实验十一-模拟信号光纤传输实验
光纤传输_实验报告

一、实验目的1. 了解光纤传输的基本原理和结构。
2. 掌握光纤传输系统的基本组成和功能。
3. 学习光纤传输的实验方法和测试技术。
4. 熟悉光纤传输中常见问题的解决方法。
二、实验原理光纤传输是一种利用光导纤维传输光信号的技术。
光导纤维由纤芯、包层和涂覆层组成,纤芯具有较高的折射率,包层折射率较低,通过全内反射原理实现光信号的传输。
光纤传输具有以下特点:1. 传输速率高:光纤传输速率可达数十吉比特/秒。
2. 传输距离远:光纤传输距离可达数公里至数十公里。
3. 抗干扰性强:光纤传输不受电磁干扰。
4. 保密性好:光纤传输不易被窃听。
三、实验仪器与设备1. 光纤传输实验装置2. 光源3. 光纤连接器4. 光功率计5. 光频谱分析仪6. 光时域反射计(OTDR)四、实验内容1. 光纤连接器测试2. 光纤传输系统测试3. 光功率测试4. 光频谱分析5. OTDR测试五、实验步骤1. 光纤连接器测试(1)将光纤连接器插入光源,调整光源输出功率。
(2)将光纤连接器插入光功率计,测量输出功率。
(3)比较实际输出功率与理论输出功率,分析误差原因。
2. 光纤传输系统测试(1)搭建光纤传输系统,包括光源、光纤、光功率计等。
(2)测量系统传输速率,记录测试数据。
(3)分析测试数据,评估系统性能。
3. 光功率测试(1)将光功率计插入光纤传输系统,测量系统输出功率。
(2)记录实际输出功率与理论输出功率,分析误差原因。
4. 光频谱分析(1)将光频谱分析仪连接到光纤传输系统。
(2)测量系统输出信号的频谱,记录测试数据。
(3)分析测试数据,了解系统频谱特性。
5. OTDR测试(1)将OTDR连接到光纤传输系统。
(2)测量系统传输损耗,记录测试数据。
(3)分析测试数据,评估系统传输损耗。
六、实验结果与分析1. 光纤连接器测试结果显示,实际输出功率与理论输出功率基本一致,误差在允许范围内。
2. 光纤传输系统测试结果显示,系统传输速率达到预期目标,系统性能良好。
光纤传输系统实验报告

光纤传输系统实验报告光纤传输系统实验报告引言:光纤传输系统是一种利用光信号传输信息的高速通信技术,被广泛应用于现代通信领域。
本实验旨在通过搭建光纤传输系统,探究其传输性能及优势,并对其在实际应用中的潜力进行评估。
一、实验目的本实验的主要目的是通过搭建光纤传输系统,测量其传输性能,并对比传统的电信号传输系统,评估光纤传输系统的优势。
二、实验原理光纤传输系统是利用光信号在光纤中传输信息的技术。
其基本原理是通过将电信号转换为光信号,并利用光纤的高速传输特性,将信号从发送端传输到接收端。
光纤传输系统主要由光源、调制器、光纤、接收器和解调器等组成。
三、实验步骤1. 搭建光纤传输系统:将光源、调制器、光纤、接收器和解调器依次连接起来,确保连接稳定可靠。
2. 测试传输性能:通过发送端发送一系列测试信号,利用接收端接收并解调信号,测量信号的传输速率、传输距离和误码率等指标。
3. 对比实验:同时进行一组传统电信号传输系统的测试,比较两者的传输性能差异。
四、实验结果与分析通过测试,我们得到了光纤传输系统的传输性能数据。
与传统电信号传输系统相比,光纤传输系统具有以下优势:1. 高速传输:光纤传输系统的传输速率远高于传统电信号传输系统,可以满足大容量数据传输的需求。
2. 长距离传输:光纤传输系统的传输距离较长,信号衰减较小,适用于远距离通信。
3. 低误码率:光纤传输系统的传输信号稳定可靠,误码率较低,适用于高质量通信。
