三角函数恒等变换练习题与答案详解
三角函数与三角恒等变换(附答案)

三角函数与三角恒等变换(A)一、 填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1. 半径是r ,圆心角是α(弧度)的扇形的面积为________. 2.若sin(3)απ+=,则tan(π+α)=________.3. 若α是第四象限的角,则π-α是第________象限的角.4. 适合52sin 23m xm-=-的实数m 的取值范围是_________.5. 若tan α=3,则cos2α+3sin 2α=__________. 6. 函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象的一个对称轴方程是___________.(答案不唯一)7. 把函数4cos 13y x π⎛⎫=++ ⎪⎝⎭的图象向左平移ϕ个单位,所得的图象对应的函数为偶函数,则ϕ的最小正值为___________.8. 若方程sin 2x +cos x +k =0有解,则常数k 的取值范围是__________.…9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________.10. 角α的终边过点(4,3),角β的终边过点(-7,1),则si n (α+β)=__________.11. 函数2cos 152sin 5x y x ππ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭的递减区间是___________. 12. 已知函数f (x )是以4为周期的奇函数,且f (-1)=1,那么sin(5)2f ππ⎡⎤+=⎢⎥⎣⎦__________. 13. 若函数y =sin(x +ϕ)+cos(x +ϕ)是偶函数,则满足条件的ϕ为_______. 14. tan3、tan4、tan5的大小顺序是________.二、 解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知3tan 4θ=-,求22sin cos cos θθθ+-的值.—16. (本小题满分14分)已知函数f (x )=2si nx (si nx +c os x ). (1) 求函数f (x )的最小正周期和最大值;(2) 在给出的直角坐标系中,画出函数y =f (x )在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象.17. (本小题满分14分)求函数y =4si n 2x +6c os x -6(233x ππ-≤≤)的值域.\18. (本小题满分16分)已知函数()sin()(0,0)y f x A x ωϕωϕπ==+><<的图象如图所示.(1) 求该函数的解析式; (2) 求该函数的单调递增区间./19. (本小题满分16分)设函数2()4sin sin cos 242x f x x x π⎛⎫=++ ⎪⎝⎭(x ∈R ).(1) 求函数f (x )的值域; (2) 若对任意x ∈2,63ππ⎡⎤⎢⎥⎣⎦,都有|f (x )-m |<2成立,求实数m 的取值范围.20. (本小题满分16分)已知奇函数f (x )的定义域为实数集,且f (x )在[0,+∞)上是增函数.当02πθ≤≤时,是否存在这样的实数m ,使2(42cos )(2sin 2)(0)f m m f f θθ--+>对所有的0,2πθ⎡⎤∈⎢⎥⎣⎦均成立若存在,求出所有适合条件的实数m ;若不存在,请说明理由. 、第五章三角函数与三角恒等变换(B)一、 填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上)cos 225+tan240+sin(-300)=︒︒︒.tan 20tan 4020tan 40︒+︒︒︒=.3. 已知tan 2x =-,则2222sin 3cos 3sin cos x xx x+-的值为_________.4. 已知34παβ+=,则(1tan )(1tan )αβ--=________.5. 将函数y =sin2x 的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是________.~6. 已知函数)0)(2sin(παα≤≤+=x y 是R 上的偶函数,则ϕ=__________.7. 函数12log sin 24y x π⎛⎫=+ ⎪⎝⎭的单调递减区间为________.8. 已知函数sin y x x =+,且,6x ππ⎡⎤∈⎢⎥⎣⎦,则函数的值域是_________.9. 若3sin cos 0θθ-=,则21cos sin 22θθ+的值是___________.10. 已知,αβ都是锐角,且54sin ,cos()135ααβ=+=-,则sin β的值是_________. 11. 给出下列四个命题,其中不正确命题的序号是_______. ① 若cos cos αβ=,则2k αβπ-=,k ∈Z ;② 函数2cos 23y x π⎛⎫=+ ⎪⎝⎭的图象关于12x π=对称;③ 函数cos(sin )y x = (x ∈R )为偶函数;④ 函数y =sin|x |是周期函数,且周期为2π.>12. 已知函数()cos()f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则f (0)=_________.13. 若0,,(0,)4παβπ⎛⎫∈∈ ⎪⎝⎭,且11tan(),tan 27αββ-==-,则2αβ-=______.14. 已知函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭(x ∈R ,ω>0)的最小正周期为π.将y =f (x )的图象向左平移(0)ϕϕ>个单位长度,所得图象关于y 轴对称,则ϕ的最小值是______.二、 解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)如图是表示电流强度I 与时间t 的关系sin()(0,0)I A t ωϕωϕπ=+><<在一个周期内的图象.(1) 写出sin()IA t ωϕ=+的解析式;(2) 指出它的图象是由I =si nt 的图象经过怎样的变换而得到的.[16. (本小题满分14分)化简sin6sin 42sin66sin78︒︒︒︒.·17. (本小题满分14分)已知函数y =sin x ·cos x +sin x +cos x ,求y 的最大值、最小值及取得最大值、最小值时x 的值.18. (本小题满分16分)设02πθ<<,曲线22sin sin 1xy θθ+=和22cos sin 1x y θθ-=有4个不同的交点. (1) 求θ的取值范围;(2) 证明这4个交点共圆,并求圆的半径的取值范围.19. (本小题满分16分)函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a ),a ∈R .:(1) 求g (a )的表达式; (2) 若g (a )=12,求a 及此时f (x )的最大值.20. (本小题满分16分)已知定义在区间,2ππ⎡⎤-⎢⎥⎣⎦上的函数y =f (x )的图象关于直线4x π=对称,当x ≥4π时,函数f (x )=sin x . (1) 求,24f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值; (2) 求y =f (x )的函数表达式;(3) 如果关于x 的方程f (x )=a 有解,那么在a 取某一确定值时,将方程所求得的所有解的和记为M a ,求M a 的所有可能取值及相对应的a 的取值范围.—、第五章三角函数与三角恒等变换(A )1.212r α 2. 3. 三 4.10,2⎡⎤⎢⎥⎣⎦5.19106. x =8π【解析】对称轴方程满足2x +4π=k π+2π,所以x =28k ππ+(k ∈Z ).…7.23π8.5,14⎡⎤-⎢⎥⎣⎦9.1516【解析】∵ sin10°·sin30°·sin50°·sin70°=sin 20sin 30sin 50cos 202cos10︒︒︒︒︒ =sin 40sin 30cos 40sin80sin 301,4cos108cos1016︒︒︒︒︒==︒︒∴ 原式=1-115.1616=10. 11.732,2,55k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z 12. -1 【解析】f (5)=-f (-5)=-f (-1)=-1,∴ 原式=sin 2π⎛⎫-⎪⎝⎭=-1. 13.ϕ=k π+4π(k ∈Z ) 14. tan5<tan3<tan415. 2+sinθcosθ-cos2θ=2+2222sin cos cos tan12sin cos tan1θθθθθθθ--=+++=312242.925116--+=+16. (1)f(x)=2sin2x+2sin xc os x=1-c os2x+sin2x=1+2(sin2x cos4π-cos2x sin4π)=1+2sin(2x-4π).`所以函数f(x)的最小正周期为π,最大值为1+2.(2)列表.x38π-8π-8π38π58π24xπ-π-?2π-02ππy112-112+1 >故函数y=f(x)在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象是?17. y=4sin2x+6cos x-6=4(1-cos2x)+6cos x-6 =-4cos2x+6cos x-2=-4231cos.44x⎛⎫-+⎪⎝⎭∵-3π≤x≤23π,∴-12≤cos x≤1,∴ y ∈16,4⎡⎤-⎢⎥⎣⎦. 18. (1) 由图象可知:T =2388ππ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦=π⇒ω=2T π=2.A =2(2)2--=2,∴ y =2sin (2x +ϕ). 