离子交换法

合集下载

离子交换法方程式

离子交换法方程式

离子交换法方程式
(原创实用版)
目录
1.离子交换法的定义和原理
2.离子交换法的应用领域
3.离子交换法的方程式及其解析
正文
一、离子交换法的定义和原理
离子交换法是一种常用的物质分离和纯化方法,其基本原理是利用离子交换剂与待处理溶液中的离子进行交换,从而达到分离和纯化的目的。

离子交换剂通常是一种具有固定电荷和不同交换基团的高分子物质,它可以与溶液中的离子发生可逆的吸附和解吸附反应。

二、离子交换法的应用领域
离子交换法广泛应用于化学、生物学、环境科学等领域,主要用途包括:水处理、离子分离和浓缩、离子交换色谱、电镀废水处理等。

三、离子交换法的方程式及其解析
离子交换法的基本方程式如下:
R-H+ + Na+ → R-Na+ + H+
其中,R-H+ 代表待处理的阳离子,Na+ 代表交换剂上的可交换阳离子,R-Na+ 代表交换后的产物。

从方程式中可以看出,离子交换法的过程是一个动态平衡过程,其交换速度和交换效率受到多种因素的影响,如交换剂的物理和化学性质、溶液的 pH 值、反应时间等。

第1页共1页。

第九章 离子交换法

第九章 离子交换法
第九章
离子交换法
本章需要掌握的知识点

什么是离子交换? 离子交换树脂的分类?其主要的理化性质有哪些? 离子交换的机理是什么?

什么是离子交换的选择性?其选择性受哪些因素影
响?

基本的离子交换操作是怎样的?
如何利用离子交换法分离蛋白质?
§ 9.1 概述
离子交换的发展

十八世纪中期由Thompson所发现,后来J.Thomas Way全面研究。
稳定
稳定
需过量的强酸 很容易 快 慢(除非离子 化后)
需要过量的 再生容易,可用碳酸 强碱 钠或氨 快 慢(除非离子化后)

大孔离子交换树脂 大孔离子交换树脂具有和大孔吸附剂相同的骨架结构,
在大孔吸附剂合成后(加入致孔剂),再引入化学功能 基团,便可得到大孔离子交换树脂。
特点:

空隙大,抗有机物污染能力较强。

国内外离子交换树脂相应牌号对照
704 = 311×2 717 = 201×7 732 = 001×7
711 = 201×4
703 = D311 HD42 = 001 Amberlite IR系列 Zerolit 系列
§ 9.3 离子交换树脂的性质与测定

一、生物相容性 二、结构性能 三、理化性能
离子交换法概述

离子交换法是通过带电的溶质分子与离子交换剂中可
交换的离子进行交换而达到分离纯化的方法。该方法主要 依赖电荷间的相互作用,利用带电分子中的电荷的微小差 异而进行分离,具有较高的分离容量。

几乎所有的生物大分子都是极性的,都可使其带电, 所以离子交换法已广泛用于生物大分子的分离纯化技术。
3.交换容量

第八章离子交换法1

第八章离子交换法1
苯乙烯型离子交换树脂 单体:苯乙烯; 交联剂:二乙烯苯 酸性树脂引入磺酸基,碱性树脂引入季 铵,伯、 叔胺
丙烯酸-二乙烯苯羧基树脂 酚醛树脂
单体:水扬酸、苯酚、甲醛经缩聚而成 多乙烯多胺-环氧氯丙烷树脂
树脂类型
国内生产的树脂主要有:
苯乙烯—二乙烯苯型 丙烯酸—二乙烯苯型 酚醛型(水杨酸、苯酚、甲醛) 多乙烯多胺—环氧氯丙烷型
这类树脂适用于吸附交换无机离子等小离子。
大孔型树脂: 是由苯乙烯或丙烯酸与交联剂二乙烯苯的异 构体聚合,再经特殊的物理处理,使其形成大网 孔,再导入交换基团制成,它内部并存有微细孔 和大量的粗孔。 较善于吸附大分子有机物,耐有机物的污染。
三、其他类型的树脂
1、两性离子交换树脂
将两种性质相反的阴、阳离子交换官 能团连接在同一树脂骨架上,构成两 性树脂。
3、吸附树脂
吸附树脂(脱色树脂):
有较大表面积,具多孔性,吸附能力强; 但交换离子的能力很小,甚至不能交换; 多用于脱色、吸附大分子产物和除去蛋白质
等。
如:大网格树脂
4、电子交换树脂
不是进行离子交换而是电子转移; 能起氧化还原作用(又称氧化还原树
脂)。 按活性基团性质分,有两种类型:
离子交换树脂的合成
交联剂:二烯化合物(最常用的是二乙烯 苯),形成树脂的三元网状结构(不溶解 性能)。
交联度:合成时在单体相中所含二乙烯苯 含量。
分散剂:水溶性有机物—淀粉、明胶、聚 甲基丙烯酸、聚乙烯酸等;不溶或微溶于 水的无机物—硫酸钙、磷酸钙、滑石粉等。
几种主要的离子交换树脂制备方法
按聚合反应类型分:缩聚型、加聚型树脂等。
我国按活性离子来分类:强酸、弱酸、强 碱、弱碱、螯合、两性、氧化还原等7类。