4. 抗干扰能力强:光纤传输系统对电磁干扰和噪声的抗干扰能力较强,传输信号的稳定性更高。
五、实验结论通过本次实验,我们验证了光纤传输系统在传输性能方面的优势。
光纤传输系统具有高速传输、长距离传输、低误码率和抗干扰能力强等特点,适用于各种通信领域。
在未来的通信发展中,光纤传输系统将发挥更加重要的作用。
六、实验总结本次实验通过搭建光纤传输系统,深入了解了其原理和传输性能。
光纤传输系统作为一种高速、稳定的通信技术,为现代通信领域的发展提供了强大的支持。
光纤传输技术实验报告

光纤传输技术实验报告光纤传输技术实验报告引言:光纤传输技术作为一种高速、高容量的通信传输方式,已经在现代通信领域得到广泛应用。
本实验旨在探究光纤传输技术的工作原理、特点以及实际应用,并通过实验验证其性能。
一、光纤传输技术的工作原理光纤传输技术利用光的全反射特性,将光信号通过光纤进行传输。
光纤由纤芯和包层组成,纤芯是光信号传输的核心部分,而包层则用于保护纤芯。
当光信号从一段光纤进入另一段光纤时,会发生全反射现象,使得光信号能够沿着光纤传输。
二、光纤传输技术的特点1. 高速传输:光纤传输技术具有极高的传输速度,可以达到光速的70%以上,远远超过传统的电信号传输速度。
2. 高容量:由于光纤的纤芯可以传输多个波长的光信号,因此光纤传输技术具有很高的传输容量,可以满足大容量数据传输的需求。
3. 低损耗:光纤传输技术的传输损耗非常低,可以实现长距离的传输,而且不会受到电磁干扰的影响。
4. 抗干扰性强:由于光纤传输技术采用的是光信号传输,不受电磁场的干扰,因此具有很强的抗干扰性,可以在复杂的环境中稳定传输。
三、光纤传输技术的实际应用光纤传输技术已经广泛应用于各个领域,包括通信、医疗、工业等。
在通信领域,光纤传输技术被用于构建高速宽带网络,实现高清视频、大容量数据传输等。
在医疗领域,光纤传输技术被用于激光手术、内窥镜等医疗设备中,提高了手术的精确性和安全性。
在工业领域,光纤传输技术被用于工业自动化控制系统,实现对生产过程的监控和控制。
四、实验过程及结果本次实验中,我们使用了一段光纤,通过光源将光信号输入光纤,并通过光电探测器接收光信号。
实验中,我们改变了光源的功率和光纤长度,观察到了不同的传输效果。
实验结果显示,随着光源功率的增加,光信号在光纤中的传输距离也增加,传输效果更好。
而当光纤长度增加时,光信号的衰减也会增加,传输效果变差。
这表明光纤传输技术的传输距离和传输质量受到光源功率和光纤长度的影响。
五、实验结论通过本次实验,我们深入了解了光纤传输技术的工作原理、特点以及实际应用。
实验十一 光通讯试验报告

光通讯实验实验成员:蔡志骏物理0903班学号:U200910207张文杰物理0903班学号:U200910205 实验一LED光源I-P特性研究一、实验目的:1、了解LED光源的发光机理。
2、学习LED光源的光学特性和电学特性。
二、实验原理:LED即发光二极管是靠PN结附近的电子和空穴对的复合而进行自发辐射发光。
当给发光二极管的PN结加正向电压时,外加电场将消弱内建电场,使空间电荷区变窄,载流子的扩散运动加强,由于电子迁移率总是远大于空穴的迁移率,因此,电子由N区扩散到P区是载流子扩散运动的主体。
由半导体的能带理论可知,当导带中的电子与价带中的空穴复合时,电子由高能级跃迁到低能级,电子将多余的能量以发射光子的形式释放出来,产生电致发光现象。
这就是LED的发光机理。
