生物化学讲义(7)
《生物化学》实验讲义

实验一蛋白质及氨基酸的颜色反应一、目的意义1、学习几种鉴定氨基酸与蛋白质的一般方法及其原理。
2、学习和了解一些鉴定蛋白质的特殊颜色反应及其原理。
二、实验原理1、双缩脲反应当尿素加热到180℃左右时,2分子尿素发生缩合放出1分子氨而形成双缩脲.双缩脲在碱性溶液中与铜离子结合生成复杂的紫红色化合物,这一呈色反应称为双缩脲反应。
蛋白质分子中含有多个与双缩脲相似的键,因此也具有双缩脲的颜色反应.借此可以鉴定蛋白质的存在或测定其含量。
应当指出,双缩脲反应并非蛋白质的特异颜色反应,因为凡含有肽键的物质并不都是蛋白质.2、茚三酮反应蛋白质与茚三酮共热,产生蓝紫色化合物,此反应为一切蛋白质及α-氨基酸(除脯氨酸和羟脯氨酸)所共有。
含有氨基酸的其他化合物也呈此反应.该反应十分灵敏,1:1500000浓度的氨基酸水溶液就能呈现反应。
因此,此反应广泛用于氨基酸的定量测定.3、黄色反应含有苯环侧链的(特别是含酪氨酸)蛋白质溶液与硝酸共热时,呈黄色(硝基化合物),再加碱则变为橙黄色,此反应也称为黄蛋白反应。
OH+HNO3HO NO2+H2OHO NO2+O NOH三、仪器与试剂1、试剂(1) 蛋白质溶液:取10mL鸡蛋清,用蒸馏水稀释至100mL,搅拌均匀后用纱布过滤得上清液。
(2) 0。
3%色氨酸溶液、0。
3%酪氨酸溶液、0。
3%脯氨酸溶液、0。
5%甘氨酸溶液、0.5%苯酚溶液。
(3) 0.1%茚三酮-乙醇溶液:称取0。
1g茚三酮,溶于100mL 95%乙醇。
(4) 10%NaOH溶液、1%硫酸铜溶液、尿素、浓硝酸.2、仪器:试管及试管夹、酒精灯。
四、操作方法1、双缩脲反应(1) 取一支干燥试管,加入少量尿素,用微火加热使之熔化,待熔化的尿素开始变硬时停止加热。
此时,尿素已缩合为双缩脲并放出氨气(可由气味辨别).待试管冷却,加入约1mL10%NaOH溶液,振荡使其溶解,再加入1滴1%硫酸铜溶液。
混匀后观察出现的粉红色. (2)另取1支试管,加入1mL蛋白质溶液,再加入2mL 10%NaOH溶液摇匀,然后再加入2滴1%的硫酸铜溶液。
2021届苏高中生物竞赛实验辅导讲义-生物化学实验(基础)07小麦萌发前后淀粉酶活力的比较

2021届高中生物竞赛实验辅导讲义生物化学实验(基础部分)实验七小麦萌发前后淀粉酶活力的比较一、目的1.学习分光光度计的原理和使用方法。
2.学习测定淀粉酶活力的方法。
3.了解小麦萌发前后淀粉酶活力的变化。
二、原理种子中贮藏的碳水化合物主要以淀粉的形式存在。
淀粉酶能使淀粉分解为麦芽糖。
2(C6H10O5)n+H2O-------nC12H22O11麦芽糖有还原性,能使3,5-二硝基水杨酸还原成棕色的3-氨基5-硝基水扬酸。
后者可用分光光度计法测定。
休眠种子的淀粉酶活力很弱,种子吸胀萌动后,酶活力逐渐增强,并随着发芽天数的增长而增加。
本实验观察小麦种子萌发前后淀粉酶活力的变化。
三、器材1.25毫升刻度试管。
2.吸管。
3.乳体。
4.离心管。
5.分光光度计。
6.离心机。
7.恒温水浴。
四、试剂1. 0.1%标准麦芽糖溶液20毫升:精确称量100毫克麦芽糖,用少量水溶解后,移入100ml容量瓶中,加蒸馏水至刻度。
2.pH 6.9,0.02摩尔/L磷酸缓冲液100毫升3.l%淀粉溶液100毫升:1克可溶性淀粉溶于100毫升0.02摩尔/L磷酸缓冲液,其中含有0.006摩尔/L氯化钠。
4.l%3,5-二硝基水杨酸试剂: 1g 3,5-二硝基水杨酸溶于20毫升2摩尔/L的氢氧化钠溶液和50毫升水中;再加人30克酒石酸钾钠,定客至100毫升。
若溶液混浊,可过滤。
5.l%氯化钠溶液300毫升6.海砂5克五、操作步骤1.种子发芽:小麦种子浸泡2.5小时后,放人25℃恒温箱内或在室温下发芽。
2.酶液提取:取发芽第三天或第四天的幼苗15株,放人乳钵内,加海砂200毫克,加1%氯化钠溶液10毫升,用力磨碎。
在室温下放置20分钟,搅拌几次。
将提取液离心(l500转/min)6-7分钟。