又∵,28π⎛⎫-⎪⎝⎭为“五点画法”中的第二点,∴ 2×8π⎛⎫- ⎪⎝⎭+ϕ=2π⇒ϕ=34π.∴ 所求函数的解析式为y =2sin 32.4x π⎛⎫+⎪⎝⎭(2) ∵ 当2x +34π∈2,222k k ππππ⎡⎤-++⎢⎥⎣⎦(k ∈Z )时,f (x )单调递增, ∴ 2x ∈52,244k k ππππ⎡⎤-+-+⇒⎢⎥⎣⎦x ∈5,88k k ππππ⎡⎤-+-+⎢⎥⎣⎦(k ∈Z ). [19. (1) f (x )=4sin x ·1cos 22x π⎛⎫-+ ⎪⎝⎭+cos2x =2sin x (1+sin x )+1-2sin 2x =2sin x +1.∵ x ∈R ,∴ sin x ∈[-1,1],故f (x )的值域是[-1,3]. (2) 当x ∈2,63ππ⎡⎤⎢⎥⎣⎦时,sin x ∈1,12⎡⎤⎢⎥⎣⎦,∴ f (x )∈[2,3]. 由|f (x )-m |<2⇒-2<f (x )-m <2,∴ f (x )-2<m <f (x )+2恒成立. ∴ m <[f (x )+2]min =4,且m >[f (x )-2]max =1. 故m 的取值范围是(1,4).20. 因为f (x )为奇函数,所以f (-x )=-f (x )(x ∈R ),所以f (0)=0.所以f (4m -2m cosθ)-f (2sin 2θ+2)>0,所以f (4m -2m cos θ)>f (2sin 2θ+2).又因为f (x )在[0,+∞)上是增函数,且f (x )是奇函数, 所以f (x )是R 上的增函数,所以4m -2m cos θ>2sin 2θ+2. 所以cos 2θ-m cos θ+2m -2>0. 因为θ∈0,2π⎡⎤⎢⎥⎣⎦,所以cos θ∈[0,1].;令l =cos θ(l ∈[0,1]). 满足条件的m 应使不等式l 2-ml +2m -2>0对任意l ∈[0,1]均成立. 设g (l )=l 2-ml +2m -2=22m l ⎛⎫- ⎪⎝⎭-24m +2m -2.由条件得01,0,1,2220,(0)0,(1)0.2m m m m g g g ⎧≤≤⎧⎧⎪<>⎪⎪⎪⎨⎨⎨⎛⎫⎪⎪⎪>>>⎩⎩ ⎪⎪⎝⎭⎩或或 解得,m >4-.第五章三角函数与三角恒等变换(B )3.711【解析】原式=2222tan 3(2)37.3tan 13(2)111x x +-+==--- 4. 2 5. y =2c os 2x 6.2π7.,88k k ππππ⎛⎫-+⎪⎝⎭(k ∈Z ) 【解析】∵ sin 24x π⎛⎫+⎪⎝⎭>0,且y =12log t 是减函数, ∴ 2k π<2x +4π≤2π+2k π,(k ∈Z ),∴ x ∈,88k k ππππ⎛⎤-+ ⎥⎝⎦(k ∈Z ).~8.2⎡⎤⎣⎦ 【解析】y =sin xx =2sin 3x π⎛⎫+ ⎪⎝⎭,又2π≤x +3π≤4,3π∴ sin 3x π⎛⎫+ ⎪⎝⎭∈⎡⎤⎢⎥⎣⎦,∴ y2]. 9. 65【解析】tan θ=13,∴ cos 2θ+12sin2θ=2222cos sin cos 1tan 6.sin cos tan 15θθθθθθθ++==++10.5665【解析】由题意得cos α=1213,sin (α+β)=35.∴ sin β=sin [(α+β)-α]=sin (α+β)·cos α-cos (α+β)·sin α=5665.11. ①②④ 12. 2313.34π-【解析】tan α=tan (α-β+β)=11127113127-=+⨯,∴ tan (2α-β)=tan [(α-β)+α]=1123111123+=-⨯.∵ β∈(0,π),且tan β=-17∈(-1,0),∴ β∈3,4ππ⎛⎫⎪⎝⎭,∴ 2α-β∈,,4ππ⎛⎫--⎪⎝⎭∴ 2α-β=-34π.14.8π【解析】由已知,周期为π=2πω,∴ ω=2.则结合平移公式和诱导公式可知平移后是偶函数,sin()24x πϕ⎡⎤++⎢⎥⎣⎦=±cos2x ,故ϕmin=8π.15. (1) I =300sin 1003t ππ⎛⎫+⎪⎝⎭. (2) I =sin t 3π−−−−→向左平移个单位I =sin 3t ππ⎛⎫+−−−−−−−−→ ⎪⎝⎭纵坐标不变1横坐标变为原来的倍100 I =sin 1003t ππ⎛⎫+ ⎪⎝⎭−−−−−−−→横坐标不变纵坐标变为原来的300倍I =300sin 1003t ππ⎛⎫+ ⎪⎝⎭. #16. 原式=sin6°·c os48°·c os24°·c os12°=cos6sin 6cos12cos 24cos 48cos6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=…=1sin 96116.cos616︒=︒17. 令sin x +cos x =t .由sin x +cos x sin 4x π⎛⎫+ ⎪⎝⎭,知t ∈],∴ sin x ·cos x=212t -,t ].所以y =212t -+t =12(t +1)2-1,t ].当t =-1,即2sin 4x π⎛⎫+⎪⎝⎭=-1,x =2k π+π或x =2k π+32π(k ∈Z )时,y min =-1;当tsin 4x π⎛⎫+ ⎪⎝⎭, x =2k π+4π(k ∈Z )时,y max =12+ 18. (1) 解方程组222222sin cos 1,sin cos ,sin cos 1,cos sin .x y x x y y θθθθθθθθ⎧⎧+==+⎪⎪⎨⎨-==-⎪⎪⎩⎩得 故两条已知曲线有四个不同的交点的充要条件为sin cos 0,cos sin 0.θθθθ+>⎧⎨->⎩∵ 0<θ<2π,∴ 0<θ<4π.(2) 设四个交点的坐标为(x i ,y i )(i =1,2,3,4),则2i x +2i y =2cos θ,2)(i =1,2,3,4).故此四个交点共圆,并且这个圆的半径r .19. f (x )=1-2a -2a cos x -2sin 2x =1-2a -2ac os x -2(1-cos 2x )=2cos 2x -2a cos x -1-2a =22cos 2a x ⎛⎫- ⎪⎝⎭-1-2a -22a (a ∈R ).(1) 函数f (x )的最小值为g (a ).① 当2a <-1,即a <-2时,由cos x =-1,得g (a )=2212a ⎛⎫-- ⎪⎝⎭-1-2a -22a =1;② 当-1≤2a ≤1,即-2≤a ≤2时,由cos x =2a,得g (a )=-1-2a -22a ;③ 当2a >1,即a >2时,由cos x =1,得g (a )=2212a ⎛⎫- ⎪⎝⎭-1-2a -22a =1-4a .综上所述,21(2),()12(22),214(2).aag a a aa a<-⎧⎪⎪=----≤≤⎨⎪->⎪⎩(2)∵ g(a)=12,∴-2≤a≤2,∴-1-2a-22a=12,得a2+4a+3=0,∴a=-1或a=-3(舍).将a=-1代入f(x)=22cos2ax⎛⎫-⎪⎝⎭-1-2a-22a,得f(x)=221cos2x⎛⎫+⎪⎝⎭+12.∴当c os x=1,即x=2kπ(k∈Z)时,f(x)max=5.20. (1)f2π⎛⎫- ⎪⎝⎭=f(π)=sinπ=0,f4π⎛⎫- ⎪⎝⎭=f34π⎛⎫⎪⎝⎭=sin34π=2.(2)当-2π≤x<4π时,f(x)=f2xπ⎛⎫-⎪⎝⎭=sin2xπ⎛⎫-⎪⎝⎭=c os x.∴f(x)=sin,,,4cos,,.24x xx xππππ⎧⎡⎤∈⎪⎢⎥⎪⎣⎦⎨⎡⎫⎪∈-⎪⎢⎪⎣⎭⎩(3)作函数f(x)的图象(如图),显然,若f(x)=a有解,则a∈[0,1].①当0≤a<22时,f(x)=a有两解,且1224x xπ+=,∴x1+x2=2π,∴M a=2π;②当a=22时,f(x)=a有三解,且x1+x2+x3=2π+4π=34π,∴M a=34π;③当22<a<1时,f(x)=a有四解,且x1+x2+x3+x4=x1+x4+x2+x3=2π+2π=π,∴M a=π;④ 当a =1时,f (x )=a 有两解,且x 1=0,x 2=2π,∴ x 1+x 2=2π,∴ M a=2π. 综上所述,M a=,0,{1},223,,42,.2a a a πππ⎧⎡⎫∈⎪⎪⎢⎪⎪⎣⎭⎪⎪∈⎨⎪⎪⎩⎭⎪⎪⎛⎫⎪∈ ⎪ ⎪⎪⎝⎭⎩。
三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切1. 利用两角和与差的正弦、余弦、正切公式进行三角变换;2•利用三角变换讨论三角函数的图象和性质2.1.牢记和差公式、倍角公式,把握公式特征;2•灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键•知识点回顾1 •两角和与差的余弦、正弦、正切公式cos( a—0)= cos acos0+ sin ocsin0(C a- 0cos( a+ 0)= cos. acos _ 0—sin__ asin_ 0(C a+ 0sin( a—0 = sin a cos0- cos ocsin(S a—0sin( a+ 0 = sin a cos0+ cos ocsin0(S a+ 0tan a—tan 卩tan( a—® ;(T a—01 + tan atan 卩tan a+ tan 卩tan(%+ ® = (T a + 01 —tan %tan 02 •二倍角公式sin 2 a= 2sin : cos:;cos 2 a= cos2a—sin2a= 2cos 2a—1 = 1 —2sin2a;2ta n atan 2 a= .1 —tan a3 •在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等•如T a±0可变形为tan a± tan 0= tan( a± 0(1? tan_ %tan_ 0,tan a+ tan 0 tan a—tan 0tan %tan 0= 1 —= —1.tan a+ 0 tan a—04 • 函数f( a= a cos a+ b sin a(a, b 为常数),可以化为f( a = \i a2+ b2sin( a+ 0)或f( %)=':::[a2+b2cos( a—0),其中0可由a, b的值唯一确定.