1.下列给出的对象中,能组成集合的是( )A.一切很大的数B.好心人C.漂亮的小女孩D.方程x2-1=0的实数根2.下面说法正确的是( )A.所有在N 中的元素都在*N 中B.所有不在*N 中的数都在Z 中C.所有不在Q 中的实数都在R 中D.方程84-=x 的解既在N 中又在Z 中3.由“book 中的字母”构成的集合中元素个数为( )A.1B.2C.3D.44.下列结论不正确的是( )A.0∈NB.2∉QC.0∉QD.-1∈Z5.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A.2B.3C.0或3D.0,2,3均可B 组:6. 已知集合M 中含有三个元素b a ,,2,集合N 中含有三个元素2,2,2b a ,且N M =,求b a ,的值.。
人教版高中数学必修一《集合》导学案(含答案)

第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号____ ________ ____ 一、选择题1.下列语句能确定是一个集合的是( )A .著名的科学家B .留长发的女生C .2010年广州亚运会比赛项目D .视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a ,b ,c 与由元素b ,a ,c 组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义知识梳理1.(1)研究对象 小写拉丁字母a ,b ,c ,… (2)一些元素组成的总体 大写拉丁字母A ,B ,C ,… 2.确定性 互异性 无序性3.一样 4.a 是集合A a 不是集合A 5.N N *或N + Z Q R作业设计1.C [选项A 、B 、D 都因无法确定其构成集合的标准而不能构成集合.]2.C [由题意知A 中只有一个元素a ,∴0∉A ,a ∈A ,元素a 与集合A 的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}6二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号) ①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法{x|x<10}{x∈Z|x=2k,k∈Z}作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x<5}={1,2,3,4}.]2.D [集合{(x ,y)|y =2x -1}的代表元素是(x ,y),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧ x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x2-2x +1=0可化简为(x -1)2=0,∴x1=x2=1,故方程x2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x(x2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x|x =2n +1,且x<1 000,n ∈N};③{x|x>8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x2+3中y 的取值范围是y≥3,所以B ={y|y≥3}. 集合C 中代表的元素是(x ,y),这是个点集,这些点在抛物线y =x2+3上,所以C ={P|P 是抛物线y =x2+3上的点}.12.C [由集合的含义知{x|x =1}={y|(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x|x =2k +14,k ∈Z},N ={x|x =k +24,k ∈Z}, ∵2k +1(k ∈Z)是一个奇数,k +2(k ∈Z)是一个整数,∴x0∈M 时,一定有x0∈N ,故选A.]。
高中数学人教版必修1导学案:1.1.1集合(共3节)

2. 例( 1)到例( 8)都能组成集合吗,元素分别是什么? 3. “好心的人”与“ 1,2,1”是否构成集合? 4.集合中的元素有哪些特征?
练习 1.分析下列对象,能否构成集合,并指出其元素:
(1) 不等式 x 3 0 的解; (3) 方程 x 2 2 x 1 0 的解; (5) 最小的整数;
( 2) 3 的倍数; ( 4) a, b, c, x, y, z; ( 6)周长为 10 cm 的三角形;
,读作用符号, 须牢记 )非负整数集(或自然数集)
整数集
,有理数集
,有理数集
,正整数集 ,实数集
, 。
探究一:集合的概念及元素的特征
【探究案】
阅读教材第 2 页开始至第 3 页思考部分,回答以下问题:
1. 例( 1)到例( 8)中的各组对象分别是一些什么?有多少个对象?
3. 找出自己的疑惑和需要讨论的问题并记录下来,准备课上讨论质疑。
【学习目标】
1.初步理解集合的含义,知道常用数集及其记法 ., 初步了解“ ∈”关系的意义;
2. 通过实例 ,初步体会元素与集合的 ”属于 ”关系 ,从观察分析集合的元素入手 ,正确地理 解集合;
3. 观察关于集合的几组实例 ,并通过自己动手举出各种集合的例子 在描述客观现实和数学对象中的意义。
B,0.5
B, 0
B,
-1
B.
探究三:常用数集及其记法
阅读教材第 3 页,熟记常用的数集及其记号并填写下表:
数集名称 非负整数集 ( 自然数集 )
正整数集 整数集
有理数集 实数集
含义
记法
练习 3:用∈、与 填空. ① Q; ② 3 Z; ③ 3
R; ④ 0 N; ⑤ 0 N+;
2019-2020学年高中数学 1.1.1 集合的含义与表示导学案 新人教版必修1.doc

2019-2020学年高中数学 1.1.1 集合的含义与表示导学案新人教版必修1一、三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。
过程与方法:通过实例了解,体会元素与集合的属于关系。
情感态度与价值观:培养学生的应用意识。
二、学习重、难点:重点:掌握集合的基本概念。
难点:元素与集合的关系。
三、学法指导:认真阅读教材P1-P3,对照学习目标,完成导学案,适当总结。
四、知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合”这一词?(试举几例)五、学习过程:1、阅读教材P2页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子。
2、集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。
问题5:元素与集合之间的关系?A例1:设A表示“1----20以内的所有质数”组成的集合,则3、4与A的关系?问题6:常用数集及其记法:B 例2:若+∈N x ,则N x ∈,对吗?A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4;(5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉-,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3 B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。
1.1.1集合的含义与表示导学案