离子交换法

离子交换法

离子交换法简介离子交换法是一种常用的分离和提纯离子的方法。

它利用固体材料中存在的离子交换树脂来与溶液中的离子进行交换,并实现离子的选择性分离和浓缩。

离子交换法具有操作简便、工艺灵活、效果好等优点,被广泛应用于水处理、制药、饮料工业等领域。

原理离子交换法基于离子的化学性质和固体材料的物理性质,通过离子交换树脂将固态材料与溶液中的离子进行交换。

离子交换树脂是一种具有特殊结构的聚合物,其表面带有一定的正负电荷。

当离子溶液通过离子交换树脂时,其中的离子会与树脂表面的离子发生电荷交换,使离子从溶液中被吸附到固体材料上。

离子交换树脂可以根据其具有的功能基团而分为阳离子交换树脂和阴离子交换树脂。

阳离子交换树脂具有负电荷,可吸附并固定阳离子,阴离子交换树脂具有正电荷,可吸附并固定阴离子。

在实际应用中,通常使用一定的工艺步骤和反应条件,调节离子交换树脂与溶液中离子之间的交换效率和选择性。

应用离子交换法在许多领域得到了广泛的应用。

水处理离子交换法在水处理中起着重要的作用。

水中的硬度主要由钙和镁离子引起,在水中存在一定量的钠、钾和氢离子。

使用针对特定离子的离子交换树脂,可以将水中的硬度离子与树脂上的钠、钾或氢离子进行交换,从而降低水中的硬度。

此外,离子交换法还可以去除水中的有害离子,如重金属离子、铵离子等。

制药在制药过程中,离子交换法常用于药物的纯化和提纯。

药物中常常存在各种离子杂质,通过选择性吸附这些离子杂质的离子交换树脂,可以有效地将其从溶液中去除,并得到纯净的药物。

饮料工业离子交换法在饮料工业中也发挥着重要作用。

饮料中常常存在着对人体健康有害的重金属离子和有机物。

通过使用离子交换树脂,可以去除饮料中的这些有害成分,提高饮料的质量和安全性。

实施步骤离子交换法的具体实施步骤如下:1.选择适当的离子交换树脂。

根据需要从阳离子交换树脂和阴离子交换树脂中选择合适的材料。

2.准备离子交换树脂。

将离子交换树脂按照要求进行预处理,如清洗、活化等。

离子交换法

离子交换法

离子交换法主要是基于一种合成的离子交换剂作为吸附剂,以吸附溶液中需要分离的离子。

生物工业中最常用的交换剂为离子交换树脂,广泛用于提取氨基酸、有机酸、抗生素等小分子生物制品。

在提取过程中,生物制品从发酵液中吸附在离子交换树脂上,然后在适宜的条件下用洗脱剂将吸附物从树脂上洗脱下来,达到分离、浓缩、提纯的目的。

离子交换法的特点是树脂无毒性且可反复再生使用,少用或不用有机溶剂,因而成本低,设备简单,操作方便。

目前已成为生物制品提纯分离的主要方法之一。

但离子交换法也有生产周期长,PH变化范围大,甚至影响成品质量等缺点。

此外,离子交换树脂法还广泛用于脱色、硬水软化及制备无盐水等。

图1 离子交换车间一、离子交换树脂及其分离原理离子交换树脂是一种具有网状立体结构、且不溶于酸、碱和有机溶剂的固体高分子化合物.离子交换树脂的单元结构由两部分组成。

