亚甲基蓝标准曲线图

合集下载

实验4溶液吸附法测定固体比表面积

实验4溶液吸附法测定固体比表面积

实验四溶液吸附法测定固体比表面一、实验目的1、了解溶液吸附法测定固体比表面的原理和方法。

2、用溶液吸附法测定活性炭(硅藻土、碱性层析氧化铝)的比表面。

3、掌握分光光度计工作原理及操作方法。

二、实验原理1、朗伯-比尔定律(光吸收原理)根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比:A = lg(l0/I) =abc式中:A :吸光度;Io:入射光强度;I:透射光强度;a:摩尔吸收系数,与吸收物质的性质及入射光的波长入有关;b:液层厚度;c:溶液浓度。

一般来说光的吸收定律可适用于任何波长的单色光,但同一种溶液在不同波长所测得的吸光度不同,如果把吸光度A对波长入作图可得到溶液的吸收曲线,为了提高测量的灵敏度,工作波长一般选在A值最大处。

亚甲基蓝溶液在可见区有二个吸收峰:445nm和665nm,但在445nm处活性炭吸附对吸收峰有很大的干扰,固本实验选用的工作波长为665nm。

2、亚甲基蓝结构及吸附特征亚甲基蓝具有以下矩形平面结构:阳离子大小为17.0 >7.6 >3.25 X0-3O m3o亚甲基蓝的吸附有三种取向:平面吸附投影面积为135X10-20m2,侧面吸附投影面积为75X10-20m2,端基吸附投影面积为39X0-20m2。

对于非石墨型的活性炭,亚甲基蓝是以端基吸附取向,吸附在活性炭表面。

3、朗格缪尔(Langmuir)单吸附理论朗格缪尔吸附理论的基本假设是:固体表面是均匀的,吸附时单分子层吸附,吸附剂一旦被吸附质覆盖就不能再吸附,在吸附平衡时,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面积成正比,解吸速率与覆盖度成正比。

水溶性染料的吸附已经应用于测定固体表面积比表面,在所有的染料中亚甲基蓝具有最大的吸附倾向。

研究表明,在一定浓度范围内,大多数固体对亚甲基蓝的吸附是单分子层吸附,符合朗格缪尔吸附理论。

但当原始溶液的浓度过高时,会出现多分子层吸附,而如果平衡浓度过低,吸附又不能达到饱和,因此原始溶液的浓度以及平衡后的浓度应选择在适当的范围。

氨氮、亚硝酸盐、硝酸盐、尿素、氰化钾等标准曲线

氨氮、亚硝酸盐、硝酸盐、尿素、氰化钾等标准曲线
0.571
0.765
1.119
回归方程与相关系数:
Y=bX+a
b=3.774×10-3
a=2.097×10-3
r=0.9999
标准曲线
使用范围:水质分析
检测项目:氰化物
方法依据:GB/T5750. 5-2006分光光度法
标准溶液配置:
标准溶液(1.000ug/ml):用68ug/ml GBW(E)080115标准溶液(国家标准物质研究中心)逐级稀释而成。
1
氨氮
2
亚硝酸盐氮
3
硝酸盐氮
4
挥发性酚
5
硫酸盐
6
氰化物
7
阴离子合成洗涤剂
8
尿素
9
氯化钾
10
硫化物
标准曲线
使用范围:水质分析
检测项目:氨氮NH3-N
方法依据:GB/T5750. 5-2006纳氏试剂分光光度法
标准溶液配置:
NH3-N标准溶液(1.000ug/ml):用100.0ug/ml GBW(E)080220 NH3-N标准溶液(国家标准物质研究中心)逐级稀释而成。
标准曲线:
m(Hg2+,ug)
0.0
0.01
0.05
0.10
0.15
0.20
0.40
0.80
吸光度A:
0.002
0.011
0.062
0.125
0.198
0.264
0.553
1.061
△A
0
0.009
0.060
0.123
0.197
0.262
0.551
1.059
回归方程与相关系数:

高效液相色谱法测定养殖水体中的亚甲基蓝

高效液相色谱法测定养殖水体中的亚甲基蓝

高效液相色谱法测定养殖水体中的亚甲基蓝龙举;李子孟;喻亮;李佩佩;严忠雍;张小军【摘要】[目的]探讨一种高效液相色谱法测定水产养殖水体环境中亚甲基蓝含量的分析方法,为亚甲基蓝测定方法的建立提供参考.[方法]将水样经预处理后利用二氯甲烷萃取,经旋转蒸发仪抽真空浓缩净化后高效液相色谱-紫外检测器检测,采用外标法定量分析.[结果]亚甲基蓝在0.05~1.00 mg/L质量浓度范围内线性相关系数均大于0.999;在0.06 ~0.80 mg/L添加范围内的平均回收率为75.2%~ 86.0%,相对标准偏差均小于12.0%;方法定量限为0.05 mg/L.[结论]该方法的重现性较好,操作方便,定性准确且回收率较高,能够用于快速分析水产养殖水体环境中亚甲基蓝含量.【期刊名称】《安徽农业科学》【年(卷),期】2015(000)024【总页数】3页(P5-6,16)【关键词】高效液相色谱;养殖水体;环境;亚甲基蓝【作者】龙举;李子孟;喻亮;李佩佩;严忠雍;张小军【作者单位】浙江省海洋水产研究所,浙江省海水增养殖重点实验室,浙江舟山316021;浙江省海洋水产研究所,浙江省海水增养殖重点实验室,浙江舟山316021;浙江省海洋水产研究所,浙江省海水增养殖重点实验室,浙江舟山316021;浙江省海洋水产研究所,浙江省海水增养殖重点实验室,浙江舟山316021;浙江省海洋水产研究所,浙江省海水增养殖重点实验室,浙江舟山316021;浙江省海洋水产研究所,浙江省海水增养殖重点实验室,浙江舟山316021【正文语种】中文【中图分类】S949亚甲基蓝(methylene blue,MB)是一种人工合成的噻嗪类染料,被广泛应用于化学指示剂、染料、生物染色剂和药物等方面[1]。

基于亚甲基蓝的氧化还原性,它作为药物使用时主要用作解毒剂,可用于亚硝酸盐、氰化物、硝基苯、乙酰苯胺等药物中毒以及氨基比啉、磺胺类等药物引起的高铁血红蛋白症。

水质 硫化物的测定 亚甲基蓝分光光度法

水质 硫化物的测定 亚甲基蓝分光光度法

水质硫化物的测定亚甲基蓝分光光度法硫化物的测定亚甲基蓝分光光度法
亚甲基蓝分光光度法是测定水体中硫化物的常用方法,是以亚甲基蓝(PP蓝)为指示剂,测定可硫化性物质的量的分析方法,其原理是在特定的pH值条件下,由于水中存在硫化物,把亚甲基蓝对硫酸盐和硫化氢的作用,生成磷蓝色离子,可以根据磷蓝色离子在波长为620nm下光谱吸收度大小,来估算硫化物存在量。

实验原理:
实验室准备:
1.用于准备样品的容器:如玻璃瓶、定量秤等;
2.准备指示剂:纯度大于99%的亚甲基蓝(PP蓝);
3.分光光度仪:准确可靠,可在IP-67标准下使用,设备操作稳定,使用长期稳定;
4.准备硫酸标准溶液:硫酸铵、硫酸钠、硫酸钾;
5.准备容器:在实验前准备洗涤干净,不含钙、镁、鐵等金属离子的容器;
实验步骤:
1.称取比的水样7.5ml,加入亚甲基蓝12-15mg,放入容器中,搅拌均匀;
2.加入有机溶剂,达到25ml,用pH计调整pH值至7.0左右;
3.放入分光光度计,在波长620nm进行测量;
4.根据标准曲线将测量结果转换成可硫化物量,作为测定水体中硫化物含量结果。

以上是测定水体中硫化物的常用方法,亚甲基蓝分光光度法的实验原理和步骤,步骤繁琐且容易出错,实验者在实验前应根据具体样品的要求预处理样品,避免称量误差和测量器件的偏差。