三、实验仪器LED光源(中心波长850nm)光发射机光接收机光纤一根四、实验内容和步骤:1、取一起配套的光纤一根,将其中一段与LED光源的插座相连,另一端PIN探测器的插座相连。
2、接通电源,选择模拟通信方式。
光发射机和光接收机均选“光纤传输”。
光发射机显示窗上示值为相对偏置电流,单位为mA,光接收机显示窗上示值为光功率当量。
※注:偏置电流值与光功率当量均为相对值,与真实数值成线性关系,但并非真实数值,且一起不同可能示值稍有差别。
且由于光探测器有一直流偏置,既是没有光输入时光功率当量窗口仍有显示(164左右),数据处理时可将此数值减去。
3、调节光发射机的“输入”至“MIC”档位,调节“调制”至“DIM”档位。
4、调节光接收机的“模拟”至“DIM”档位(仅在此档位光功率计示值有效)。
5、调节光发射机上的偏置电流调节按键(上三角键和下三角键),送0开始逐渐加大驱动电流,观察接收机上光功率变化,至不明显为止。
6、选择实验起点,每次变化1mA,对应记下相应光功率当量。
7、将所得到的数据电流作为横坐标,光功率当量作为纵坐标,既得到类似下图所示的LED驱动电流I与光功率输出P的关系曲线。
光纤信号传输实验报告

光纤信号传输实验报告光纤信号传输实验报告引言:随着科技的不断进步,光纤通信作为一种高速、大容量、低损耗的传输方式,已经成为现代通信领域的重要组成部分。
本实验旨在通过搭建光纤传输系统,探究光纤信号传输的原理和性能。
一、实验目的本实验的主要目的有三点:1.了解光纤传输的基本原理和结构;2.掌握光纤传输系统的搭建和调试方法;3.研究光纤传输的性能指标,如传输距离、带宽等。
二、实验器材和原理1.实验器材:本实验所需的器材包括:光纤、光纤收发器、光源、光功率计、信号发生器等。
2.实验原理:光纤传输是利用光的全内反射原理,将信息通过光的折射和反射在光纤中传输的技术。
光纤由芯和包层组成,芯是光信号传输的主要通道,包层则用于保护和引导光信号。
光纤传输的基本原理是利用光的全内反射现象,当光线从光纤的一端入射时,当入射角小于临界角时,光线会发生全内反射,从而沿着光纤传输。
光纤传输的距离和传输质量受到多种因素的影响,如光纤的损耗、色散、衰减等。
三、实验步骤1.搭建光纤传输系统:首先,将光纤收发器分别连接到光源和光功率计上,然后将光纤的一端连接到光纤收发器的发射端,另一端连接到接收端。
接下来,将信号发生器连接到光源上,通过调节信号发生器的频率和幅度,产生不同的信号。
2.调试光纤传输系统:通过调节光源和光功率计之间的距离,观察光功率计的读数变化,确定最佳传输距离。
同时,通过调节信号发生器的参数,观察信号的传输质量,如是否出现失真、噪声等现象。
3.测量光纤传输性能:利用光功率计测量光纤传输系统的光功率损耗,通过改变传输距离和光纤的类型,比较不同条件下的光功率损耗情况。
此外,还可以利用频谱分析仪测量光纤传输的带宽,了解光纤传输系统的传输能力。
四、实验结果与分析通过实验,我们得到了以下结果:1.在调试光纤传输系统时,我们发现光功率计的读数随着光源和光功率计之间的距离增加而减小,当距离过远时,光功率计无法读取到信号,说明光纤传输存在传输距离限制。
光纤通信实验

实验地点:信息楼10314在实验过程中注意以下几点:1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。
2、光电器件是静电敏感器件,请不要用于触摸。
3、做完实验后请将光纤用相应的防尘帽罩住。
4、在使用信号连接导线时应捏住插头的头部进行插拔,切勿直接拽线。