将上清液倒人量筒,测定酶提取液的总体积。
进行酶活力测定时,将酶提取液稀释10倍。
取干燥种子或浸泡2.5小时后的种子15粒作为对照(提取步骤同上)。
生物化学讲义第七章氨基酸代谢

第七章氨基酸代谢【目的和要求】1、掌握体内氨基酸的来源与去路;氨的来源与去路;掌握氨基酸脱氨基方式及基本过程;2、掌握一碳单位的定义、种类、载体和生物学意义。
3、熟悉必需氨基酸的种类和蛋白质的营养价值与临床应用。
4、了解个别氨基酸代谢,了解氨基酸代谢中某个酶缺陷或活性低时所导致的氨基酸代谢病。
【本章重难点】1氨基酸的来源和去路2.氨的来源和去路3.鸟氨酸循环4.联合脱氨基作用学习内容第一节蛋白质的营养作用第二节氨基酸的一般代谢第三节个别氨基酸的代谢第一节蛋白质的营养作用一氨基酸的来源和去路㈠氨基酸的来源氨基酸是蛋白质的基本组成单位。
参加体内代谢的氨基酸,除经食物消化吸收来以外,还来自组织蛋白质分解和自身合成。
这些氨基酸混为一体,分布在细胞内液和细胞外液,构成氨基酸代谢库。
体内的氨基酸的来源和去路保持动态平衡,它有三个来源:⒈食物蛋白质经消化吸收进入体内的氨基酸。
组成蛋白质的氨基酸有二十种,其中有8种是人体需要而不能自身合成,必需由食物供给的,称为必需氨基酸。
它们为苏氨酸、色氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸,苯丙氨酸及蛋氨酸。
其余十二种氨基酸在体内可以合成或依赖必需氨基酸可以合成,称为非必需氨基酸。
食物蛋白质营养价值的高低取决于食物蛋白质所含必需氨基酸的种类、数量和比例。
种类齐全、数量大、比例与人体需要越接近,其营养价值越高。
为提高蛋白质的营养价值,把几种营养价值较低的蛋白质混合食用,必需氨基酸相互补充,从而提高氨基酸的利用率,称为蛋白质营养的互补作用。
蛋白质具有高度种属特异性,不能直接输入人体,否则会产生过敏现象。
进入机体前必先在肠道水解成氨基酸,然后吸收入血。
蛋白质的消化作用主要在小肠中进行,由内肽酶(胰蛋白酶、糜蛋白酶及弹性蛋白酶)和外肽酶(羧基肽酶、氨基肽酶)协同作用,水解成氨基酸,水解生成的二肽也可被吸收。
未被吸收的氨基酸及蛋白质在肠道细菌的作用下,进行分解代谢,其代谢过程可产生许多对人体有害的物质(吲哚、酚类、胺类和氨),此过程称为蛋白质的腐败作用。
生物化学讲义(最新整理)

第一章绪论一、生物化学的概念生物化学是从分子水平研究生物体中各种化学变化规律的科学。
因此生物化学又称为生命的化学(简称:生化),是研究生命分子基础的学科。
生物化学是一门医学基础理论课。
二、生物化学的主要内容1.研究生物体的物质组织、结构、特性及功能。
蛋白质、核酸2.研究物质代谢、能量代谢、代谢调节。
研究糖、脂、蛋白质、核酸等物质代谢、代谢调节等规律,是本课程的主要内容。
3.遗传信息的贮存、传递和表达,研究遗传信息的贮存、传递及表达、基因工程等,是当代生命科学发展的主流,是现代生化研究的重点。
三、生物化学的发展史四、生物化学与健康的关系生化是医学的基础,并在医、药、卫生各学科中都有广泛的应用。
本课程不仅是基础医学如生理学、药理学、微生物学、免疫学及组织学等的必要基础课,而且也是医学检验、护理等各医学专业的必修课程。
五、学好生物化学的几点建议1.加强复习有关的基础学科课程,前、后期课程有机结合,融会贯通、熟练应用。
2.仔细阅读、理解本课程的“绪论”,了解本课程重要性,激发起学习生物化学的兴趣和求知欲望。
3.每次学习时,首先必须了解教学大纲的具体要求,预读教材,带着问题进入学习。
4.学习后及时做好复习,整理好笔记。
5.学生应充分利用所提供的相关网站,从因特网上查找学习资料,提高课外学习和主动学习的能力。
6.实验实训课是完成本课程的重要环节。
亲自动手,认真、仔细完成每步操作过程,观察各步反应的现象,详细、科学、实事求是地记录并分析实验结果,独立完成实验报告。
第一章蛋白质的化学一、蛋白质的分子组成(一)蛋白质的元素组成蛋白质分子主要元素组成:C、H、O、N、S。
特征元素:N元素(含量比较恒定约为16%) 故所测样品中若含1克N,即可折算成6.25克蛋白质。