一部分是不可移动且具有立体结构的网络骨架,另一部分是可移动的活性离子。

活性离子可在网络骨架和溶液间自由迁移,当树脂处在溶液中时,其上的活性离子可与溶液中的同性离子产生交换过程。

这种交换是等当量进行的。

如果树脂释放的是活性阳离子,它就能和溶液中的阳离子发生交换,称阳离子交换树脂;如果释放的是活性阴离子,它就能交换溶液中的阴离子,称阴离子交换树脂。

(一)离子交换树脂的分类离子交换树脂通常有4种分类方法,一是按树脂骨架的主要成分将树脂分为聚苯乙烯型树脂,聚丙烯酸型树脂、酚-醛型树脂等;二是按聚合的化学反应分为共聚型树脂和缩聚型树脂;三是按树脂骨架的物理结构分为凝胶型树脂(亦称微孔树脂)、大网络树脂(亦称大孔树脂)及均孔树脂。

由于活性基团的电离程度决定了树脂酸性或碱性的强弱,所以又将树脂分为强酸性、弱酸性阳离子交换树脂、强碱性、弱碱性阴离子交换树脂。

活性基团决定着树脂的主要交换性能。

强酸性阳离子交换树脂这类树脂的活性基团有磺酸基团(-SO3H)和次甲基磺酸基团(-CH2SO3H)。

离子交换法

离子交换法
带同种电荷的不同离子虽都可以结合到同一介 质上,但由于带电量不同,与介质的结合牢度 不同,改变洗脱条件可依次被洗脱而达到分离 的目的。
离子交换法概述

开始
-
-
+
-
-
+
-
-
离子交换层析原理

吸附
解 吸

剂 解吸

解吸结束

生 剂

再生
样 品
-
--+++-+++
-
+++++++
+++++++
++++++
RY + A+ → RA + Y+

从上面的反应式中可以看出,如果A离子与离子 交换剂的结合力强于Y离子,或者提高A离子的浓度, 或者通过改变其它一些条件,可以使A离子将Y离子 从离子交换剂上置换出来。也就是说,在一定条件 下,溶液中的某种离子基团可以把平衡离子置换出 来,并通过电荷基团结合到固定相上,而平衡离子 则进入流动相,这就是离子交换层析的基本置换反 应。
二、离子交换层析原理
离子交换法是通 过带电的溶质分 子与离子交换剂 中可交换的离子 进行交换而达到 分离纯化的方法。
离子交换法概述
离子交换层析原理
主要依赖电荷间的相互作用,利用带电分子中 电荷的微小差异而进行分离。
选择适当条件可使一些溶质分子变成离子态, 通过静电作用结合到离子交换剂上,而另一些 物质不能被交换,这两种物质就可被分离。

第四章离子交换法


离子交换树脂的结构 离子交换树脂是具有特殊网状结构的高分子化合物,由空间
网状结构骨架(即母体)和附着在骨架上的许多活性基团所构成。 活性基团遇水电离,分成:固定部分和活动部分
2020/7/9/00:29:39
5
树脂的网络骨架
2020/7/9/00:29:38
6
2.2离子交换树脂的分类 一般按树脂所带功能团的性质不同分为阳离子交换树
2020/7/9/00:29:38
1
离子交换法的应用: (1)从贫液中富集和回收有价金属:贵金属和稀有金属; (2)提纯化合物和分离性质相似的元素:稀土分离; (3)处理某些工厂的废水; (4)生产软化水。
2020/7/9/00:29:38
2
第二节 离子交换树脂及其性能
2.1离子交换树脂的结构
(1)高分子部分:聚苯乙烯或聚丙烯酸酯等。连接树脂 的功能团的作用。
柱上离子交换分为运动树脂床和固定树脂床。
交换柱内离子交换过程:B A B A
柱上中层为交换层。
2020/7/9/00:29:39
28
漏穿容量 (V V1 )C mol / L
废水中只有一种离子B+
V2
V 至漏穿时流过的料液体积;V1 树脂床的空隙体积;
进水(C0)
C V2 树脂床的体积;C 料液中金属离子浓度。
(c V)Na OH 交换容量=
(c
V)
HCl
100 25
m 树脂(g)
100
0.1100 0.112.5
25 5(mmol.g 1 )
1
阳离子交换树脂: 交换容量= c V NaOH NaOH c HCl VHCl
干树脂质量 (g)