[难点正本疑点清源]三角变换中的三变”(1) 变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是配凑”.(2) 变名:通过变换函数名称达到减少函数种类的目的,其手法通常有切化弦”、升幕与降幕”等.(3) 变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有换”、逆用变用公式”、通分约分”、分解与组合”、配方与平方”等.热身训练2 1 tan a1. 已知sin( a+ , sin( a—3 =—-,贝U 的值为 ____________ .3 5 tan 32. 函数f(x)= 2sin x(sin x+ cos x)的单调增区间为________________________3. (2012江苏)设a为锐角,若cos = 4,则I 6丿5sin a+ COS a1则tan 2 a等于( )4. (2012江西)若=sin a一(cos a23344A.—-B.C.—-D._4433n15. (2011 辽宁)设sin(+4B)= 3,则sin 2 B等于( )7117A.—_B. 一—C- D._9999典例分析题型一三角函数式的化简、求值问题【例1】(1)化简:I 1 a、f—tan _ |a 2 | 1 + tan a •⑵求值:[2sin 50 ° + sin 10 3tan (10 +° 摩in 280 °常值代a tan";2丿变J: i.l兔I在厶ABC中,已知三个内角AA, B, C成等差数列,则tan-2 + tan 值为 _______题型二三角函数的给角求值与给值求角问题【例2]n(1)已知0<仟_<2口r兀、a n,且cos II 2丿1_, sin9求cos(a+ 3的值;1⑵已知a,氏(0, n )且tan(「沪2,tan A1~,求2 a-卩的值.A C—ta n 一的 2 2题型三三角变换的简单应用f 1 \f 兀、【例 3】 已知 f(x) = 1 + ------ [sin 2x — 2sin x +— !'I tan x 丿 < 4 丿(1)若 tan a = 2,求 f ( a 的值;变式训练2 已知COSa=13 nCOS ( a — ®=,且 0< 仟 %<一,求(3.14 2n n求f(x)的取值范围⑵若x€五,2变出讣映3已知函数f(x)= J3sin i 2x厂+2sin2「-巨丿x R)-⑴求函数f(x)的最小正周期;⑵求使函数f(x)取得最大值时x的集合.利用三角变换研究三角函数的性质典例:(12分)(2011 •北京)已知函数f(x) = 4cos x - si(x +巴L 1 I 6丿(1)求f(x)的最小正周期;⑵求f(x)在区间,一上的最大值和最小值•II 6 4总结方法与技巧巧用公式变形和差角公式变形:tan x ± tai y = tan (x 土y ) • ?1tan x tan y );有-a 2 + b 2>|y |. 3.重视三角函数的 三变”:三变”是指变角、变名、变式”;变角:对角的分拆要尽可能化成同名 、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形 式中的差异,再选择适当的三角公式恒等变形 4.已知和角函数值,求单角或和角的三角函数值的技巧 :把已知条件的和角进行加减或二倍角后再加 减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值 ,可使所求的复杂问题简单化. 5.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构 ,更 要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形 失误与防范1 .运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意1 ”的各种变通.所对应的角 a +卩不是唯一的2 .在(0, n 范围内,Sin( a + (3)=23.在三角求值时,往往要估计角的范围后再求值倍角公式变形:降幕公式cos1 + COS2 a1 — COS2 a2a=, Sin a=配方变形:1 ± sin a =sin2 ± aCOS 2,1 + cos2丿a aa = 2cos 2—, 1 — cos a = 2sin 2—.2 2利用辅助角公式求最值 、单调区间、周期. 由 y = a sin a + b cos a = A / a 2 + b 2sin ( a + 0)(其中 tan 0=_ )过手训练(时间:25分钟,满分:43分)、选择题(每小题5分,共15分)函数 f (x )= sin x + - 3cos x 的A. 最大值是1 ,最小值是一 11B. 最大值是1 ,最小值是一—2C. 最大值是2,最小值是一 2 D .最大值是2,最小值是一 1、填空题(每小题5分,共15分)已知锐角 a 满足cos 2 a= cos贝U sin 2a = 已知cos —= MU 丿13 a€ 0,-, .4cos 2 a 则― sin(2012山东 >若灰一4'2sin 23 A.— 54 B.- 53 D.— 4已知tan (z=5怕…144 '那么tanJIn4等于13 A.— 1813 B.— 223 c.— 221 D7 6n n 当-尹笃时,三、解答题(13分)(2012广东)已知函数f (x ) = 2cos B X +二i (其中o>0 , x € R )的最小正周期为I 6丿⑴求co 的值;课后习题、选择题(每小题5分,共20分)6.设x €0, 一 i,贝V 函数y = 2si n 2x + 1的最小值为sin 2 x:(5、65 \ 阻0, — ,f 5 a+ — nf 5 (3-_n2< 3丿5< 6丿⑵设a ,16=石,求COS (计®的值. (时间:35分钟, 满分:57分)(2012江西)若tan1°+恳4,则sin 2。
高中数学-三角恒等变换综合练习(苏教版必修第二册)(解析版)

10.4 三角恒等变换综合练习(基础)一.选择题(共8小题)1.已知α是第二象限角,sin α=45,则sin2α=( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos α的值,进而根据二倍角的正弦公式即可求解. 【解答】解:因为α是第二象限角,sin α=45, 所以cos α=−√1−sin 2α=−35,则sin2α=2sin αcos α=2×45×(−35)=−2425. 故选:A .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.2.已知cos (θ−π2)=45,−π2<θ<π2,则sin2θ的值等于( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos θ的值,进而根据二倍角的正弦公式即可求解sin2θ的值.【解答】解:因为cos (θ−π2)=sin θ=45,−π2<θ<π2, 所以cos θ=√1−sin 2θ=35,则sin2θ=2sin θcos θ=2×45×35=2425. 故选:B .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 3.已知tan α=2,则sinα+2cosα3sinα−cosα的值为( )A .−25B .45C .23D .25【分析】由已知利用同角三角函数基本关系式化简所求即可得解. 【解答】解:因为tan α=2,则sinα+2cosα3sinα−cosα=tanα+23tanα−1=2+23×2−1=45.故选:B .【点评】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.4.cos350°sin70°﹣sin170°sin20°=( ) A .√32B .−√32C .12D .−12【分析】结合诱导公式及两角和的余弦公式进行化简即可求值.【解答】解:cos350°sin70°﹣sin170°sin20°=cos10°cos20°﹣sin10°sin20°=cos30°=√32.故选:A .【点评】本题主要考查了两角和的余弦公式及诱导公式在三角函数化简求值中的应用,属于基础试题. 5.已知sin(π6+α)=−45,则cos(π3−α)=( ) A .45B .35C .−45D .−35【分析】由已知直接利用三角函数的诱导公式化简求值. 【解答】解:∵sin(π6+α)=−45,∴cos(π3−α)=cos[π2−(π6+α)]=sin(π6+α)=−45,故选:C .【点评】本题考查三角函数的化简求值,考查诱导公式的应用,是基础题. 6.计算1−cos 270°1+cos40°=( )A .45B .34C .23D .12【分析】利用二倍角公式,诱导公式即可化简求解.【解答】解:1−cos 270°1+cos40°=1−1+cos140°21+cos40°=1−cos140°2(1+cos40°)=1+cos40°2(1+cos40°)=12.故选:D .【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7.若12sin2α﹣sin 2α=0,则cos (2α+π4)=( )A .1B .√22C .−√22D .±√22【分析】由已知结合二倍角公式可求sin α=0或tan α=1,然后分类讨论,结合同角基本关系即可求解. 【解答】解:因为12sin2α﹣sin 2α=0,所以sin αcos α﹣sin 2α=0, 所以sin α=0或sin α=cos α, 当sin α=0时, cos (2α+π4)=√22(cos2α﹣sin2α)=√22(1−2sin 2α−2sinαcosα)=√22,当sin α=cos α即tan α=1时,cos (2α+π4)=√22(cos2α﹣sin2α),=√22×(cos 2α﹣sin 2α﹣2sin αcos α), =√22(1−tan 2α1+tan 2α−2tanα1+tan 2α)=−√22.