实验过程中,要注意样品的搅拌均匀,最后要回收清洗容器,处理污染物或废物,以便不影响下一次测定结果和环境的安全性。

芬顿试剂降解有机染料的研究

芬顿试剂降解有机染料的研究

芬顿试剂降解有机染料的研究摘要钴催化过硫酸氢钾(Co/PMS)是一种类芬顿氧化技术,它克服了Fenton 氧化技术的许多缺陷,是一种新兴的高级氧化技术。

本文采用钴催化过硫酸氢钾降解亚甲基蓝有机染料,分别研究了过硫酸氢钾、钴、亚甲基蓝的用量和反应温度四个变量对降解速率的影响,通过四因素三水平正交实验找出最佳实验条件。

实验结果表明:1). Co离子的催化性能较高,在很少量的情况下就可以完成对PMS 的催化;2).产生的SO4-·氧化还原电位高,具有强氧化性,能够在广泛的pH 范围( 2—9)内降解有机污染物,3). 过硫酸氢钾的用量少,可以节约实验成本,并且由于其是固体,方便储存和运输,4). 反应后不产生污泥,对悬浮固体具有一定的去除效果,对染料水中的COD也具有一定的降解率,5). 在短时间(10min)和常温条件(20℃)下,其对亚甲基蓝染料水的脱色效率能达到90%以上,具有显著的实验效果。

这些优异的特性会随着环境污染治理的深入而得到更为广阔的发展,同时使该项技术的研究和应用具有更大的吸引力。

当今社会水资源短缺问题尤为突出,充分的对染料废水进行降解是我们应当关注的环境问题,希望这项研究能够更广泛的运用在环境水污染治理方面。

关键词:钴,催化,过硫酸氢钾,降解,亚甲基蓝,CODFenton degradation of organic dyesABSTRACTCobalt catalyze potassium monopersulfate(Co/PMS) which is a kind of similar Fenton oxidation technology, and it overcomes a lot of defects of Fenton oxidation technology, which is a new sort of advanced oxidation technology.In summary, this paper using cobalt catalyze potassium hydrogen sulfate , which degrade methylene blue dye water. This test is research over the four elements: the amount of the potassium hydrogen sulfate, cobalt, initial methylene blue dye water and the reaction temperature on the degradation rate of the methylene blue dye water, and get through the four factors and three levels orthogonal experiment to find the best experimental conditions, the results show that:1) the cobalt ions have a high catalytic performance, and in a very small amount of the cobalt ions can catalyze PMS very well, and producing a strong oxidizing SO4-·, 2) in this experiment can generate a strong oxidizing SO4-·, it can degrade organic pollutants in a wide pH range (2-9),3) in this experiment, it needs very little amount of the PMS, so it will save experiment prime cost and because it is a kind of solid, so it can easy storage and transport; 4) the reaction does not produce sludge, and it also can remove suspended solids in some effect; in the dye water, COD also play a role, through this experiment, this method can remove COD in some effect, too. 5) in a short period of time(10 minutes) and in ordinary temperature(20 degrees Celsius), it can degrade methylene blue dye water and the removal rate can achieve more than 90%, what a significant result it is.To these excellent characteristics, With the depth of the environmental pollution governance, which will enable this research and this application have a highly and great attractiveness, in today, our society should be concerned about the dyeing wastewater by degradation fully, and this should also be ableto become the whole world environmental problem, shortage of water resource is also become a important problem particularly prominent, hope this study will be able to be used for control the pollution water, and which will also have a wide range of use in the governance aspects for the environment and water pollution.KEYWORDS: Cobalt, catalyze, potassium monopersulfate, degrade, methylene blue, COD目录前言 (1)第1章绪论 (2)1.1 高级氧化技术 (2)1.1.1 芬顿试剂 (2)1.1.2 类芬顿试剂 (3)1.1.3 两者的比较 (3)第2章钴催化过硫酸氢钾及降解有机染料机理 (4)2.1 Co/PMS体系降解有机染料的机理 (4)2.1.1 SO4-.链式反应机理 (4)2.1.2 降解有机染料机理 (4)2.1.3 pH影响机理 (5)第3章材料与方法 (6)3.1 药品及仪器 (6)3.1.1 试验方法 (6)3.1.1.1 过硫酸氢钾用量的影响 (6)3.1.1.2 钴离子用量的影响 (7)3.1.1.3 亚甲基蓝浓度的影响 (8)3.1.1.4 温度的影响 (9)3.2 四因素三水平正交实验 (10)第4章数据处理 (13)4.1 降解率 (13)4.1.1 723型分光光度计测亚甲基蓝标准曲线的绘制 (15)4.1.2 756型分光光度计测亚甲基蓝标准曲线的绘制 (15)4.2 速率常数k1 (16)4.3 降解率D与速率常数k1 (18)4.4 正交数据表 (20)第5章亚甲基蓝的COD降解率 (22)5.1 水样的COD (22)5.1.1 所需试剂及装置 (22)5.1.2 实验步骤 (22)5.2 染料COD (23)结论 (24)谢辞 (26)参考文献 (27)外文资料翻译 ................................................... 错误!未定义书签。