离子交换法

离子交换法离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。

常见的两种离子交换方法分别是硬水软化和去离子法。

硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。

软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。

离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。

同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。

从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。

阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。

也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。

不论是那一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。

再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。

若将离子交换法与其他纯化水质方法(例如反渗透法、过滤法和活性碳吸附法)组合应用时,则离子交换法在整个纯化系统中,将扮演非常重要的一个部分。

离子交换法能有效的去除离子,却无法有效的去除大部分的有机物或微生物。

而微生物可附着在树脂上,并以树脂作为培养基,使得微生物可快速生长并产生热源。

因此,需配合其他的纯化方法设计使用。

活性碳吸附法有机物可能是阳离子、阴离子或非离子性的物质,离子交换树脂可去除原水中一些可溶性的有机酸和有机碱(阴离子和阳离子),但有些非离子性的有机物却会被树脂包覆,这过程称为树脂的“污染阻塞”现象,不但会减少树脂的寿命,而且降低其交换能力。

为保护离子交换树脂,可将活性碳过滤器安装在离子交换树脂之前,以去除非离子性的有机物。

离子交换法和反渗透

离子交换法和反渗透离子交换法和反渗透是两种常见的水处理技术,用于去除水中的杂质和提高水质。

本文将分别介绍离子交换法和反渗透的原理、应用和优缺点。

一、离子交换法离子交换法是一种通过固液相之间离子交换的方法来实现水处理的技术。

其原理是利用具有交换性能的固体材料,将水中的离子与固体材料上的离子进行交换,从而去除水中的杂质。

离子交换法主要通过离子交换树脂来实现。

离子交换树脂是一种高分子化合物,具有很强的离子交换能力。

当水流经过离子交换树脂时,树脂上的离子与水中的离子发生交换,从而实现水质的净化。

离子交换法广泛应用于水处理领域。

例如,它可以用于软化水、去除重金属离子、去除放射性物质等。

离子交换法可以有效地去除水中的硬度离子,使水质变软,减少水垢的形成。

此外,离子交换法还可以去除水中的有害物质,提高水质。

离子交换法有一些优点和缺点。

其优点是操作简单、效果好、处理效率高。

离子交换法可以去除水中的杂质,改善水质,使水变得更加清洁。

然而,离子交换法也存在一些缺点,例如成本较高、耗能较多、产生废水等问题。

二、反渗透反渗透是一种利用半透膜来实现水处理的技术。

其原理是通过施加一定的压力,将水通过半透膜,从而去除水中的溶质和杂质。

反渗透主要通过反渗透膜来实现。

反渗透膜是一种具有特殊结构的薄膜,可以选择性地让水分子通过,而阻止溶质和杂质的通过。

当水流经过反渗透膜时,溶质和杂质被滞留在膜的一侧,而纯净水则通过膜的另一侧。

反渗透广泛应用于饮用水处理、工业废水处理等领域。

例如,它可以用于去除水中的盐分、有机物、细菌等。

反渗透可以有效地提高水质,得到符合饮用水标准的纯净水。

反渗透技术有一些优点和缺点。

其优点是处理效果好、水质高、操作简单。

反渗透可以彻底去除水中的溶质和杂质,获得纯净水。

然而,反渗透也存在一些缺点,例如设备成本高、能耗较大、产水量较低等问题。

离子交换法和反渗透是常见的水处理技术,可以有效地去除水中的杂质和提高水质。

离子交换法通过离子交换树脂实现,适用于软化水、去除重金属离子等应用。

离子交换法

离子交换法
离子交换法是吸附过程的一种特殊过程,离子交换法是通过向水中添加一种含正电荷或负电荷的化学物质并将其替换成另一种带电的化合物来清除水中有害物质的一种水处理技术。