5、不能带电进行信号连接导线的插拔!6、光纤器件属易损件,应轻拿轻放,插光纤的时候要先对准,用力要轻,切忌倾斜、用力过大或弯折。
7、实验完成后整理好设备、接线。
实验光接收机的动态范围及眼图观测一、实验目的1.了解光收端机动态范围的指标要求。
2.掌握光收端机眼图的观测方法。
二、实验内容1.了解光收端机眼图的观测方法。
2.用示波器观察眼图。
三、实验仪器1.光纤通信实验系统1台。
2.示波器1台。
3.万用表1部。
4.光纤跳线1根。
四、实验原理(一)动态范围在实际的光纤通信线路中,光接收机的输入光信号功率是固定不变的,当系统的中继距离较短时,光接收机的输入光功率就会增加。
一个新建的线路,由于新器件和系统设计时考虑的富余度也会使光接收机的输入光功率增加。
为了保证系统的正常工作,对输入信号光功率的增加必须限制在一定的范围内,因为信号功率增加到某一数值时将对接收机性能产生不良影响。
在模拟通信系统中,输入信号过大将使放大器超载,输出信号失真,降低信噪比。
在数字通信系统中,当输入信号功率增加到某一数值时,将使系统出现误码。
应该指出,在 数字通信系统中,放大器输出信号的失真在测试时应与模拟系统区别开来。
为了保证数字通信系统的误码特性,光接收机的输入光信号只能在某一定范围内变化, 光接收机这种能适应输入信号在一定范围内变化的能力称为光接收机的动态范围,它可以表 示为:D = 10lg —max(dB )min 式中,Pmax 是光接收机在不误码条件下能接收的最大信号平均光功率;Pmin 是光接收 机的灵敏度,即最小可接收光功率。
一般来说,要求光接收机的动态范围大一点较好,但如 果要求过大则会给设备的生产带来一些困难。
光纤传输实验报告(共8篇)

光纤传输实验报告(共8篇)
1. 实验目的
通过本次实验,我们的目的是了解光纤传输的基本原理、结构和特点,并熟悉光纤通信系统的构成,掌握光纤传输实验的基本操作和注意事项。
2. 实验器材和材料
主要器材有:激光器、偏振器、光纤发射机、光纤接收机、光功率计、光纤、电缆等。
主要材料有:测试记录表格、实验手册等。
3. 实验原理
光纤传输是指利用光纤作为信号传输中介的通信方式。
光纤是一种用玻璃、塑料、石英等物质制成的细长、柔韧可弯曲的导光体,通过对光的全内反射来实现信号的传输。
在光纤传输中,激光作为载荷被发射机转换成光信号,经过光纤的传播和干扰、衰减和扩散、噪声和失真等影响后,到达接收机进行解码并转换为电信号输出。
4. 实验步骤
(1)接通设备并拟定实验计划:先接通激光器、光纤发射机和光纤接收机等设备,确定实验计划和实验要求。
(2)调整偏振器和测试光功率:首先需要调整偏振器并测量测试光功率,确保光信号的输出和传输。
(3)连接光纤并测试网络质量:将光纤连接到发射机或接收机并测试网络质量,计算信号的传输速度和误码率等参数。
(4)记录数据并分析结果:将实验过程中的数据记录下来,并进行数据分析和统计,得出结论并进行总结。
5. 实验注意事项
(1)实验操作时需严格遵守操作规程和安全规范,避免任何不必要的事故和安全隐患。
(2)实验时需认真检查设备连接,确保连接正确和稳定,以免出现信号的传输失败和误差。
(3)实验过程中需注意环境干扰和噪声干扰,以免影响实验结果和数据测量的准确性。
(4)实验结束后需及时关闭设备并整理实验器材、材料、记录表格等,保持实验室的整洁和安全。
光纤传输实验报告

光纤传输实验报告光纤传输实验报告引言在现代科技的快速发展中,光纤传输技术成为了信息传输领域的重要组成部分。
