走美杯五年级试题
【五年级】2017年走美杯试卷

第十五届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷(B 卷)1.计算:______21212121211=+++++.(写成小数的形式,精确到小数点后三位)2.两个标准骰子一起投掷2次,点数之和第一次为7,第二次为10的可能性(概率)为______(用分数表示).3.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数比如,6的所有因数为1,2,3,6,1+2+3+6=12,6是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,研究完美数可以从计算自然数的所有因数之和开始,321的所有因数之和为______.4.吴宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中个信封只放入一封信.只有一封信装对,其余全部被错装的情形有______种.5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=1,J=11,Q=12K=13)通过加减乘除四则运算得出24,最先找到算法者获胜。
游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q ,则可以由算法(2×Q)×(4-3)得到24.海亮在一次游戏中抽到了2,3,13,13,经过思考,他发现13×3-13-2,我们将满足24--=⨯d c b a 的牌组{}d c b a ,,,称为“海亮牌组”,请再写出5组不同的“海亮牌组” _________________________________________________________________________. 填空题Ⅱ(每题10分,共50分)6.在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、王、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫作“十二地支”,十天干和十二地支进行循环组合:甲子、乙丑、丙寅、…一直到癸亥,共得到60个组合,称为六十甲子,如此周而复始用来纪年的方法,称为甲子纪年法.在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有___________________________________.7.现有5个抽屉,每个抽屉中都放置3个玻璃球(形状大小相同),分别为蓝色、红色与黄色.如果分别从这3个抽屉中各取出一个玻璃球放在一个布袋中,则布袋中的3个玻璃球共有______种不同情况.8.古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:比如,根据图示,三边形数:1,3,6,10,…四边形数:1,4,9,16,…五边形数:1,5,12,22,…六边形数:1,6,15,28,…那么,第6个三边形数,四边形数,五边形数,六边形数分别为_________________. 9.用5个边长为单位长度的小正方形(单位正方形)可以构成如右下图所示的5-联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5-联方,其中,既具有中心对称性质又有轴对称性质的5-联方有______;既没有中心对称锉质又 不具备轴对称性质的5-联方有______.10.如下图所示,21∠=∠,43∠=∠,如果︒=∠68A ,那么︒=∠______E1l.索玛立方体组块是丹麦物理学家皮特•海音( Piet hein)发明的7个小立方体组块(如图所示,注意5号与6号组块,这是两个不同的组块).因为利用这7个组块可以恰好组成一个立方体,所以称为索玛立方体组块一个索玛立方体组块如果能够被某个平面分割成形状完全相同的两部分,则称这个组块是可平面平分的.那么,这些组块中有且只有一种不同平面平分方法的组块为__________,不可平面平分组块为__________(填0表示没有)12.有4个自然数,从其中任意选取3个数求和,可以而且只能得到28,29,30,那么,原来的4个自然数分别是__________.13.如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形称为完美长方形.已知右面的长方形是一个完美长方形,分割方法如右图所示这是一个长为57,宽为55的完美长方形,用小正方形中心的数字代表其边长,已知两个正方形的边长分别为30与27,那么,图中没有标示边长的小正方形的边长按照从小到大的顺序分别为____________________.___________________14.在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为每人每次可以选择某一木格中的任意数目(至少1个)的小球,并将其移动到该木格右边紧邻的那一木格中;当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜面对如图所示的局面(格中的数字代表小球的数目,木格下方的数字表示木格编号),先手有必胜策略,那么,为确保获胜,先手第一步应该移动______号木格中的______个小球.15.任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积、这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理勾股定理有着悠悠4000年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘徽给出了如下左图所示的简洁而美妙的证明方法,如下右图则是以这个方法为基础设计的刘徽模式勾股拼图板:如果上图中两个正方形的边长分别为3与4,那么三角形ACE的面积等于______(用分数表示),三角形BCD的面积等于______(用分数表示).。
走美杯2008-2015年试题及答案