(实例应用)(二)组成蛋白质的基本单位——氨基酸(AA)(一)编码氨基酸的概念和种类:蛋白质合成时受遗传密码控制的氨基酸,共有20种(二)氨基酸的结构通式:L-α-氨基酸(甘氨酸除外)(三)氨基酸根据R基团所含的基团,可分为酸性氨基酸(羧基)、碱性氨基酸(氨基及其衍生基团)和极性的中性氨基酸(羟基、巯基和酚羟基)。
生物化学实验讲义

目录1.生物化学实验室规则2.实验一可溶性糖含量的测定——蒽酮法3.实验二蛋白质含量的测定4.实验三去污剂对红血球细胞膜稳定性的影响5.实验四盘状聚丙烯酰胺凝胶电泳分离血清蛋白6.实验五动物组织核糖核酸的制备及测定7.实验六脲酶K m值的简易测定8.实验七粗脂肪提取9.实验八 ATP的生物合成10.实验九动物肝脏RNA的制备(苯酚法)和纯度测定11.实验十胰岛素、肾上腺素对血糖浓度的影响生物化学实验室规则1 每个同学都应该自觉遵守课堂纪律,维护课堂秩序,不迟到,不早退,不大声谈笑。
2 实验前必须认真预习,熟悉本次实验的目的、原理、操作步骤,懂得每一操作步骤的意义和了解所用仪器的使用方法,否则不能开始实验。
3 实验过程中要听从教员的指导,严肃认真地按操作规程进行实验,并把实验结果和数据及时、如实记录在实验记录本上,文字要简练、准确。
完成实验后经教员检查签字同意,方可离开实验实。
4实验台面应随时保持整洁,仪器、药品摆放整齐。
公用试剂用毕,应立即盖严放回原处。
勿使试剂、药品洒在实验台面和地上。
实验完毕,仪器洗净放好,将实验台面抹拭干净,才能离开实验室。
5使用仪器、药品、试剂和各种物品必须注意节约。
洗涤和使用仪器时,应小心仔细,防止损坏仪器。
使用贵重精密仪器时,应严格遵守操作规程,发现故障须立即报告教员,不得擅自动手检修。
6 实验室内严禁吸烟!注意水电安全,离开实验室前,必须关好水龙头,拉下电闸,严防发生事故!7 废液倒入专门的废液桶,固体废物和带残渣的废物不得倒入水槽或到处乱扔。
8 仪器损坏时,应如实向教员报告,并填写损坏仪器登记表,然后补领。
9 实验室内一切物品,未经本室负责教员批准,严禁携出室外,借物必须办理登记手续。
10每次实验课由班长负责安排值日生。
值日生的职责是负责当天实验室的安全、卫生和一切服务性的工作。
实验一可溶性糖含量的测定——蒽酮法实验目的1了解蒽酮法测定可溶性糖含量的原理2学习求标准曲线方程—最小二乘法3掌握分光光度计的使用实验原理蒽酮比色定糖法是一个快速而方便的定糖方法,在强酸性条件下,蒽酮可以与游离的或多糖中存在的己糖、戊糖及己糖醛酸(还原性和非还原性)作用生成蓝绿色的糖醛衍生物,其颜色的深浅与糖的含量在一定范围内成正比。
《生物化学》(张洪渊)川大

《生物化学》(张洪渊)川大《生物化学》(张洪渊)讲义-川大第一章绪论(1-2节)一. 如何学好生化课 1.生物化学的特点.内容分布:生物化学这门课,从教材上看,通常都分为上下两集,上集谈的是生物分子的结构、性质、功能,很少涉及它们的变化,这些生物分子包括糖、脂、蛋白质、核酸、酶、激素、维生素以及抗生素等,叫做静态生化,以DNA结构为例。
而下集则讲的是这些生物分子的来龙去脉,即合成与分解,叫动态生化,以DNA的复制为例。
.特点:概念性描述性的内容居多,很少有推导性或计算性的内容,因此,它不同于理科而更近似于文科,记忆的东西多,女生常常比男生学得好,巧妙记忆成为学好生化的一个重要方法,学完生化课后,你们应该有一种意外的惊喜,阿,我的脑子咋变得这样好使呢? 2.师生合作.老师备课:由于生物化学是我院最重要的课程(课时多以及研考跑不掉),所以我得竭尽全力准备,既要完成大纲规定的内容又不能照本宣科,注意理论和实践、经典与前沿的融合,使生化课变得兴趣盎然而不是枯燥无味,要做到这些,备课是相当辛苦的,且听我来表一表,我在四川大学上了320节生化课(200节理论,120节实验),上课笔记成了现在的讲课笔记的一部分,后来临时抱佛脚,又到南大进修了200学时的生化理论课(生化专业用)以及120学时的理论课(非生化专业用),讲课教师叫杨荣武,是个教书天才(合作文章(在我几十篇文章中,这是最得意的一篇)、同学的师弟、上海生化所),听课笔记真是一摞一摞,从中精炼出我们现在的6-70学时理论课(难呐),还要增补一些名人趣闻、科学前沿之类的味精,总的算来,我给你们讲一节课,自己要听7节课,再准备三小时,代价不菲,所以我常挂在嘴边的一句话就是,你们一定要学好这门课,学不好很对不起人,在你最对不起的人里面,我应该列在前三名。