光纤传输具有高速、大容量、低损耗等优势,被广泛应用于通信、数据传输、医疗设备等领域。
本实验旨在通过实际操作,验证光纤传输的原理和性能,并了解其在实际应用中的局限性。
实验一:光纤传输原理验证实验目的:验证光纤传输的原理,了解光纤的基本结构和工作原理。
实验步骤:1. 准备一根光纤,将其两端分别连接到光源和接收器。
2. 打开光源,观察接收器是否能够接收到光信号。
3. 通过改变光源的强度和频率,观察接收器对光信号的响应情况。
实验结果与分析:在实验中,我们观察到当光源工作时,接收器能够接收到光信号,并且随着光源强度和频率的变化,接收器对光信号的响应也相应变化。
这说明光纤传输是通过光信号的传输来实现的。
光信号在光纤中以全内反射的方式传播,通过光纤的折射和反射,实现信号的传输。
实验二:光纤传输性能测试实验目的:测试光纤传输的带宽、传输距离和传输速率。
实验步骤:1. 准备一根长度为100米的光纤,将其两端分别连接到光源和接收器。
2. 设置测试仪器,记录光纤传输的带宽、传输距离和传输速率。
3. 通过改变光源的强度和频率,观察带宽、传输距离和传输速率的变化情况。
实验结果与分析:在实验中,我们测试了光纤传输的带宽、传输距离和传输速率。
结果显示,光纤传输具有较大的带宽,能够支持高速数据传输。
传输距离方面,光纤传输的损耗较小,可以支持较长的传输距离。
传输速率方面,光纤传输速率高,能够满足大容量数据传输的需求。
实验三:光纤传输的局限性实验目的:了解光纤传输在实际应用中的局限性。
实验步骤:1. 将光纤连接到一个强光源和一个接收器。
2. 改变光纤的弯曲程度,观察光信号的传输情况。
3. 改变光纤连接的角度,观察光信号的传输情况。
实验结果与分析:在实验中,我们观察到当光纤被弯曲或连接角度改变时,光信号的传输会受到影响。
光纤传输需要保持较小的弯曲半径和恰当的连接角度,以确保光信号的传输质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信系统传输及性能测试实验
实验十一模拟信号光纤传输实验
一、实验目的
1、了解模拟信号光纤系统的通信原理
2、了解完整的模拟信号光纤通信系统的基本结构
二、实验内容
1、各种模拟信号LED模拟调制:三角波,正弦波,语音信号(外输入语音信号)
2、各种模拟信号LD模拟调制:三角波,正弦波,语音信号(外输入语音信号)
三、预备知识
1、列出你所知道的所有模拟信号的种类
四、实验仪器
1、ZY12OFCom13BG3型光纤通信原理实验箱1台
2、20MHz双踪模拟示波器1台
3、万用表1台
4、FC/PC-FC/PC单模光跳线1根
5、850nm光发端机和光收端机(可选)1套
6、ST/PC-ST/PC多模光跳线(可选)1根
7、音频线(可选)1根
8、外输入语音信号源(可选收音机,单放机,PC机等)1套
9、连接导线20根
五、实验原理
根据系统传输信号不同,光纤通信系统可分为模拟光纤通信系统和数字光纤通信系统。
由于发光二极管和半导体激光器的输出光功率(对激光器来说,是指阈值电流以上线性部分)基本上与注入电流成正比,而且电流的变化转换为光频调制呈线性,所以可以直接调制。
对于半导体激光器和发光二极管来说,具有简单、经济和容易实现等优点。
进行发光二极管及半导体激光器调制时采用的就是直接调制。
连续的模拟信号电流叠加在直流偏置电流上,适当地选择直流偏置电流的大小,可以减小光信号的非线性失真。
电路实现上,LED的模拟信号调制较为简单,利用其P-I的线性关系,可以直接利用电流放大电路进行调制,实验箱模拟信号调制电路如图11-3所示。