故选:D .【点评】本题以三角函数为背景,主要考查了三角恒等变换,考查了运算求解能力,考查了数学运算的核心素养.8.已知α∈(0,π2),sin2α1+cos2α=12,则cos α=( )A .√55B .2√55C .√1010D .3√1010【分析】利用二倍角公式化简已知等式可得cos α=2sin α,进而根据同角三角函数基本关系式即可求解. 【解答】解:由于sin2α1+cos2α=12,可得4sin αcos α=2cos 2α,因为α∈(0,π2),cos α≠0,所以cos α=2sin α,联立{cosα=2sinαsin 2α+cos 2α=1,解得cos α=2√55. 故选:B .【点评】本题主要考查了二倍角公式,同角三角函数基本关系式,考查推理论证能力,运算求解能力,考查了数学运算核心素养,属于基础题. 二.多选题(共4小题) 9.下列各式中值为12的是( )A .2sin75°cos75°B .1﹣2sin 2π12C .sin45°cos15°﹣cos45°sin15°D .tan20°+tan25°+tan20°tan25° 【分析】根据对应的公式求出判断即可.【解答】解:对于A :2sin75°cos75°=sin150°=12, 对于B :1﹣2sin 2π12=cosπ6=√32, 对于C :sin45°cos15°﹣cos45°sin15°=sin30°=12,对于D :tan20°+tan25°+tan20°tan25°=tan (20°+25°)(1﹣tan20°tan25°)+tan20°tan25°=1, 故选:AC .【点评】本题考查了三角的恒等变换,属于基础题. 10.下列化简正确的是( ) A .tan (π+1)=tan 1 B .sin(−α)tan(360°−α)=cos αC .sin(π−α)cos(π+α)=tan αD .cos(π−α)tan(−π−α)sin(2π−α)=1【分析】由题意利用诱导公式化简所给的式子,可的结果. 【解答】解:∵由诱导公式可得 tan (π+1)=tan1,故A 正确;sin(−α)tan(360°−α)=−sinα−tanα=cos α,故B 正确;sin(π−α)cos(π+α)=sinα−cosα=−tan α,故C 不正确; cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−1,故D 不正确,故选:AB .【点评】本题主要考查诱导公式的应用,属于基础题. 11.若α∈[0,2π],sin α3sin4α3+cos α3cos4α3=0,则α的值是( )A .π6B .π4C .π2D .3π2【分析】由已知结合两角差的余弦公式进行化简求解即可.【解答】解:因为α∈[0,2π],sin α3sin4α3+cos α3cos4α3=cos α=0,则α=12π或α=3π2, 故选:CD .【点评】本题主要考查了两角差的余弦公式的简单应用,属于基础试题. 12.若tan2x ﹣tan (x +π4)=5,则tan x 的值可能为( ) A .−√63B .−√62C .√63D .√62【分析】利用三角函数恒等变换的应用即可化简求值得解.【解答】解:设tan x =t ,因为tan2x −tan(x +π4)=2t 1−t 2−t+11−t =2t−(t+1)21−t 2=t 2+1t 2−1=5,所以t 2=32,故tanx =t =±√62. 故选:BD .【点评】本题考查三角恒等变换,考查运算求解能力,属于基础题. 三.填空题(共4小题)13.已知α、β均为锐角,且cos α=17,cos (α+β)=−1114,则β=π3.【分析】先利用同角三角函数的基本关系求得sin α和sin (α+β)的值,然后利用cos β=cos p [(α+β)﹣α],根据两角和公式求得答案. 【解答】解:α,β均为锐角,∴sin α=√1−149=4√37,sin (α+β)=√1−(−1114)2=5√314,∴cos β=cos p [(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=−1114×17+4√37×5√314=12. ∴β=π3. 故答案为π3.【点评】本题主要考查了两角和公式的化简求值和同角三角函数的基本关系的应用.熟练记忆三角函数的基本公式是解题的基础.14.若cos (α﹣β)=12,cos (α+β)=−35,则tan αtan β= ﹣11 .【分析】由已知利用两角和与差的余弦公式可求cos αcos β,sin αsin β的值,进而根据同角三角函数基本关系式即可求解.【解答】解:因为cos (α﹣β)=12, 所以cos αcos β+sin αsin β=12, 因为cos (α+β)=−35,所以cos αcos β﹣sin αsin β=−35,所以cos αcos β=12(12−35)=−120,sin αsin β=12(12+35)=1120,则tan αtan β=1120−120=−11.故答案为:﹣11.【点评】本题主要考查了两角和与差的余弦公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.若0<α<π2,﹣π<β<−π2,cos (π4+α)=13,cos (π4−β2)=−√33,则cos (α+β2)= √33.【分析】由已知先求出,的范围,再根据正弦和余弦的平方关系和为1求出对应的正弦值,然后再利用凑角的方法即可求解.【解答】解:因为0<α<π2,−π<β<−π2, 所以π4<α+π4<3π4,π2<π4−β2<3π4,所以sin (π4+α)=√1−(13)2=2√23, sin (π4−β2)=1−(−√33)2=√63,所以cos (α+β2)=cos[(π4+α)﹣(π4−β2)]=cos (π4+α)cos (π4−β2)+sin (π4+α)sin (π4−β2)=13×(−√33)+2√23×√63 =√33, 故答案为:√33. 【点评】本题考查了两角和与差的的三角函数求值问题,考查了学生的运算能力,属于基础题. 16.已知α∈R ,3sin α+cos α=3,则sin2α﹣cos 2α=35或0. .【分析】由已知可得,(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α,然后利用同角基本关系弦化切可求tan α,进而可求.【解答】解:因为3sin α+cos α=3, 当cos α≠0时,所以(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α=9tan 2α+6tanα+11+tan 2α=9,解得,tan α=43,所以sin2α﹣cos 2α=2sinαcosα−cos 2αsin 2α+cos 2α=2tanα−1tan 2α+1=2×43−1(43)2+1=35.当cos α=0时,sin2α﹣cos 2α=0 故答案为:35或0.【点评】本题主要考查了三角恒等变换,考查了运算求解能力,数据处理的能力. 四.解答题(共8小题)17.已知0<α<π2,0<β<π2,sin α=45,cos (α+β)=513. (1)求cos β的值; (2)求sin 2α+sin2αcos2α−1的值.【分析】(1)由已知利用同角三角函数基本关系式可求cos α,sin (α+β)的值,进而根据β=(α+β)﹣α,利用两角差的余弦函数公式即可求解.(2)利用二倍角公式可求sin2α,cos2α的值,进而即可代入求解. 【解答】解:(1)因为0<α<π2,sin α=45, 所以cos α=35,又因为0<β<π2,cos (α+β)=513, 所以sin (α+β)=1213, 所以cos β=cos[(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=513×35+1213×45=6365. (2)因为cos α=35,sin α=45,所以sin2α=2sin αcos α=2×45×35=2425,cos2α=2cos 2α﹣1=2×(35)2﹣1=−725,所以sin 2α+sin2αcos2α−1=(45)2+2425−725−1=−54.【点评】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 18.已知cosα=−45,α为第三象限角. (1)求sin α,tan α的值; (2)求cos(π4−2α)的值.【分析】(1)先根据α所在的象限,判断出sin α的正负,进而根据同角三角函数的基本关系,利用cos α的值求得sin α,进而求得tan α的值.(2)由(1)利用二倍角公式可求sin2α,cos2α的值,进而根据两角差的余弦函数公式即可求解. 【解答】解:(1)∵cosα=−45,α为第三象限角, ∴sin α<0,∴sin α=−√1−cos 2α=−√1−1625=−35,tan α=sinαcosα=34. (2)∵由(1)可得sin2α=2sin αcos α=2425,cos2α=2cos 2α﹣1=725, ∴cos(π4−2α)=cos π4cos2α+sin π4sin2α=√22×725+√22×2425=31√250.【点评】本题主要考查了同角三角函数基本关系,二倍角公式,两角差的余弦函数公式在三角函数化简求值中的应用.注意根据角的范围确定三角函数的正负号,属于基础题. 19.已知cosα=35,,. (Ⅰ)求tan α,sin2α的值; (Ⅱ)求sin(π3−α)的值.【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求sin α,tan α的值,利用二倍角的正弦函数公式可求sin2α的值.(Ⅱ)利用两角差的正弦函数公式即可计算得解. 【解答】解:(Ⅰ)∵cosα=35,,, ∴sinα=−√1−cos 2α=−45, ∴tanα=sinαcosα=−43,sin2α=2sinαcosα=−2425. (Ⅱ)∴sin(π3−α)=sin π3cosα−cos π3sinα=√32×35−12×(−45)=3√3+410. 