.学生学习:看小说似的预习几遍,尤其上课要用心听讲(省时省力),当场或课后整理笔记(重要性),择重记忆(注意方法),几个小窍门:早上多吃糖(原因,脑血糖),站立听课(肾上腺,恐怖电影,我讲课)。
《生物化学》全套PPT课件

目录•生物化学概述•蛋白质结构与功能•酶学原理与应用•糖代谢途径与调控机制•脂类代谢途径与调控机制•基因表达调控与疾病关系生物化学概述生物化学定义与研究对象生物化学定义研究生物体内化学分子与化学反应的科学,探讨生命现象的化学本质。
研究对象生物大分子(蛋白质、核酸、多糖等)及其相互作用;生物小分子(氨基酸、脂肪酸、糖类等)及其代谢;生物体内能量转化与传递等。
生物化学发展历史及现状发展历史从19世纪末到20世纪初,生物化学逐渐从生理学和有机化学中独立出来,成为一门独立的学科。
随着科学技术的不断发展,生物化学的研究领域和深度不断拓展。
现状生物化学已经成为生命科学领域的重要分支,与分子生物学、遗传学、细胞生物学等学科相互渗透,共同揭示生命的奥秘。
同时,生物化学在医学、农业、工业等领域的应用也越来越广泛。
ABDC疾病诊断生物化学方法可用于检测血液中特定生物分子的含量或结构异常,从而辅助疾病的诊断,如血糖、血脂检测等。
药物研发通过对生物体内代谢途径和药物作用机制的研究,有助于设计和开发新的药物,提高治疗效果和降低副作用。
营养与健康生物化学在营养学领域的应用有助于了解食物中营养成分的代谢和利用,为合理膳食和营养补充提供科学依据。
遗传性疾病研究生物化学方法可用于研究遗传性疾病的发病机制和治疗方法,如基因疗法和干细胞疗法等。
生物化学在医学领域重要性蛋白质结构与功能0102 03氨基酸种类20种常见氨基酸,包括甘氨酸、丙氨酸、缬氨酸等。
氨基酸性质具有氨基和羧基的有机酸,呈两性,等电点下溶解度最低。
氨基酸分类根据侧链R基团的性质可分为脂肪族、芳香族、杂环族等。
氨基酸种类、性质及分类通过逐步去除N-末端氨基酸并测定其种类,推断蛋白质序列。
Edman 降解法质谱法cDNA 测序法利用蛋白质分子在电场或磁场中的运动规律进行测定。
通过测定编码蛋白质的cDNA 序列,间接推断蛋白质序列。
030201蛋白质一级结构测定方法主要依靠氢键维持的局部空间结构,包括α-螺旋、β-折叠等。
生物化学实验讲义

的多肽都有双缩脲反应,但有双缩脲反应的物质不一定都是蛋白质或多肽。
2. 材料与试剂
① 尿素。
-8-
② 10%氢氧化钠溶液。 ③ 1%硫酸铜溶液。 ④ 2%卵清蛋白溶液。 3. 操作方法 ① 取少量尿素结晶,放在干燥试管中。用微火加热使尿素熔化。当熔化的 尿素开始硬化时,停止加热,这时尿素放出氨,形成双缩脲。将得到的物质放置 冷却后,加 10%氢氧化钠溶液约 1mL,振荡混匀,再加 1%硫酸铜溶液 1 滴,边振 荡边观察出现的粉红颜色。实验中避免添加过量硫酸铜,否则生成的蓝色氢氧化 铜溶液会掩盖粉红色的出现。 ② 向另一试管加卵清蛋白溶液约 1mL 和 10%氢氧化钠溶液约 2mL,摇匀后 加入 1%硫酸铜溶液 2 滴,边加边振荡并观察紫玫瑰色的出现。
1.使用方法
(1)将温度计插入插孔内(一般在箱顶放气调节器中部)。 (2)通电,打开电源开关,红色指示灯亮,开始加热。开启鼓风开关,促 使热空气对流。 (3)注意观察温度计。当温度计温度将要达到需要温度时,调节自动控温 旋钮,使绿色指示灯正好亮。10min 后再观察温度计和指示灯,如果温度计上所 指温度超过所需温度,而红色指示灯仍亮,则将自动控温旋钮略向反时针方向旋 转,直调到要需要的温度上,并且指示灯轮番显示红色和绿色为止。自动恒温器 旋钮在箱体正面左上方或右下方。它的刻度板不能作让温度标准指示,只能作为 调节的标记。