亚甲基蓝分光光度法测定水中硫化物有关条件的探讨

亚甲基蓝分光光度法测定水中硫化物有关条件的探讨

亚甲基蓝分光光度法测定水中硫化物有关条件的探讨在咱们日常生活中,水质问题一直是个大头大尾的话题,不仅关乎咱们的饮用水安全,也关乎着环境保护,搞得像是全世界都在关注一样。

说到水质,硫化物这东西可不能小看。

你别看它名字简单,硫化氢那味儿一闻就知道有点“臭味”,一旦浓度高了,不仅会对水体中的生态系统造成大影响,连我们人体也不能“轻松对付”。

怎么才能测出水中有多少硫化物呢?嘿,这就得说到亚甲基蓝分光光度法了。

听名字就觉得有点专业对吧?不过别担心,咱今天就用通俗的语言给你说清楚,看看这个方法到底咋用,能有什么效果。

亚甲基蓝分光光度法其实是个老生常谈的经典方法,说白了就是用一种特别的蓝色染料——亚甲基蓝,它能够和硫化物反应,形成一个有色复合物。

然后呢,咱们通过分光光度计来测量这个颜色的深浅。

别小看这个“深浅”,它能告诉我们水中硫化物的浓度。

这个方法其实不算复杂,只要找对了条件,测量起来还是挺靠谱的。

但你要是直接拿个试剂盒试一试,可能还真得注意一些细节,不然结果出来不一定准确哦。

要说这个亚甲基蓝分光光度法,最讲究的就是反应条件了。

得保证反应充分,那才能得到一个准确的测定结果。

反应要在合适的 pH 条件下进行,这个值可不随便,酸性或者碱性都不行。

具体得控制在一定的范围内,反应才会顺利。

那到底该怎么调呢?其实很简单,水中的 pH 值如果偏酸,硫化物和亚甲基蓝的反应就容易“扑空”,不稳定;如果偏碱,又容易形成一些不溶物,反而测不出硫化物。

所以,最佳的 pH 范围基本是中性或者微酸性的环境,这样反应才比较高效。

要是搞得太酸,反而会浪费掉亚甲基蓝,反应不完全。

哎,真是细节决定成败啊!然后咱还得说说温度问题,太高或者太低的温度都会影响反应速度。

温度适中反应最快,所以实验的时候一般都会控制在25℃左右,既不会让反应过快,也不会太慢,保证结果稳定。

你要是有兴趣,还可以做个小实验,看看温度一变,颜色变化的速度有多大,估计也能自己感受到温度对反应的影响。

FENTON降解亚甲基蓝

FENTON降解亚甲基蓝
中毒处理:
一般药品溅到手上,通常可用水和乙醇洗去;实验时若 有中毒特征,应到空气新鲜的地方休息,最好平卧,出现其 他较严重的症状,如皮肤斑点、头昏、呕吐、瞳孔放大时应 及时送往医院。
芬顿(Fenton)法降解亚甲基蓝
芬顿(Fenton)试剂对有机污染物的化学降解是 前景广阔的高级氧化技术,具有反应快、降解完全 等优点:
芬顿(Fenton)法降解亚甲基蓝
➢ 实验安全须知 ➢ 实验目的和要求 ➢ 实验内容
实验安全须知
实验中常见的安全问题
在实验中,我们用到了有毒有害的污染物,如含Co2+、 Ni2+的溶液、苯酚、乙醚、CCl4等,有强氧化性化学试剂, 如H2O2溶液,还有强腐蚀性物质,如浓H2SO4、浓HCl溶 液等;
pH过低时,H+是HO•的清除剂:H+ + HO• + Fe2+ = H2O + Fe3+,这也不利于HO•的产生。
另外,FeSO4和H2O2的量和配比也会影响芬顿试剂的氧化降
解性能。
试剂与仪器