【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式,两角差的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 20.(1)已知sinα=−13,且α为第四象限角,求sin(α−π2)与tan α值; (2)已知tan α=2,求cos αsin α的值.【分析】(1)由已知利用同角三角函数基本关系式,诱导公式,即可求解. (2)利用同角三角函数基本关系式即可计算得解. 【解答】解:(1)因为sinα=−13,且α为第四象限角, 所以cosα=√1−sin 2α=2√23, 可得sin(α−π2)=−cos α=−2√23,tanα=−√24. (2)因为tan α=2, 可得sinαcosα=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=25. 【点评】本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 21.已知α,β∈(0,π2),cos α=√55,sin β=45.(1)求sin2β; (2)求tan (α+2β).【分析】(1)利用同角三角函数关系以及倍角公式进行转化求解即可. (2)先求出对应的正切值,利用两角和差的正切公式进行转化求解即可. 【解答】解:(1)∵α,β∈(0,π2),cos α=√55,sin β=45.∴sin α=2√55,cos β=35.则sin2β=2sin βcos β=2×45×35=2425. (2)∵cos2β=1﹣2sin 2β=−725, ∴tan2β=sin2βcos2β=−247,tan α=sinαcosα=2,∴tan (α+2β)=tanα+tan2β1−tanαtan2β=2−2471+2×247=−211.【点评】本题主要考查三角函数值的计算,同角三角函数关系以及两角和差的三角公式是解决本题的关键,比较基础.22.已知sin (π3−x )=13,且0<x <π2,求sin (π6+x )﹣cos (2π3+x )的值.【分析】由题意利用同角三角函数的基本关系,求得cos (π3−x )的值,再利用诱导公式、两角和差的三角公式,求得要求式子的值.【解答】解:∵0<x <π2,∴−π6<π3−x <π3,∵已知sin (π3−x )=13,∴cos (π3−x )=√1−sin 2(π3−x)=2√23. 且 0<x <π2,求sin (π6+x )﹣cos (2π3+x )的∴sin (π6+x )﹣cos (2π3+x )=cos (π3−x )+cos (π3−x )=2cos (π3−x )=4√23. 【点评】本题主要考查同角三角函数的基本关系,诱导公式、两角和差的三角公式的应用,属于基础题. 23.已知tan α,,β是第三象,角. (1)求,的值;(2)求cos (α﹣β)的值.【分析】(1)利用同角三角函数的基本关系求得 sin α和cos α的值,进而即可代入求解.(2)利用同角三角函数的基本关系求得sin β的值,再利用两角差的余弦公式求得cos (α﹣β)的值. 【解答】解:(1)∵tan α=sinαcosα=−43,α∈(π2,π),sin 2α+cos 2α=1, ∴sin α=45,cos α=−35,可得3sinα+cosαsinα−cosα=3×45+(−35)45−(−35)=97.(2)∵cos β=−513,β是第三象限角, ∴sin β=−√1−cos 2β=−1213,∴cos (α﹣β)=cos αcos β+sin αsin β=−35•(−513)+45•(−1213)=−3365.【点评】本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.24.已知tanα,tanβ为方程式x2+6x+2=0的两根,求下列各式之值:(1)1cos2(α+β);(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β).【分析】(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,然后结合两角和的正切公式及同角基本关系可求.(2)由sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β)=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],代入可求.【解答】解:(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,∴tan(α+β)=tanα+tanβ1−tanαtanβ=−61−2=6,∴1cos2(α+β)=cos2(α+β)+sin2(α+β)cos2(α+β)=1+sin2(α+β)cos2(α+β),=1+tan2(α+β)=1+36=37,(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β),=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],=137(36+4×6+2)=6237.【点评】本题主要考查了同角基本关系的应用,解题的关键是公式的灵活应用.。
三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。
A。
0.B。
1/2.C。
1/4.D。
1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。
1/2.B。
2/3.C。
3/4.D。
4/53.函数y=sin(x)+cos(x)的最小正周期为:A。
π。
B。
2π。
C。
4π。
D。
π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。
3/5.B。
4/5.C。
5/6.D。
5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。
-2/3.B。
-1/3.C。
1/3.D。
2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。
-7/24.B。
-1/8.C。
1/8.D。
7/247.函数y=sin(x)+cos(x)的值域是:A。
[0,1]。
B。
[-1,1]。
C。
[-1/2,1/2]。
D。
[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。
向右平移π/4个单位。
B。
向左平移π/4个单位C。
向右平移π/2个单位。
D。
向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。
3/5.B。
4/5.C。
5/6.D。
5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。
x=π/4.B。
x=π/6.C。
x=π/2.D。
x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。
12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。
高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。
三角恒等变换含答案

三角恒等变换一、单选题1.已知α是第二象限角,tan()74πα-=-,则sin()3πα+=( )A B C D 2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A .19-B C .19D . 3.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形。
如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于( )A .45B .725C .725-D .354.已知锐角α满足3cos()65πα+=,则sin(2)3πα+=( ) A .1225B .1225±C .2425D .2425±5.sin 3πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A B C D6.已知22ππαβ--<<,sin 2cos 1αβ-=,2cos sin αβ+=则3s i n πβ⎛⎫-= ⎪⎝⎭ ( )A .3B .3C .3±D .3±7.若,αβ都是锐角,且cos 5α=,3sin()5αβ+=,则cos β= ( )A B C D 8.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tanα,tanβ,且22ππαβ⎛⎫∈- ⎪⎝⎭,,,则α+β=( ). A .34π或34π-B .4π-或4πC .4π D .34π-9.已知角,αβ均为锐角,且cos αβ==αβ-的值为( ) A .3πB .4π C .4π-D .4π或4π-10.已知 πsin()4α+=,则 3πsin()4α-的值为 ( ).A .B .2C .-12D .1211.已知函数()212cos 2f x x x =+-,若其图象是由sin 2y x =图象向左平移ϕ(0ϕ>)个单位得到,则ϕ的最小值为( ) A .6πB .56π C .12πD .512π 12.已知函数()sin sin 3f x x x =-,[0,2]x πÎ,则()f x 的所有零点之和等于( ) A .5πB .6πC .7πD .8π13.若函数()sin cos f x a x b x =+在3x π=处取得最大值4,则ab=( )A .1B C .2D .314.已知函数()sin f x a x x =-图象的一条对称轴为6x π=-,若()()124f x f x ⋅=-,则12x x +的最小值为( )A .3π B .