具体反应如下:
双缩脲反应不仅在含有两个以上肽键的物质出现,在含有一个肽键和一个 -CS-NH2,-CH2-NH2-,-CRH-NH2-,-CH2-NH2-CHNH2-CH2OH 或-CHOHCH2NH2 等基团及含
有乙二酰二氨(
)等物质也有此反应。另外,NH3 能干扰此反应,
因为 NH3 与 Cu2+可生成暗蓝色的络离子 Cu(NH3)42+,因此,一切蛋白质或二肽以上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章糖代谢(10学时)第一节概述糖是一类化学本质为多羟醛或多羟酮及其衍生物的有机化合物。
在人体内糖的主要形式是葡萄糖(glucose,Glc)及糖原(glycogen,Gn)。
葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。
葡萄糖与糖原都能在体内氧化提供能量。
食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢。
机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他己糖代谢等。
本章重点介绍葡萄糖在机体中血糖浓度动态平衡的维持和前五种主要代谢的途径、生理意义及其调节。
一、糖的主要生理功能①氧化供能:糖类占人体全部供能的70%。
(1g糖可提供约16.7kJ的能量)②构成组织细胞的基本成分:核糖:构成核酸;糖脂:生物膜成分③转变为体内的其它成分:转变为脂肪;转变为非必需氨基酸一、糖酵解二、糖的消化吸收食物中的糖主要是淀粉,另外包括一些双糖及单糖。
多糖及双糖都必须经过酶的催化水解成单糖才能被吸收。
食物中的淀粉经唾液中的α淀粉酶作用,催化淀粉中α-1,4-糖苷键的水解,产物是葡萄糖、麦芽糖、麦芽寡糖及糊精。
淀粉的主要消化部位在小肠。
糖被消化成单糖后的主要吸收部位是小肠上段,己糖尤其是葡萄糖被小肠上皮细胞摄取是一个依赖Na+的耗能的主动摄取过程,这个过程的能量是由Na+的浓度梯度(化学势能)提供的,它足以将葡萄糖从低浓度转运到高浓度。
当小肠上皮细胞内的葡萄糖浓度增高到一定程度,葡萄糖经小肠上皮细胞单向葡萄糖转运体(unidirectional glucose transporter)顺浓度梯度被动扩散到血液中。
三、糖代谢是指葡萄糖在体内的复杂化学反应,葡萄糖吸收入血后,依赖一类葡萄糖转运体(glucose transporter, GLUT)而进入细胞内代谢。
第一节糖的无氧酵解(糖酵解)当机体处于相对缺氧情况(如剧烈运动)时,葡萄糖或糖原分解生成乳酸和少量ATP的过程称之为糖的无氧酵解。
这个代谢过程常见于运动时的骨骼肌,因与酵母的生醇发酵非常相似,故又称为糖酵解。
糖的无氧酵解途径,亦称为EMP途径。
因Meyerhof (M)、Embden (E)和Parnaas (P)的工作对阐明糖酵解的关键步骤起着直接重要的作用,因此酵解途径也被称为MEP途径。
反应过程:参与糖酵解反应的一系列酶存在在细胞质中,因此糖酵解的全部反应过程均在细胞质中进行。
根据反应特点,可将整个过程分为三个阶段,十步反应。
(一)糖酵解过程(Embden-Meyerhof Pathway,EMP)1. 活化阶段(1)葡萄糖磷酸化形成G-6-P此反应基本不可逆,调节位点。
以G-6-P形式将Glc限制在细胞内。
催化此反应的激酶有,已糖激酶和葡萄糖激酶。
已糖激酶:专一性不强。
己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。
葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。
Glc激酶是一个诱导酶,由胰岛素促使合成,肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。
