1 数学史的教育价值(改)
论数学史在数学教育中的教育价值

论数学史在数学教育中的教育价值数学史是研究数学的历史发展过程的学科,它涵盖了从古代到现代的数学发展历程。
数学史对数学教育具有重要的教育价值。
首先,数学史能够帮助学生了解数学的发展过程。
通过学习数学史,学生能够了解数学是如何从古代的简单的计数方法发展到现代的高深的理论体系的。
这有助于学生更好地理解数学的基本概念和思想,并能够更好地学习数学。
其次,数学史能够帮助学生培养历史意识和文化意识。
通过学习数学史,学生能够了解不同时期数学的发展状况,并能够更好地了解不同文化背景下的数学思想。
这有助于学生树立正确的历史观和文化观,培养良好的文化素养。
总的来说,数学史在数学教育中具有重要的教育价值。
通过学习数学史,学生能够了解数学的发展过程,培养历史意识和文化意识,有助于提高学生的数学素养
此外,数学史在数学教育中还能够帮助学生培养创新思维和独立思考能力。
通过学习数学史,学生能够了解众多伟大的数学家如何通过独立思考和创新思维来推进数学的发展。
这有助于学生学会独立思考和创新思维,培养创新思维能力。
总的来说,数学史在数学教育中具有重要的教育价值。
它能够帮助学生了解数学的发展过程,培养历史意识和文化意识,培养创新思维和独立思考能力。
在数学教育中,数学史可以作为一门辅助性的学科,用于帮助学生更好地理解数学的基本概念和思想,并能够更好地学习数学。
数学史还可以作为一门独立的学科,让学生深入了解数学的发展历程,培
养学生的历史意识和文化意识。
无论是作为辅助性学科还是独立学科,数学史都能够为学生的数学学习带来重要的价值。
浅谈数学史的教育价值

浅谈数学史的教育价值数学是一门古老而又神秘的学科,它的历史可以回溯到数千年前。
在过去的几百年间,数学已经经历了许多创新和发展。
数学史不仅仅是一个学科的历史发展,同时也可以对学生们学习数学产生一定的教育价值。
在本文中,我们将通过对数学史的探讨,探寻其中的教育价值,以期激发读者对数学的兴趣和灵感。
首先,数学史可以帮助学生更好地理解数学原理。
学生们通常会觉得数学很困难,因为他们不理解数学的来源和背景。
通过了解数学的历史,学生们可以更深入地了解数学的原理、规律和概念。
例如,了解如何对等式进行证明、发展几何平面和空间,学生可以通过了解数学历史的经验,掌握一些重要的数学技能。
其次,数学史可以帮助学生关注数学的其他方面,并使学生对数学的未来变得更加乐观。
学生应该了解数学研究的最新前沿,并尝试理解数学的未来发展趋势。
数学历史可以激励学生对数学研究感兴趣并对数学领域的未来发展充满信心。
第三,在学习过程中,通过了解数学历史可以开阔学生的知识和视野。
数学历史的发展涉及到许多学科,包括哲学、物理学、天文学等等,它将数学与其他学科联系在一起并促进了交叉学科研究的发展。
了解数学历史的学生可以更好地了解这个世界,它的发展规律和文化背景。
这些知识可以帮助学生更好地理解数学本身的发展历程和其对人类文明的影响。
第四,数学史还可以帮助学生更好地了解数学工具的应用。
通过了解数学历史的发展,学生可以了解到许多数学方法和技术的概念及其应用,这些技术可以通过在不同领域的应用产生巨大的影响。
例如,研究基础代数技术揭示了数学线性系统的应用;研究三角函数库引进了计算机科学的发展等等。
利用数学工具的推广应用可以为学生提供指导,并帮助他们在不同领域获得成功。
最后,数学史也可以帮助学生极大得激发学习数学的兴趣。
了解历史知识可以帮助学生更好地关注数学的本质并了解到数学的智慧和美妙。
从尝试解决数学难题到阅读研究论文,这些经历都可以帮助学生对数学产生浓厚的兴趣和喜爱。
新课程理念下数学史教育价值的实践探索

分不开的。数学方法论专家徐利治先生认为, 数学哲学、 ! 史融入数学教学 的可操作性 具体 方法 的探讨。本文拟给
出以下几种具体 的操作方法 , 旨在抛砖引玉 , 以期有更多 数学史 与数学教育的结合是数学教育改革的一个重要方 l
的 向。数学教育专家张奠 宙先生称数学史是数学教 育的有 f 、 有 效 的数 学史 与数 学 教 育 整 合 的 方式 产生 。 更 机 组成 部 分 。数 学 教学 论 专 家 宋 乃 庆 教 授 则提 出数 学史 I