πC .23π D .43π二、填空题15.计算:tan 20tan 40tan120tan 20tan 40++=_______________.16.cos102cos20cos10-⋅=____________. 17.已知()2sin 3αβ+=,()2sin 5αβ-=,则tan tan αβ的值为__________;18.已知αβ,均为锐角,1sin())663ππαβ-=+=,cos()αβ+=________. 19.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________. 20.若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式()()cos2sin sin 0f x x f x a ++-≤恒成立,则a 的最大值是_____.21.已知等腰三角形顶角的余弦值为725-,则这个三角形底角的正切值...为______ 22.o o oosin58+cos60sin2cos2=____________.23.已知π1sin cos 63αα⎛⎫--=⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭__________.24.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则sin 2θ=______.25.若函数2()4sin sin cos 2(0)42x f x x x πωωωω⎛⎫=⋅++>⎪⎝⎭在2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是____________.26.如图,某园林单位准备绿化一块直径为BC 的半圆形空地,ABC ∆外的地方种草,ABC ∆的内接正方形PQRS 为一水池,其余的地方种花,若BC a =,ABC θ∠=,设ABC ∆的面积为1S ,正方形PQRS 的面积为2S ,当a 固定,θ变化时,则12S S 的最小值是__________.27.已知函数()()()cos sin sin cos f x a x b x =-没有零点,则22a b +的取值范围是_______三、解答题 28.(1cos103sin10-;(2)求值tan 70tan 503tan 70tan 50+-= 29.已知()222x x x f x sincos sin a ⎛⎫=⋅++ ⎪⎝⎭ (1)求实数a 的值;(2)若443f f ππαα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,求2141tan παα⎛⎫-+ ⎪⎝⎭+的值. 30.(1)已知51sin π123α⎛⎫+=⎪⎝⎭,求πsin 12α⎛⎫- ⎪⎝⎭的值. (2)已知角α的终边过点()43P ,-,β为第三象限角,且4tan 3β=,求()c o s αβ-的值.31.(1)求值: sin 7cos15sin8cos7sin15sin8︒+︒︒︒-︒︒;(2)已知10sin cos ,25x x x π-<<+=,,求sin cos x x -的值. 32.已知1tan()2αβ-=,1tan 7β=-,且,(0,)αβπ∈,求2αβ-的值 33.已知32ππα<<,32ππβ<<,sin α=,cos β=αβ-的值. 34.已知α,β为锐角,且17cos α=,()1114cos αβ+=-.求sinβ的值. 35.计算(1)已知2sin cos 0αα-=,求sin cos sin cos sin cos sin cos αααααααα-+++-的值; (2)求()214cos 102sin10︒+︒-︒的值. 36.已知2sin cos 3αα+=,且2παπ<<,求下列各式的值(1)sin cos αα-(2)cos()24sin()4πααπα+++37.已知sin(2)7αβ-=11cos(2)14αβ-=-, 042ππβα<<<<,(1)求tan(2)αβ-的值; (2)求cos()αβ+以及αβ+的值38.计算(1)23sin12(4cos 122)--; (240sin 50(13tan10).701cos 40+++39.已知函数2()2cos cos cos .22x xf x x x =+ (1)求函数f (x )的最小正周期; (2)求函数f (x )在区间,64ππ⎡⎤-⎢⎥⎣⎦上的值域.40.已知函数2()sinsin 1(02f x x x x πωωωω⎫⎛⎫=+⋅+-> ⎪⎪⎝⎭⎭的相邻两条对称轴之间的距离为2π. (1)求ω的值;(2)当,122x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 41.如图,OPQ 是半径为2,圆心角为3π的扇形,C 是扇形弧上的一动点,记COP θ∠=,四边形OPCQ 的面积为S .(1)找出S 与θ的函数关系;(2)试探求当θ取何值时,S 最大,并求出这个最大值.42.已知函数2()sin cos (0)f x x x x =>ωωωω的最小正周期为2π, (1)求函数()f x 的单调递减区间;(2)若函数()()g x =f x +m 在区间0,4⎡⎤⎢⎥⎣⎦π上有两个零点,求实数m 的取值范围. 43.为迎接2020年奥运会,某商家计划设计一圆形图标,内部有一“杠铃形图案”(如图阴影部分),圆的半径为1米,AC ,BD 是圆的直径,E ,F 在弦AB 上,H ,G 在弦CD 上,圆心O 是矩形EFGH 的中心,若23EF =米,2AOB θ∠=,5412ππθ≤≤.(1)当3πθ=时,求“杠铃形图案”的面积;(2)求“杠铃形图案”的面积的最小值.参考答案1.C 【解析】 由tan 74πα⎛⎫-=- ⎪⎝⎭,得171tan tan αα-=-+,解得34tan α=-. 又α是第二象限角,可得34sin ,cos 55αα==-.则314sin 333525sin cos cos sin πππααα⎛⎫+=+=⨯-= ⎪⎝⎭. 故选C. 2.D 【解析】分析:由二倍角公式得cos 3πθ⎛⎫+⎪⎝⎭,再由5cos ?cos sin 6323ππππθθθ⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,结合同角三角函数关系可得解.详解:由2sin 263θπ⎛⎫+=⎪⎝⎭,得28112sin 12699θπ⎛⎫-+=-= ⎪⎝⎭,即1cos 39πθ⎛⎫+= ⎪⎝⎭,由θ为锐角,且1cos 039πθ⎛⎫+=> ⎪⎝⎭,所以3πθ+因为锐角,所以sin 03πθ⎛⎫+> ⎪⎝⎭.5cos cos sin 6323ππππθθθ⎛⎫⎛⎫⎛⎫+=++=-+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选D.点睛:解决三角变换中的给值求值问题时,一定要注意先化简再求值,同时要注意所给条件在解题中的整体作用. 3.B 【解析】 【分析】根据两个正方形的面积求出两个正方形的边长,进而用三角函数表示边长求出三角函数值,再利用二倍角公式求解即可. 【详解】由大正方形面积为25,小正方形面积为1.易得大正方形边长为5,小正方形边长为1.由图有15cos 5sin 1cos sin 5θθθθ-=⇒-=,故221cos sin 5cos sin 1θθθθ⎧-=⎪⎨⎪+=⎩ ,因为较小的锐角为θ,故4cos 53sin 5θθ⎧=⎪⎪⎨⎪=⎪⎩.故2247cos 22cos 121525θθ⎛⎫=-=⨯-= ⎪⎝⎭ 故选:B 【点睛】本题主要考查了由图像求解三角函数值的问题,需要根据图像到三角函数的关系式再求解,属于中等题型. 4.C 【解析】 【分析】利用诱导公式,求得sin()6πα+的值,再利用倍角公式,即可求解.【详解】因为锐角α满足3cos()65πα+=,所以6πα+也是锐角,由三角函数的基本关系式可得4sin()65πα+==, 则24sin(2)2sin()cos()36625πππααα+=++=,故选C. 【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角函数的诱导公式和三角函数的倍角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 5.B 【解析】 【分析】根据sin 3πα⎛⎫-= ⎪⎝⎭和0,2πα⎛⎫∈ ⎪⎝⎭,得到sin 3πα⎛⎫- ⎪⎝⎭和cos 3πα⎛⎫- ⎪⎝⎭的值,将所求的cos α转化为cos 33ππα⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦,利用两角和的余弦公式,得到答案.【详解】因为sin 33πα⎛⎫-=⎪⎝⎭,所以sin 33πα⎛⎫-=- ⎪⎝⎭,因为0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 33πα⎛⎫-==⎪⎝⎭, 所以cos cos 33ππαα⎡⎤⎛⎫=-+⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 3333ππππαα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭12⎛=- ⎝⎭36+=. 故选:B. 【点睛】本题考查同角三角函数关系,两角和的余弦公式,属于简单题. 6.B 【解析】 【分析】两式平方相加利用两角和与差的公式可化为()54sin 3αβ--=,再根据22ππαβ-<-<得出6παβ=+,代入2cos sin αβ+=.【详解】将两个等式两边平方可得2222sin 4sin cos 4cos 1cos 4cos sin 4sin 2ααββααββ⎧-⋅+=⎨+⋅+=⎩, 两式相加可得()54sin 3αβ--=,所以()1sin 2αβ-=, 22ππαβ-<-<,6παβ∴-=,即6παβ=+,代入2cos sin αβ+=3sin 2ββ+=,所以sin 63πβ⎛⎫+= ⎪⎝⎭, 故选:B 【点睛】本题主要考查三角函数的化简求值,需熟记两角和与差的公式以及常见的三角函数值,属于中档题. 7.A 【解析】 【分析】先计算出()cos αβ+,再利用余弦的和与差公式,即可. 【详解】因为,αβ都是锐角,且1cos 2α=<,所以,32ππα<<又()31sin 52αβ+=>,所以2παβπ<+<,所以()4cos 5αβ+==-sin α==,cos β=()()()cos cos cos sin sin αβααβααβα+-=+++ 25=,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大。