一般来说,半导体激光器很少用于模拟信号的直接调制,半导体激光器模拟调制要求光源线性度很高。
而且要求提高光接收机的信噪比比较高。
与发光二极管相比,半导体激光器的V-I线性区较小,直接进行模拟调制难度加大,采用图11-3调制电路,会产生非线性失真。
本实验通过完成各种不同模拟信号的LED光纤传输(如正弦波,三角波,外输入音乐信号),了解模拟信号的调制过程及调制系统组成。
模拟信号光纤通信系统组成如图11-2所示。
半导体激光器的模拟调制,直接利用图11-3所示电路进行调制,比较LED直接模拟调制与LD直接模拟调制的区别。
从调制信号的形式来看,光调制可分为模拟信号调制和数字信号调制。
模拟信号调制直接用连续的模拟信号(如话音、模拟图像信号等)对光源进行调制。
图11-1就是对发光二
极在LD 模拟信号调制实验中,采用预失真补偿电路对模拟信号波形进行失真补偿,观察补偿后的传输效果与补偿前的效果。
六、注意事项
1、光源,光跳线,光波分复用器,光功率计等光学器件的插头属易损件,应轻拿轻放,使用时切忌用力过大。
2、不可带电拔插光电器件,要拔插光电器件,须先关闭电源后进行。
七、实验步骤
A 、LD 模拟信号调制实验
图11-2 模拟信号光纤传输系统框图
I
P
图11-1 发光二极管模拟调制原理图
1、连接导线:模拟信号源模块T303与光发模块T111连接。
2、用FC-FC光纤跳线将1310nm光发端机(1310nmT)与1310nm光收端机(1310nmR)连接起来。
3、将拨码开关BM1、BM2和BM3分别拨到模拟、1310nm和1310nm档。
K121拨下。
4、接上交流电源线,先开交流开关,再开直流开关K01,K02,五个发光二极管全亮。
5、打开模拟信号源模块(K60)、光发模块(K10)的直流电源。
6、调节模拟信号源模块电位器W306,使TP303波形幅度为2V。
7、用万用表监控R110两端电压(红表笔插T103,黑表笔插T104),调节半导体激光器驱动电流(W112),使之小于25mA。
8、调节电位器W111,W112和W121,使得TP121处波形幅度为2V且无明显失真,用示波器观察TP111,TP112和TP121波形,观察模拟信号光纤传输调制过程。
9、根据实验三失真补偿步骤,观察经过失真补偿电路的模拟信号传输。
10、将T303换成T302(三角波)或T301(方波),观察各测试点波形效果。
11、拆除T111连接导线,用音频线将电脑语音输出端与实验箱外输入语音信号输入端(T252)连接,T253与T111连接,T121与T261连接,并使电脑播放音乐。
12、打开语音信号处理模块电源开关,调节音量(W261),判断光纤传输音乐信号效果(用示波器观察各测试点波形)。
13、依次关闭各直流电源、交流电源,拆除导线,拆除各光学器件,将实验箱放好。
八、实验报告
1、字迹工整,原理分析透彻
2、记录并画出各模拟信号的波形,对模拟信号光传输前后的波形进行比较。
3、简述模拟信号光纤传输过程;比较LD 与LED 模拟信号调制的效果。
4、对实验结果以及实验结果的分析正确
九、思考题
1、根据电路图,分析W111,W112,W121的作用,并用实验验证。
2、光纤传输系统能否传输数字信号,为什么?
3、分析和比较LD 模拟信号调制与LED 模拟信号调制的异同点,并指出优缺点。
TP111
TP112
TP121
图11-5 以正弦波为例TP111、TP112、TP1221波形。