数学史课程研究、数学史与数学教育相关理论与案例研 I 与数学教育的国际比较研究等。 此外, 国内各类期刊中涉 : 与数学教育研究的良 好前景。 l
教学实 例 : 二次方 程 azb+ = ( ≠O 求 根公式 的 x+ x c O a ) 在 今 天的教科 书 中是利 用配 方法 给 出 a b + = x+ x c O
识 、 能 、 想 方 法 , 且 了解 数 学 发 展 的 历 史 和未 来 。 技 思 而 时 使用的教育形态 , 使数学史为生动活泼 的数学教学服务 。
至今日, 数学史对于数学教育的重要价值已在国内得到 l 随着数学史 与数学教育研究的深入开展 ,数学史为数学
教 广泛重视。 数学大师吴文俊先生说, 数学教育与数学史是 1 育 服 务需 要 从 理 论 走 向 实践 ,学 术 界也 日益 注 重 数学
究、 外国数学史( 包括 比 较数学史)中国数学史、 、 数学史 I 导 。 推 及数学史与数学教育的文章也逐年增多,表现出数学史 I a ) j 式 的 : ≠O 求 眼公 (
a + x c O x ) —-丁 c .2b + = (+ x b 4a : 2
—
x:
浅谈数学史融入初中数学课堂的意义和教育价值3100字

浅谈数学史融入初中数学课堂的意义和教育价值3100字摘要:数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。
它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素以及历史上数学科学的发展对人类文明所带来的影响。
在初中数学这一科目的学习中,数学教材应当包含一些学习辅助材料,如数学家介绍、史料、背景材料等。
通过把一些重要的数学史材料介绍给学生,使学生对数学发展的基本规律和思想有一定的认识和了解,使学生感受数学发展的曲折,激发学生对数学学习的积极性和创造性。
关键词:数学史;初中数学;初中数学教学数学这门科目,在大多数学生心目中是一门枯燥乏味、抽象难懂的科目,很大的一个原因是数学教师的教学无法引起学生的兴趣,教师呈现给学生的是那些经过反复推敲、已经定型而且失去生机的数学知识。
所以,长期以来数学教师都是考什么教什么,因为中考是不会涉及数学史知识的。
实际上,历史上那些数学家的传记轶闻对学生的人格成长起着重要的作用,而且可以活跃课堂气氛,调动学生对数学这一科目的积极性。
所以,把数学史渗透到初中数学课堂中的意义是无可替代的。
一、数学史应如何进入初中数学课堂我认为数学史的教学方法应该是结合课本进行渗透。
现在,数学史已经作为数学课本的一部分,写入了教材。
要想让数学史真正融入课堂、成为初中数学教学的一部分,就必须使之与学生关注的科目内容有效结合起来,结合初中数学教学的实际情况,抓住关键,不可以本末倒置。
比如,对一些抽象概念的理解,我们只有对学生讲清楚它的来龙去脉才能使学生对知识的理解更透彻、记忆更深刻。
在初中数学教学中,我在给学生引入无理数时,首先给学生解释了无理数是怎样来的:公元前500年,古希腊毕达哥拉斯学派的弟子希勃索斯发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派"万物皆为数";(指有理数)的哲理大相径庭。
阐述数学史在小学数学教育中的价值

阐述数学史在小学数学教育中的价值摘要:当前教育改革的推进使得小学数学的教学中增添了数学史的知识,这有效的发挥了数学史自身的价值.具体来说,数学史理应成为小学数学中必不可少的部分。
数学史在小学数学中的作用主要有以下两个方面:第一,学习数学史可以有效地提升同学们的智力水平。
第二,老师在教授数学史的过程可以加深老师自身对于数学理解的深度,从而提升老师的教学水平,形成独特的“台风”。
关键词:数学史;小学数学教育;价值当前的教育改革已经清晰地将数学史纳入小学数学的范畴,目前我们也可以看到不同版本的小学数学教材已经将数学史的内容添加其中。