新高考数学计算题型精练 三角恒等变换(解析版)

新高考数学计算题型精练三角恒等变换1.cos70cos20sin70sin160︒︒-︒︒=()A.0B.12C D.1【答案】A【详解】cos20cos70sin160sin70︒︒-︒︒()cos20cos70sin18020sin70=︒︒-︒-︒︒cos20cos70sin20sin70=︒︒-︒︒()cos2070cos900=︒+︒=︒=.故选:A.2.sin40°cos10°+cos140°sin10°=()A B C.﹣12D.12【答案】D【详解】sin40°cos10°+cos140°sin10°,=sin40°cos10°-cos40°sin10°,=sin(40°-10°),=sin30°=12.故选:D3.sin20cos40cos20sin140︒︒︒︒+=A.B.2C.12-D.12【答案】B【详解】sin20cos40cos20sin140sin20cos40cos20sin40sin(2040)sin60︒︒+︒︒=︒︒+︒︒=︒+︒=︒故选B4.已知π1cos63α⎛⎫-=⎪⎝⎭,则πsin26α⎛⎫+=⎪⎝⎭()A.79-B.79C.3-D.3【答案】A【详解】因为π1 cos63α⎛⎫-=⎪⎝⎭,故2πππππ27sin 2sin 2()cos 2()2cos ()116626699αααα⎛⎫⎡⎤+=-+=-=--=-=- ⎪⎢⎥⎝⎭⎣⎦,故选:A 5.若cos tan 3sin ααα=-,则sin 22πα⎛⎫+= ⎪⎝⎭()A .23B .13C .89D .79【答案】D【详解】因为cos tan 3sin ααα=-,所以sin cos cos 3sin αααα=-,即223sin sin cos ααα-=,所以223sin sin cos 1ααα=+=,即1sin 3α=,所以27sin 2cos212sin 2π9ααα⎛⎫+==-= ⎪⎝⎭,故选:D .6.sin 20cos 40sin 70sin 40︒︒+︒︒=()AB .12C.2D .1【答案】A【详解】已知可化为:()sin 20cos 40cos 20sin 40sin 20402︒︒︒+︒=︒+︒=.故选:A7.若πtan 28α⎛⎫-= ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .34B .34-C .43D .43-【答案】D【详解】由2π2tan()π448tan 2π41431tan ()8ααα-⎛⎫-===- ⎪-⎝⎭--.故选:D8.已知π0,2α⎛⎫∈ ⎪⎝⎭π2sin 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α=()A .34-B .34C .1-D .1【答案】B【详解】π2sin(4αα=+Q,)22(sin cos )2cos sin αααα=+-Q,1(cos sin )(cos sin )02αααα∴+--=,又π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以2(0,π)α∈,sin 20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.故选:B.9.已知5π4sin 125θ⎛⎫+= ⎪⎝⎭,则πsin 23θ⎛⎫+= ⎪⎝⎭()A .2425-B .725-C .725D .2425【答案】C【详解】5ππππ4sin sin cos 12212125θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以22πππ47cos 2cos 22cos 1216612525θθθ⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得ππππ7sin 2sin 2cos 2326625θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:C.10.已知tan 2α=,则213cos sin2αα-=()A .12B .14C .2D .4【答案】A【详解】因为tan 2α=,所以222213cos sin 2cos tan 221sin22sin cos 2tan 42αααααααα---====,故选:A.11.化简:()22sin πsin 22cos 2ααα-+=()A .sin αB .sin 2αC .2sin αD .sin2α【答案】C【详解】根据题意可知,利用诱导公式可得()222sin πsin 22sin sin 22cos 2cos 22αααααα-++=再由二倍角的正弦和余弦公式可得()()222sin 1cos 2sin 1cos 2sin sin 22sin 1cos 2cos2cos22αααααααααα+++===+,即()22sin πsin 22sin 2cos2αααα-+=.故选:C12.cos78cos18sin 78sin18︒︒+︒︒的值为()A .12B .13CD【答案】A【详解】依题意由两角差的余弦公式可知,()1cos78cos18sin 78sin18cos 7818cos602︒︒+︒︒=︒-︒==.故选:A13.若tan 2θ=-,则()()()πsin 1sin22sin πcos πθθθθ⎛⎫+- ⎪⎝⎭=-++____________【答案】35-/-0.6【详解】()()()()22πsin 1sin2cos sin cos 2cos sin cos sin πcos πsin cos θθθθθθθθθθθθ⎛⎫+- ⎪-⎝⎭==--++-22222tan 1213cos sin 1tan 1(2)5cossin cos θθθθθθ-=---===-+++-,故答案为:35-14.已知ππ2θ<<,且4cos 5θ=-,则tan 2θ=______.【答案】247-【详解】4cos 5θ=-,3sin 5θ==±,ππ2θ<< ,3sin 5θ∴=.sin 3tan cos 4θθθ∴==-,232tan 242tan 291tan 7116θθθ-===---.故答案为:247-.15.已知cos 24π7sin 4αα=⎛⎫+ ⎪⎝⎭,则sin 2α的值是______.【答案】4149【详解】22cos 2442cos sin π777sin 422αααα=⇒⇒-=⎛⎫+ ⎪⎝⎭228841cos 2sin cos sin 1sin 2sin 2494949αααααα⇒-+=⇒-=⇒=,故答案为:414916.已知()0,απ∈,若sin 6πα⎛⎫-= ⎪⎝⎭cos 26πα⎛⎫+= ⎪⎝⎭_________.【答案】3±【详解】因为sin 63πα⎛⎫-= ⎪⎝⎭,()0,απ∈,所以cos 6πα⎛⎫-== ⎪⎝⎭所以sin 2=2sin cos =6663πππααα⎛⎫⎛⎫⎛⎫---±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以cos 2cos 2cos 2sin 2=6326263ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-+=--± ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:17.若3,0,sin 25⎛⎫∈-=- ⎪⎝⎭x x π,则tan 2x =________.【答案】247-【详解】343,0,sin cos ,tan 2554x x x x π⎛⎫∈-=-∴==-⎪⎝⎭Q 232tan 242tan 291tan 7116x x x -∴===---故答案为:247-18.已知(),2αππ∈,cos 3sin 1αα-=,则cos 2α=_______________________.【答案】【详解】因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,由cos 3sin 1αα-=可得212sin 6sin cos 1222ααα--=,整理可得sin 3cos 22αα=-,22sin 3cos 22sin cos 12222ααααπαπ⎧=-⎪⎪⎪+=⇒⎨⎪⎪<<⎪⎩cos 2α=故答案为:19.若πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,则α=__________.【答案】6π/16π【详解】依题意,πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,所以2222tan 1,2tan 1tan 1tan tan ααααα==--,21tan 3α=,而α为锐角,所以πtan 6αα=.故答案为:π620.已知tan 3α=,则sin 2α=______.【答案】35【详解】22222sin cos 2tan 233sin 2sin cos tan 1315ααααααα⨯====+++.故答案为:3521.已知α是第二象限的角,1cos24α=,则tan α=________.【答案】5/【详解】因为21cos 212sin 4αα=-=,又α是第二象限的角,所以6sin 4α=,cos 4α=,所以5tan α=-.故答案为:5-22.