进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。
(2)G-6-P异构化为F-6-P此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。
(3)F-6-P磷酸化,生成F-1.6-2P此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。
磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶。
2.裂解阶段(4)F-1.6-2P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)该反应在热力学上不利,但是,由于具有非常大的△G0负值的F-1.6-2P的形成及后续甘油醛-3-磷酸氧化的放能性质,促使反应正向进行。
同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。
(5)磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛由磷酸丙糖异构酶催化。
已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-2P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P。
3.放能阶段(6)3-磷酸甘油醛氧化成1.3—二磷酸甘油酸(高能化合物)和NADH+H+由磷酸甘油醛脱氢酶催化。
此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。
碘乙酸可与酶的-SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)。
(7)1.3-二磷酸甘油酸转化成3-磷酸甘油酸和ATP由磷酸甘油酸激酶催化,是酵解过程中的第一次底物水平磷酸化反应,也是酵解中第一次产生ATP的反应。
一分子Glc产生二分子三碳糖,共产生2ATP。
(8)3-磷酸甘油酸转化成2-磷酸甘油酸磷酸甘油酸变位酶催化,磷酰基从C3移至C2。
(9)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)(高能化合物)2-磷酸甘油酸中磷脂键是一个低能键(△G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇键是高能键(△G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。
(10)磷酸烯醇式丙酮酸生成ATP和丙酮酸。
不可逆,调节位点。
由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸。
这是无氧酵解过程第二次生成ATP,产生方式也是底物水平磷酸化。
由于是1分子葡萄糖产生2分子丙酮酸,所以在这一过程中,1分子葡萄糖可产生2分子ATP。
(11)EMP总反应式1葡萄糖+2Pi+2ADP+2NAD+ → 2丙酮酸+2ATP+2NADH+2H++2H2O(二)2分子丙酮酸还原为2分子乳酸在无氧条件下,丙酮酸被还原为乳酸。
此反应由乳酸脱氢酶催化,乳酸脱氢酶有多种同工酶(详见第四章),骨骼肌中主要含有LDH5,它和丙酮酸亲和力较高,有利于丙酮酸还原为乳酸,LDH5的辅酶是NAD+。
还原反应所需的NADH+H+是3-磷酸甘油醛脱氢时产生,作为供氢体脱氢后成为NAD+,再作为3-磷酸甘油醛脱氢酶的辅酶。
因此,NAD+来回穿梭,起着递氢作用,使无氧酵解过程持续进行。
在有氧的条件下,3-磷酸甘油醛脱氢产生的NADH+H+从细胞质中通过穿梭系统进入线粒体经电子传递链传递生成水,同时释放出能量(详见“第八章”)。
(三)糖酵解过程的能量变化1分子葡萄糖在缺氧的条件下转变为2分子乳酸,同时伴随着能量的产生,净产生2分子ATP;糖原开始1分子葡萄糖单位糖酵解成乳酸,净产生3分子ATP。