小学生学习数学史可以增添学生在学习数学过程中的乐趣,同时也可以让学生在学习的过程中增加其理解知识的深刻程度,使其知其然的同时知其所以然。
同时,数学史增添到课程中对于教师的教学也有一定的益处。
1.增添同学们学习的兴趣和乐趣在当前教育理念指导下,尤其在小学阶段,我们应注重对学生兴趣的培养。
在老师将数学知识教授给小学生的过程中,可以以数学家的励志故事或一些较为有趣的小例子来引出课堂的主题。
通过这些小故事,可以起到调动课堂气氛、调动学生在课堂上的积极性,使学生切实体会到数学课的趣味性,进而使同学们在潜移默化中喜欢上数学课堂。
2.为学生的德育工作打下良好的基础这一点是基于同学们在了解数学家自幼刻苦学习的故事后,逐渐培养出来的。
老师在讲授知名数学家时可以结合具体的事例着重突出其优秀品质,使小学生产生共情。
如此便会培养出学生在面对困难时不退缩、不退却、勇往直前的优良品格,这对于小学生的学习路途和成长道路都会产生莫大的积极影响,同时也助于培养其好奇心和积极探索知识的求知欲。
例如,圆周率的计算、费马大定理的证明等,都可以使同学们在学习的过程中受到无形的鼓舞。
而且,我们要看到,数学史本身就充满了辩证法的光芒。
学生通过对数学史的学习可以从小就种下辩证法思想的幼苗。
除此之外,老师在讲授本民族本国家伟大数学家的同时也会培养同学们的民族自信心和爱国意识。
数学史的教育价值_全面认识新课程下数学史的教育价值

数学史的教育价值_全面认识新课程下数学史的教育价值现今,我国公布的《义务教育数学课程标准(试验)》和《中学数学课程标准(试验)》已将数学的背景学问、数学史选讲与数学文化列入其中。
可见,新一轮的数学课程改革,已使数学史成为数学文化的载体和数学课程的有机组成局部。
数学教育的开展离不开数学史,数学史与数学教育是相互须要、相互依存不行分割的。
当前数学课程的改革须要数学史:数学史是数学教育最好的启发式之一。
正如英国闻名数学史家和数学教育家史密斯所言:“数学史在今日已成为一门具有无可否认的重要性的学科。
无论从数学的角度还是从教学的角度来看,其作用变得更加明显。
因此,在公众教育中赐予其恰当的位置乃是不行或缺的事。
”“数学史已被公认为师范教育及大中学校学生自由教育中的重要学科”。
一、老师对数学史教育价值的相识偏差。
导致高评价低应用为了了解初中新课程中老师运用数学史学问教学的状况以及对数学史教学的看法,以便从中发觉问题、解决问题,也为推动新课程的进一步开展供应实践支持,我们在2021年9月20日,对我县运用新教材的475名学生和45名初中老师进展了数学史进入新课程教学现状的调查(甘肃省从2021年起先初中新课程)。
调查结果说明:老师对数学史融入中学教学普遍持欢送看法。
认为可以增加学生学习数学的爱好,造就良好的品质和爱国情操,对数学的学习有促进作用,但在平常的教学中只是有时运用数学史教学,而学生获得数学史学问的途径主要还是通过自己阅读或老师提倡阅读得到的。
为什么会在志向与现实之间产生如此反差,以至于高评价低应用?我们认为有其主客观两个方面的缘由。
客观方面的缘由:1、老师缺乏能应用于教学的数学史料。
2、受中考或高考的影响。
这是被大多数老师认同的,认为考题中没有数学史,是中、高考制约了他们提高自身数学史学问的愿望和在课堂中经常运用数学史。
那么主观方面的缘由是什么?在老师问卷调查中我们设计了你认为在课本中增加数学史料其目的是()。
学习数学史的意义和价值

学习数学史的意义和价值
学习数学史,有其科学意义、文化意义和教育意义。
1、数学史的科学意义:
数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,数学传统与数学史材料可以在现实的数学研究中获得发展。
2、数学史的文化意义
数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系。
数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。
因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。