已知22cos 5sin 10αα-+=,则cos 2=α______.【答案】12/0.5【详解】解:已知()2222cos 5sin 121sin 5sin 12sin 5sin 30αααααα-+=--+=--+=,即()()22sin 5sin 32sin 1sin 30αααα+-=-+=,解得1sin 2α=或sin 3α=-(舍),211cos 212sin 1242αα∴=-=-⨯=,故答案为:12.23.若tan 2θ=,则sin cos 2cos sin θθθθ=-_________.【答案】65/1.2/115【详解】()()22sin cos sin sin cos 2sin cos sin cos sin cos sin θθθθθθθθθθθθ-==+--222222sin cos sin tan tan 246sin cos sin sin cos tan 155θθθθθθθθθθθ+++=+====++.故答案为:65.24.函数()sin 2sin 1cos x xf x x=+的值域__________.【答案】14,2⎛⎤- ⎥⎝⎦【详解】因为()()222221cos cos sin 2sin 2sin cos 11=2cos 2cos 2cos 1cos 1cos 1cos 22x x x x x x f x x x x x x x -⎛⎫===-+=--+ ⎪+++⎝⎭,因为1cos 1x -≤≤,当1cos 2x =时,()f x 取得最大值12,当cos 1x =-时,()f x 取得最小值4-,又因为1cos 0x +≠,所以()f x 的值域为14,2⎛⎤- ⎝⎦.故答案为:14,2⎛⎤- ⎥⎝⎦.25.已知sin 2cos αα=,π0,2α⎛⎫∈ ⎪⎝⎭,tan α=________.【详解】sin 2cos 2sin cos αααα==,π0,2α⎛⎫∈ ⎪⎝⎭,则cos 0α≠,1sin 2α=,π6α=,故tan α=26.(1)计算:cos157sin 97sin 60cos 97︒+︒︒︒;(2)已知tan 1α=-,求2cos 2sin cos 1ααα--的值.【答案】(1)12;(2)12【详解】(1)cos157sin 97sin 60cos97︒+︒︒︒()cos 9760sin 97sin 60cos 97︒+︒+︒︒=︒cos 97cos 60sin 97sin 60sin 97sin 60cos 97︒︒-︒︒+︒︒=︒cos 60=︒12=.(2)2cos 2sin cos 1ααα--222cos 2sin cos 1cos sin ααααα-=-+212tan 11tan αα-=-+()()2121111-⨯-=-+-12=.。
高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和与差的正弦、余弦、正切1.利用两角和与差的正弦、余弦、正切公式进行三角变换;2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键.知识点回顾1. 两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β1+tan αtan β (T α-β)tan(α+β)=tan α+tan β1-tan αtan β (T α+β)2. 二倍角公式sin 2α=ααcos sin 2;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan α+β=tan α-tan βtan α-β-1.4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.[难点正本 疑点清源] 三角变换中的“三变”(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.热身训练1. 已知sin(α+β)=23,sin(α-β)=-15,则tan αtan β的值为_______.2. 函数f (x )=2sin x (sin x +cos x )的单调增区间为______________________.3. (2012·江苏)设α为锐角,若cos ⎪⎭⎫ ⎝⎛+6πα=45,则 4. (2012·江西)若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34B.34C .-43D.43 5. (2011·辽宁)设sin(π4+θ)=13,则sin 2θ等于( )A .-79B .-19C.19D.79典例分析题型一 三角函数式的化简、求值问题 例1 (1)化简:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝ ⎛⎭⎪⎫1+tan α·tan α2; (2)求值:[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C2+3tan A 2tan C2的值为________.题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<π2<α<π,且cos ⎪⎭⎫ ⎝⎛-2πα=-19,sin ⎪⎭⎫ ⎝⎛-βα2=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.题型三 三角变换的简单应用 例3 已知f (x )=⎪⎭⎫ ⎝⎛+x tan 11sin 2x -2sin ⎪⎭⎫ ⎝⎛+4πx ·sin ⎪⎭⎫ ⎝⎛-4πx (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的取值范围.已知函数f (x )=3sin ⎪⎭⎫ ⎝⎛-62πx +2sin 2⎪⎭⎫ ⎝⎛-12πx (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值时x 的集合.利用三角变换研究三角函数的性质典例:(12分)(2011·北京)已知函数f (x )=4cos x ·sin ⎪⎭⎫⎝⎛+6πx -1. (1)求f (x )的最小正周期; (2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值. 总结方法与技巧1. 巧用公式变形:和差角公式变形:tan x ±ta n y =tan(x ±y )·(1∓tan x tan y ); 倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;配方变形:1±sin α=⎝ ⎛⎭⎪⎫sin α2±co s α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.2. 利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba)有a 2+b 2≥|y |.3. 重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4. 已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5. 熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.过手训练(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·山东)若θ∈⎥⎦⎤⎢⎣⎡2,4ππ,sin 2θ=378,则sin θ等于( )A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎪⎭⎫ ⎝⎛-4πβ=14,那么tan ⎪⎭⎫ ⎝⎛+4πα等于( )A.1318B.1322C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分) 4. 已知锐角α满足cos 2α=cos ⎪⎭⎫⎝⎛-απ4,则sin 2α=________. 5. 已知cos ⎪⎭⎫ ⎝⎛-απ4=1213,α∈⎪⎭⎫⎝⎛4,0π,则cos 2αsin ⎝ ⎛⎭⎪⎫π4+α=________.6. 设x ∈⎪⎭⎫⎝⎛2,0π,则函数y =2sin 2x +1sin 2x 的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎪⎭⎫⎝⎛+6πωx (其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝⎛⎭⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎫5β-56π=1617,求cos(α+β)的值.课后习题(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15B.14C.13D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( )A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于 ( )A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎪⎭⎫ ⎝⎛2,0π,且sin 2α+cos 2α=14,则tan α的值等于( )A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值为________. 6.3tan 12°-34cos 212°-2sin 12°=________.7. sin α=35,cos β=35,其中α,β∈⎪⎭⎫⎝⎛2,0π,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎪⎭⎫⎝⎛ππ,2,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎪⎭⎫⎝⎛ππ,2,求cos β的值.。