一般而言,这种技术需要吸附和离子交换同时发生。

本质上,这种技术是由于离子交换效应而能够进行的污水处理过程。

它的原理是将有机污染物的负荷取代成水性溶质,这些水性溶质与水中的质子或氧离子结合,从而将有机污染物通过和水互换的方式从水中移除,从而达到净水的效果。

离子交换也可以对水中的有害离子进行去除,可以利用离子交换法去除水中的有害离子,比如氯离子、镁离子、硫酸根离子等。

此外,为了提高水质,改善水形,在离子交换处理过程中,可以使用添加剂来改变水的质量,改变离子的类型,从而达到良好的污染物去除效果。

离子交换法具有良好的选择性,可以把有害离子由水中分离,从而达到净化水质的效果。

离子交换是目前应用最广的污水处理技术之一,它的使用可以彻底去除水中的小分子有机物和颜料,也可以去除水中的有害离子,从而达到水质净化的目的。

离子交换技术采用了前期准备技术,可以提高净化效率,降低出水水质和能耗,从而大大提高离子交换法的净化效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子交换法
Ion exchange
Ion exchange
借用离子交换剂作为载体,以阳离子形式引入 活性组分,可制备高分散、大表面、均匀分布 的负载型金属或金属离子催化剂。
活性组分分散度高,活性、选择性高。尤其适 用于贵金属催化剂,小到0.3-4.0nm的金属粒子 直径可以均匀地分布在载体上。
例:X或Y型分子筛中Na+的交换,六元环孔径 为0.22~0.24nm,La3+离子半径为0.102nm, La3+水合半径为0.396nm,80oC以上La3+可交 换到和六方柱笼
沸石分子筛的离子交换
溶液pH值:取决于沸石对酸的稳定性, 高硅沸石(ZSM-5, 丝光沸石)较好,低 硅沸石(A, X)较差。
硅酸铝的表面羟基间的距离、阳离子浓度等与 焙烧温度密切相关,故硅酸铝表面阳离子交换 性质也因焙烧温度的不同而异。
SiO2·Al2O3表面上的离子交换
SiO2·Al2O3中的H+酸中心,与SiO2不同,金属离 子和金属铵络合物等阳离子不能与该H+酸中心直 接进行离子交换。预先把焙烧的SiO2·Al2O3用氨 水离子交换(如0.1mol/L),成为NH4+型,由 NH4+/ SiO2·Al2O3与阳离子进行交换
SIII
X
16 32 38
Y
16 32 8
SI—16个位置,六柱笼 SII—32个位置,β笼中六元环附近 SIII—48个位置, β笼中四元环附近
沸石分子筛
丝光沸石(M分子筛) 正交晶系,a=1.813nm
b=2.049nm, c=0.752nm 不仅含有四元环、六元环及
八元环,还有许多五元环 五元环成对并联(a),成对五
孔径0.5nm 3A: 4A中1/3的Na+(0.95Å)被K+ (1.33Å)
所交换,孔径0.3nm
沸石分子筛
X,Y型分子筛 Mp/n[(AlO2)p(SiO2)192-p]∙yH2O 13X:NaX; 10X:13X 中部分Na+被Ca2+所取代 Na+的位置
分子筛 SI
SII
焙烧过程:多次交换和焙烧可以提高交 换度(如催化裂化用稀土Y沸石)。
沸石分子筛的离子交换
交换后沸石的性能发生变化 吸附性(吸附速度、吸附选择性、吸附容量) 阳离子交换导致晶孔发生变化,吸附质扩散受
到影响 阳离子半径大小影响到分子筛中电场的均匀性
沸石分子筛的离子交换
交换后沸石的性能发生变化: 热稳定性和水热稳定性(与硅铝比、阳离子种类有
1000oC左右焙烧结构基本不破坏
沸石分子筛的离子交换
当沸石分子筛与某些金属盐的(水)溶液接 触时,溶液中的金属阳离子可和沸石上 的阳离子(Na+)进行可逆的交换反应, 一般可表示为: A+Z-+B+=B+Z-+A+
沸石分子筛的离子交换
概念 交换度:交换下来的Na+离子占沸石中Na+总量的百
离子交换剂包括无机离子交换剂和离子交换树 脂两大类
沸石分子筛