3、数学史的教育意义
数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素。
因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学。
浅析数学史对中学数学的教育价值

中遵循 正确的思维规律 和形式 , 在运算 、 推理 、・ 的考题也越来越 多,如计算佛 山一环环 内面 - 景
作图中和所得结论中都要准确无误。
二、 重反 思 , 抓粗心
: 、 积 地震中物资的运输等, 这些题背景复杂 , : 文 并根据历年中考题及学生的实 隋 况进行教学,
・ 字表达冗长 , 不易梳 理 , 只有平时熟悉才能在最 , 利实施新课标 , 顺 是提 高教学质量 的关键 。 :
生亲身经历将实际问题抽象成数学模型并进行 : 心批改学生完成的练习题 , 及时讲评, 从中查漏 以使学生养成深刻理解知识的本质, 从而达到
解 释与应用 的过程 ,进而使学生获得对数学理 : 补缺 , 固复 习成效 , 巩 达到 自我完善 的 目的。对 : 培养学生审题的能力 。寻求不同解题途 径与思 解 的同时 , 在思维能力 、 情感态度与价值观等方 : 错的题 目进行评讲 , 解 分析错在哪里? 为什么会 : 维方式 , 培养学生 的思维广 阔性 。 对问题解答 的 面得到进步与发展 。” 课程标准》 初 中毕 : ? 在《 与《 错 怎样改 变条件 和问题 , 使错误 的答案变成正 : 思维方式不同 , 产生解题方法各异 , 这样 训练有 业生 学业 考试与高 中阶段学校 招生考试 说 明》: 的答案 ; 确 对正确解 题的评讲 , 要分析解题 的根 : 益于打破思维定 势 , 开拓学生思路 , 优化解题方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法的背景,学习数学概念和方法有必要了解它们的发展历史。
5
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
早在19世纪,数学史与数学教育之间的关系已经受 到欧美数学家和数学教育家们的关注。 法国著名数学家庞加莱: 如果我们想要预见数学 的将来,适当的途径是研究
义也被一些西方数学史家和数学教育工作者所认识。早期 的数学教育杂志《新数学年刊》以大量篇幅刊登数学史的 文章,证明了这一点。
13
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
Huang Youchu: The History of Mathematics (Wenzhou University)
1742年,德国数学家海尔布罗纳(J.C.Heilbronner,1706~1747)出版《世界数学史》。 1758年法国数学家蒙蒂克拉(J.E.Montucla,1725~1799) 出版《数学史》,标志着数学史作为一门独立研究领域的 出现。 而随着该领域研究的深入和普及,数学史对数学教育的意
要价值:
“如果用历史回顾和历史轶事点缀枯燥的问题求 解和几何证明,学生的学习兴趣就会大大增 加”.
11பைடு நூலகம்
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
Huang Youchu: The History of Mathematics (Wenzhou University)
到了20世纪,数学史的教育价值受到欧美数学家进一步的 大力提倡. 在1904年德国海德堡召开的第三届国际数学家大会上, 美国著名数学史家和数学教育家史密斯 (D.E.Smith,1860~1944)、法国著名数学史家坦纳里 (P.Tannery,1843~1904)、意大利著名数学史家洛利亚 (G.Loria,1862~1954)等在提出的一项决议中称: “数学史在今天已成为一门具有无可否认重要性的学科, 无论从数学的角度还是从教学的角度来看,其作用变得更 为明显,因此,在公众教育中给予其恰当的位臵已成当务 之急.”