1、亚甲基蓝固体 2、亚甲基蓝操作液(50 mg/L) 1500mL 3、30% (w/w) H2O2溶液,密度1.11g/mL 4、七水硫酸亚铁固体 FeSO4. .7H2O 5、NaOH 溶液(1 mol/L) 6、H2SO4溶液(1 mol/L)
试剂与仪器
分光光度计 每组一台 pH计 一台 比色管 9根每组 烧杯 250ml,5个每.组;100ml,1个每组 容量瓶 1000ml一个每组,500ml二个每组 玻棒 每组3根;计时器 1个每组 电子天平 每组一台 量筒 100ml 一个每组 各类移液管等 1ml,5ml,10ml各一根每组 搅拌机 2台每组

亚甲基蓝分光光度法测定水中硫化物

亚甲基蓝分光光度法测定水中硫化物

亚甲基蓝分光光度法测定水中硫化物
亚甲基蓝分光光度法(Methylene Blue Spectrophotometric Method)是一种常用于测定水中硫化物含量的方法。

该方法基于硫化物与亚甲基蓝(Methylene Blue)反应生成深蓝色络合物的原理。

硫化物可以还原亚甲基蓝,使其从淡蓝色变为深蓝色,并且络合物的最大吸收波长位于665 nm,可以通过分光光度计测定其吸光度来确定硫化物的浓度。

以下是亚甲基蓝分光光度法测定水中硫化物的步骤:
1. 样品处理:将待测水样经过适当处理,去除干扰物质,如过滤、调整pH值等。

2. 标准曲线制备:准备一系列浓度已知的硫化物标准溶液。

可以通过稀释硫化物标准溶液来制备不同浓度的标准溶液。

3. 反应体系制备:将一定体积的标准溶液和待测水样分别与亚甲基蓝试剂混合,使反应发生。

4. 反应时间:让反应体系反应一定时间,通常为数分钟。

5. 吸光度测定:使用分光光度计在665 nm处测定反应体系的吸光度值。

6. 绘制标准曲线:将标准溶液的浓度作为横坐标,对应的吸光度值作为纵坐标,绘制标准曲线。

7. 测定待测水样:将待测水样按照相同方法进行处理和测定吸光度。

8. 读取浓度:根据标准曲线,确定待测水样中硫化物的浓度。

需要注意的是,在进行实验时,要确保实验室操作环境的洁净和无硫化物的干扰。

此外,亚甲基蓝分光光度法在高浓度硫化物样品中可能存在线性范围限制或干扰问题,需要根据实际情况选择适当的稀释倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A b s o r b a n c e u (a .u .)Consistence mg/L
图 3- 2 亚甲基蓝的标准曲线
降解率(%)亚甲基蓝初始浓度(mg/L) 用722E 分光光度计在最大吸收波长(665.00 nm) 下测定亚甲基蓝水标准溶液的吸光度,以浓度C 为横坐标,吸光度A 为纵坐标,绘制标准曲线;并对曲线线性拟合,并得出回归方程,相关系数为0. 9969。

从图中可以看出在该浓度范围内,C-A 能较好地满足线性关系,符合A=0.23133C 方程
根据郎伯-比尔定律C/C 0=A/A 0,计算亚甲基蓝的降解率,公式如下:
%100%0
0⨯-=
C C C 降解率 式中: C 0——初始浓度
C ——光照后的浓度 根据标准曲线吸光度与溶液浓度的关系可确定未知MB 溶液的浓度。

相关文档
最新文档