沸石分子筛是完整结晶的硅铝酸盐,是由基本单元硅 氧四面体(SiO4)和铝氧四面体(AlO4)-形成的立体网络结 构,其中含有用来中和负离子的阳离子(通常为Na+) Mn+·[(Al2O3)p·(SiO2)q]·wH2O M 是n价碱金属、碱土金属阳离子,特别是钠离子。p, q, w分别是氧化硅、氧化铝、结晶水的分子数。
与阳离子交换型的SiO2交换,所以必须使用铵盐配合物 盐离子在高pH区域进行。 浸渍法得到的金属催化剂分散度较差,粒径取决于载体 微孔径的大小。离子交换法的粒径一定,负载量与金属 表面积成正比,而且通过还原前在空气中的焙烧温度可 控制粒径大小。Biblioteka iO2·Al2O3表面上的离子交换
硅酸铝表面具有可交换的阳离子H+,可以利用 其它阳离子进行交换以制备不同金属阳离子的 负载型催化剂
例如:用Ni(NO3)2交换得到的Ni2+/ SiO2·Al2O3在 300oC下用H2还原可得到高分散度的催化剂,几 乎全部呈原子状态
SiO2·Al2O3表面上的离子交换
++ HH OO
SA reduction
NH4+ NH4+
OO SA
O
SA
M2+ OO
SA
通过改变这些参数和分子筛晶胞内四面体的排列组合 (链状、层状、多面体等)可以衍生各种类型分子筛
沸石分子筛
A型分子筛 Na12[(AlO2)12(SiO2)12]∙27H2O β笼,一个晶胞,含12 Na+,8个分布于六元环
上,4个位于6个八元环中的三个上 4A:NaA,孔径0.4nm 5A:4A中1/3的Na+被Ca2+ (0.99Å)所交换,
交换离子类型、大小、电荷 金属阳离子的选择性顺序 X型Ag+>Tl+>Cs+>K+>Li+; Y型上Tl+>Ag+>Cs+>Rb+>NH4+>K+>Li+ 稀土金属离子在X型和Y型上的交换顺序为:
La3+>Ce3+>Pr3+>Nd3+>Sm3+
沸石分子筛的离子交换
交换温度:较高的温度可以保证交换度较高, 多在60-100℃
沸石分子筛的离子交换
影响交换过程的因素 沸石结构中,不同位置的钠离子能量不
同、空间位阻不同,交换速度受到扩散 速度控制
沸石分子筛的离子交换
离子交换速度和程度的影响因素 交换离子类型、大小、电荷,交换温度,
交换液浓度,pH值,阴离子性质,沸石 结构特性,SiO2/Al2O3比等。
沸石分子筛的离子交换
元环通过氧桥与另一成对的 五元环相连(b),进一步相连 构成八元环和十二元环(c)
(a)
(b)
(c)
沸石分子筛
丝光沸石(M分子筛) 层状结构,层间以适当方式相连 主孔道:十二元环组成的直筒孔道,0.696*0.581nm,
主孔道之间通过约0.39nm的孔道相通 Na8[(AlO2)8(SiO2)40]∙24H2O 4个Na+位于主孔道四周的八元环的孔道中,另4个Na+
分数 交换容量:每100克沸石中交换的阳离子毫克当量数 残钠量:沸石中未被交换的氧化钠的重量百分数 交换效率(交换率):溶液中阳离子的利用率
沸石分子筛的离子交换
离子交换平衡常数,选择度系数—K A+Z-+B+=B+Z-+A+
沸石分子筛的离子交换
离子交换的方法 水溶液离子交换 熔盐离子交换 蒸气离子交换
关)——一般多价阳离子有利 表面酸性 催化活性(因阳离子、交换度而异) 催化活性中心理论
固体酸催化理论 静电场理论:高价阳离子在分子筛中分布不对称
SiO2表面上的离子交换
SiO2的表面羟基具有酸性,具有阳离子交换能力。 水溶液pH越高,阳离子交换量增加。阳离子吸附力的次
序为: Fe3+,Fe2+,Cu2+,Ni2+,Co2+ 负载贵金属时,使用的原料氯化物络盐为阴离子,不能
位置不固定
沸石分子筛
ZSM-5分子筛 ZSM(Zeolite Socony Mobil) 是美国Mobil公司研发成
功 ~0.9M2/n∙Al2O3∙(5~100)SiO2∙(0~40)H2O,M为Na+和
有机铵离子 斜方晶系,a=2.01nm,b=1.99nm,c=1.34nm 具有增水性,耐酸、耐热性及耐水蒸气稳定性好,
相关文档
最新文档