20
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
国际数学组织小常识:
国际数际数学家大会(International Congress of Mathematicians,简称ICM) 是由国际数学联盟IMU主办的,大会每四年举行一次,首届大会1897年在瑞士 苏黎士举行,至今已有百余年的历史。它是全球性数学科学学术会议,被誉为 数学界的奥林匹克盛会。 国际数学联盟(International Mathematical Union,简称IMU),又被翻译为国 际数学联合会,最早成立于1920年,1950又重新组建。 国际数学教育委员会(International Commission on Mathematical Instruction, 简称ICMI),每四年召开一次国际数学教育大会(ICME),1952年开始隶属于 IMU。 1976年,HPM(数学史与数学教育关系国际研究小组)隶属于ICMI。 1976年,PME(数学教育心理学国际组织,International Group of Psychology of Mathematics Education)隶属于ICMI。 ICMI的下属组织共四个,剩下的两个是国际妇女和数学教育小组(IOWME, the International Organization of Women and Mathematics Education) 和国际数 学竞赛联合会(WFNMC,the World Federation of National Mathematics Competitions) 。
邹腾(丹麦数学家): [通过数学史的学习]学生不仅 获得了一种历史感,而且, 通过从新的角度看数学学 科,他们将对数学产生更 敏锐的理解力和鉴赏力。 H. G. Zeuthen (1839-1920)
7
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
决议希望在大学里开设包括数学史在内的精密科学史课.
16
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
史密斯 •《初等数学的教学》(1900) •《近代数学史》(1906) •《几何的教学》 (1911)
数学史
温州大学 黄友初
数学史(The History of Mathematics)
Huang Youchu: The History of Mathematics (Wenzhou University)
1
数学史的教育价值
2
©2012, Huang YC. All right reserved
1 数学史的教育价值
与其他知识部门相比,数学是一门历史性或者说积累性很 强的科学,重大的数学理论总是在继承和发展原有理论的基础 上建立起来的,它们不仅不会推翻原有的理论,而且总是包容 原先的理论。因此学习和研究数学都有必要了解这门学科的发
展历史。
数学是高度抽象的学科,追求解决问题的一般模式,表达 上追求简洁。这使得数学的内容脱离了具体问题,也掩盖了其
康托(M. Cantor, 1829-1920)于1880年出版《数学史讲义》(4卷, 1880-1908),此书取代了蒙蒂克拉的《数学史》,成了当时最有影响的数 学史著作,对数学史学科的建立起着重要作用。
15
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
1.1 数学史与数学教育(HPM)简介
1.2 数学教育的历史相似性
1.3 数学史与数学教学 1.4 教育取向的数学史学习
3
©2012, Huang YC. All right reserved
19
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
1972年,在英国的爱塞特 (Exeter)举办的第二届国际数学教育大会上, Phillip S. Jones (University of Michigan, US)和Leo Rogers (Roehamptom Institute of Higher Education, UK) 成立了数学史与数 学教学关系国际研究小组(International Study Group on the Relations between History and Pedagogy of Mathematics,简称HPM), 标志着数学史与数学教育关系作为一个学术研究领域的出现。 1976年,HPM正式隶属于ICMI。 通常,我们现在把数学史与数学教育的研究统称为HPM。 HPM国际会议也是四年召开一次,和ICME会议同年,一般在其周边 城市召开。 全国的HPM会议是两年召开一次,2005年在西北大学,2007年在河 北师范大学,2009年在北京师范大学,2011年在华东师范大学。
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
《数学史》课程在美国
• 1891年:史密斯在密歇根州立师范学院开设《数学史》;
• 20世纪初:哥伦比亚大学师范学院设立数学教育博士点, 《数学史》是最重要的学位课程; • 1918年:卡约黎被加利福尼亚大学聘为数学史教授; • 1920年代初:40%的师范院校开设《数学史》; • 1936年:160所高校开设《数学史》; • 1950年代末:52%的师范院校开设《数学史》。
蒙蒂克拉(J. E. Montucla, 1725-1799, 法国数学家)于1758年出版《数学史》 (3卷),成了历史上第一部数学史经典 著作。
14
©2012, Huang YC. All right reserved
1.1 数学史和数学教育(HPM)简介
Huang Youchu: The History of Mathematics (Wenzhou University)
Huang Youchu: The History of Mathematics (Wenzhou University)
马赫(奥地利物理学家)
没有任何科学教育可
以不重视科学的历史 与哲学。
马赫在教授一种思想时,总 是会提及它的起源,并追溯
E. Mach (1838-1916)