(四)糖酵解的生理意义(1) 主要的生理功能是在缺氧时迅速提供能量(2)正常情况下为一些细胞提供部分能量(3) 糖酵解是糖有氧氧化的前段过程,其一些中间代谢物是脂类、氨基酸等合成的前体。
(五)糖酵解的调节1.已糖激酶调节别构抑制剂(负效应调节物):G-6-P和ATP;别构激活剂(正效应调节物):ADP。
2.磷酸果糖激酶调节(关键限速步骤)抑制剂:ATP、柠檬酸、脂肪酸和H+,激活剂:AMP、F-2.6-2P;ATP。
细胞内含有丰富的ATP时,此酶几乎无活性。
高含量的柠檬酸是碳骨架过剩的信号。
3.丙酮酸激酶调节抑制剂:乙酰CoA、长链脂肪酸、Ala、ATP;激活剂:F-1.6-P。
共价修饰调节:(六)丙酮酸的去路1.进入三羧酸循环2.生成乳酸在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3-磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。
总反应:Glc + 2ADP + 2Pi → 2乳酸 + 2ATP + 2H2O动物体内的乳酸循环(Cori)循环:肌肉收缩,糖酵解产生乳酸。
乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。
Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。
3.生成乙醇酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇脱氢酶催化下,乙醛被NADH还原成乙醇。
总反应:Glc+2pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H20在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。
巴斯德效应( Pasteur effect):有氧氧化抑制生醇发酵(或糖酵解)的现象4.进行糖异生5.合成氨基酸(七)其它单糖进入糖酵解途径糖原降解产物G-1-P,D-果糖,D-半乳糖,D-甘露糖均转化为糖酵解的中间物。
第二节糖的异生作用糖异生作用(gluconeogenesis)是指非糖物质如生糖氨基酸、乳酸、丙酮酸及甘油等转变为葡萄糖或糖原的过程。
糖异生的最主要器官是肝脏。
糖异生起源于细胞线粒体内。
由丙酮酸生成Glc是糖异生的主要途径。
一、糖异生反应过程糖异生反应过程基本上是糖酵解反应的逆过程。
由于糖酵解过程中由己糖激酶、6-磷酸果糖激酶1及丙酮酸激酶催化的三个反应释放了大量的能量,构成难以逆行的能障,因此这三个反应是不可逆的。
①Glc到G-6-P ,②F-6-P到F-1.6-P ③PEP到丙酮酸。
这三个反应可以分别通过相应的、特殊的酶催化,使反应逆行,完成糖异生反应过程。
(一)丙酮酸转变为磷酸烯醇式丙酮酸丙酮酸生成磷酸烯醇式丙酮酸的反应包括丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶催化的两步反应,构成一条所谓“丙酮酸羧化支路”使反应进行。
这个反应是糖酵解过程中丙酮酸激酶催化的磷酸烯醇式丙酮酸生成丙酮酸的逆过程。
1. 丙酮酸羧化生成草酰乙酸(线粒体内)此反应由丙酮酸羧化酶催化,辅酶是生物素,ATP、Mg2+(Mn2+)参与羧化反应,CO2通过生物素使丙酮酸羧化生成草酰乙酸。
此酶存在于线粒体中,故丙酮酸必须进入线粒体才能被羧化为草酰乙酸,这也是体内草酰乙酸的重要来源之一。
丙酮酸羧化酶还催化三羧酸循环的回补反应,所以,草酰乙酸既是糖异生的中间物,又是三羧酸循环的中间物,丙酮酸羧化酶联系着三羧酸循环和糖异生作用。
丙酮酸羧化酶是别构酶,受乙酰CoA和高比值ATP/ADP的激活。
若细胞内ATP含量高,则三羧酸循环的速度降低,糖异生作用加强。
2.草酰乙酸脱羧生成磷酸烯醇式丙酮酸(PEP)(线粒体内)此反应由磷酸烯醇式丙酮酸羧激酶催化,由GTP提供能量,释放CO2。