自主复习:
回顾一下我们在初中接触的集合。 1、有理数:整数和分数统称为有理数。 2、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 3、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
例 2:用描述法表示下列集合:
(1)小于 10 的所有有理数组成的集合; (2)所有偶数组成的集合
课前预习导读:
1、阅读课本第 2 页,并结合我们初中接触的集合回答本页的思考题。请用自己的话来描述 一下你对集合的理解。 2、阅读第三页前四段,回答下列问题: (1) “身材较高的人”不能构成集合,因为组成它的元素是不确定的。为什么说组成它的元 素是不确定的? (2)根据“只要构成这两个集合的元素是一样的,我们就称这两个集合是相等的。 ”回答由 1,2 组成的集合和由 2,1 组成的集合是否相等?由此你能得到什么结论? (3)回答本页的思考题。 3、你能举出几个集合的例子吗? 4、阅读课本第 3 ~ 5 页,回答下列问题:
知识总结:
1、集合的含义 2、元素与集合的关系
课堂自主导学: 例 1:用列举法表示下列集合:
(1)由大于 3 小于 10 的整数组成的集合; (2)方程 x 9 0 的解的集合。
2
1. 通过对具体实例, 了解集合的概念, 能用符号表示出元素与集合之间的关系。 2、能选择自然语言、图形语言、集合语言(列举法或描述法)描述具体的数学 问题,感受集合语言的意义和作用。 集合的概念和表示方法 运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
课后自主导学:
1、若{x 2 ,―1,2} = {2,―1,1},则 x = 。 2、已知集合 M = { x N | 8―x N},则 M 中元素的个数是( A、10 B、9 C、8 D、无数个 3、用适当的方法表示下列集合: (1)一年中四个季节组成的集合; (2)满足不等式 1 < 1 + 2x <19 的有理数组成的集合; (3)直角坐标系中纵坐标与横坐标相等的点的集合。 )
2019人教A版数学必修一1.1.1《集合的含义与表示》导学案

2019人教A版数学必修一1.1.1《集合的含义与表示》导学案一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.四. 学习流程(一)知识连线:1、一般地,我们把____________统称为元素,把________________________叫做集合。
2、集合中元素的特性:________、________、________。
3、只要________________________________,我们就称这两个集合是相等的。
4、元素与集合的关系有两种:________、________。
如果a是集合A的元素,就说________________,记作________。
.如果a不是集合A的元素,就说________________,记作___________。
5、集合的表示方法有:________、________、________。
7、下面两个集合中表示同一集合的是:()A、P={1,-5,3};Q={3,1,-5};B、P={1,3};Q={(1,3)};C、P={π};Q={3.14}; D 、P={2,3,5,7};Q={2,3,5,9};8、用符号“∈”或“ ”填空:(1)2__{2,3,5};(2)4__{x︱2x=9}(3) 若A={x∈N︱1≤x≤10},则5__A, 7.2__A,(4)若A={x︱1≤x≤10},则5__A, 7.2__A,9、选择适当方法表示下列集合:(1)二次函数y = 32-x 的函数值组成的集合; (2)大于1且小于8的整数(3)不等式230x ->的解集 (4)由方程082=-x 的所有实数根组成的集合(5)直线y=x+3与抛物线y=2x 的交点组成的集合(6)方程0)2(12=-+-y x 的解集(三)、知识提升:10已知集合A={x ∈R ︱a x ax ,0122=++∈R} 只有一个元素,则a 的值为______11、设集合A={2,3,322-+a a },已知5∈A ,求a 的值12、设集合A={a +2,2a ,332++a a },若1∈A ,求a 的值(四)、知识总结:1、本节课我们学习哪些知识?2、选择集合的表示法时应注意些什么?(五)、作业布置1.课本第12页习题1.1(A 组)第2、4题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学A 1.1集合导学案(一)
1.1.1集合的含义与表示
编者:刘玉明审核人:王建美使用时间:2014. 10.13
学习目标:
(1)学生初步理解集合的概念,知道常用数集的概念及其记法。
(2)学生初步了解元素与集合间“属于”、“不属于”关系的意义。
学习重点:集合的基本概念
学习过程
(一)新知预习(阅读课本2
1、集合的概念
(1)一般地,我们把统称为元素,把一些叫做集合。
练习1 下列各组对象能否构成一个集合并说明理由
(1)著名的数学家;
(2)某校高一(2)班所有高个子的同学;
(3)不超过10的非负数
(4) 5 的近似值的全体
练习2集合中元素的特征
(1);(2);(3)。
2、集合的表示
集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
3、元素与集合的关系
(1)属于:如果a是集合A的元素,就说,记作。
(2)不属于:如果a不是集合A的元素,就说,记作。
要注意“∈”的方向,不能把a∈A颠倒过来写.
练习3
(1)给出下面四个关系:
2∈R, 0.7∉Q, 0 ∈{0}, 0∉N,其中正确的个数有( )个A.4 B.3 C.2 D.1
(2)下面有四个命题:
①若-a ∈Ν,则a ∉Ν
②若a∈Ν,b ∈Ν,则a+b的最小值是2
③集合N中最小元素是1
④x2+4=4x的解集可表示为{2,2}.
其中正确命题的个数是( ) A.0 B.1 C.2 D.
4、常用数集及其表示方法
(1)非负整数集(自然数集):记作;(2)正整数集:记作;(3)整数集:记作;(4)有理数集:记作;(5)实数集:记作;(二)课堂小结
本节课学习了以下内容:
1.集合的有关概念;
2.集合元素的性质;
3.集合的表示
4集合与元素的关系及记法
5常用数集的定义及记法;。