15. 同学们,你玩过“扫雷”的游戏吗?在 64 个方格内一共有 10 个地雷,每格中至多有一 个,对于填有数字的方格,其格内无地雷且与其相邻的所有方格中地雷的个数与该数字 相等。你认为图中所标的数字_________是有雷的;
3.三个正方形如图放置,中心都重合,它们的边长一次是1厘米、3厘米、5厘米,图中阴影部分的面积是 ________平方厘米.
4.有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成9段.第一根剪成的每段比第二根剪成的每 段长10米.原来的每根绳子长________米.
5.观察一组式 32 + 42 = 52 ,52 + 122 = 132 , 72 + 242 = 252 ,92 + 402 = 412 , ……根据以上规律,请你写出第7组的 式子:__________________.
13.某校五年级二班共有35个同学,学号依次是1到35.一天他们去春游,除了班长之外,其他34个同学分 成5组,结果发现每个小组的同学学号之和都相等;后来这34个同学又重新分成8组,结果发现每个小 组的同学学号之和还是相等.班长的学号是_________.
14.9个小等边三角形拼成了如图的大等边三角形.每个小等边三角形中都填写了一个六位数,且有公共边 的两个小等边三角形所填写的六位数恰好有一位不同.现已有小等边三角形填好数.另外6个小三角形, 共有________种填法.
方法一:已给出第4组,再写出第7组,可以依次写出来:第5组:112 + 402 = 412 , 第6组:132 + 722 = 732 ,第7组:152 + 1122 = 1132 方法二:找出式子的规律,根据规律写出相应的式子,本题规律是 (2n + 1)2 + [2n(n + 1)=]2 [2n(n + 1) + 1]2 ,则第7个式:即 n = 7 时式子为:152 + 1122 = 1132 , 原式 =2002 ÷ 0.7 ÷1.1 =2 ×1001 ÷ 0.7 ÷1.1 =2 × 7 ×11×13 ÷ 0.7 ÷1.1 =2 ×13×100 =2600 .
五年级上册数学试题-第十一届走美杯初赛试卷C全国通用 PDF版 含答案 (1)

11届走美小学五年级试卷(C 卷)11届走美小学五年级试卷(C 卷)一、填空题Ⅰ(每题8分,共40分)1.去掉20.13中的小数点,得到的整数比原来的数增加了多少倍.【分析】原数有2位小数,将小数点去掉,变为原数的100倍,即增加了99倍。
2.在面积为210平方厘米的长方形内如图摆放了3个大小一样的小正六边形,每个小正六边形的面积是多少平方厘米.【分析】如下左图,将原图进行分割,变为一些小三角形、大三角形、五边形及六边形。
如下右图,原图中较大的三角形可以分为2个小三角形,六边形可以分为12个小三角形,而显然五边形是六边形的一半,所以可以分为6个小三角形。
于是,原长方形可以被分为21223631260⨯+⨯+⨯+⨯=个小三角形,而每个正六边形由12个小三角形组成,其面积为210601242÷⨯=平方厘米。
3.某城市出租车计费如下:起步里程为3千米,起步费10元,起步里程后每千米收费为2元;超过8千米以上的部分每千米收费为2.40元.某人坐出租车到离城20千米的地方办事,到达时需付车费多少元.【分析】10(83)2(208) 2.448.8+-⨯+-⨯=元。
4. 从1开始,轮流加4和3,得到下面一列数1,5,8,12,15,19,22……在这列数中与2013最接近的那个数是__________.【分析】可以将这串数列分为两个数列,将其奇数项取出,构成首项为1,公差为7的等差数列;将偶数项取出,构成首项为5,公差为7的等差数列于是,第一个数列的通项可以写为71a +,第二个数列的通项可以写为75b +,而201372874=⨯+,于是,这列数中与2013最接近的数是2014。
11届走美小学五年级试卷(C 卷)5.如图所示,心形由两个半圆,两个扇形和一个正方形拼成,心形面积是多少cm2.(π取3.14)【分析】心形由2个直径为10厘米的半圆、两个半径为10厘米、圆心角为45°的扇形和一个边长为10厘米的正方形组成其面积为2221452 3.1452 3.1410102572360⨯⨯⨯+⨯⨯⨯+=平方厘米。
第十届走美杯五年级初赛真题

第十届“走进美妙数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛注意事项:1. 考生按要求在密封线内填好考生的有关信息.2. 不允许使用计算器.小学五年级试卷(B 卷)一、填空题Ⅰ(每题8分,共40分)1.一段路,第一天修了全长的12,第二天修了剩下的12,第三天又修了剩下的12,还剩全长的______。
2.一块玉米地的形状如右图(单位:米)。
它的面积是_____平方米。
3.7A 是最简分数且7710A ,A 最小是____。
4.学校参加体操表演的学生人数在60~100之间。
把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。
参加这次表演的同学至少有______人。
5.右图的量杯可以盛6杯水或4碗水。
现将1杯水和2碗水倒入量杯,这时水面应到刻度_______。
二、填空题Ⅱ(每题10分,共50分)6.2012×20122012-2011×20122013 =________。
7.有一张残缺的发票如右图,那么单价是_______元。
8.200到220之间有唯一的质数,它是______。
9.右图中共能数出______个三角形来。
10.平时轮船从A地顺流而下到B地要行20小时,从B地逆流而上到A地要行28小时。
现在正值雨季,水流速度为平时的2倍,那么,从A到B再回到A共需_____小时。
三、填空题Ⅲ(每题12分,共60分)11.玉米炮有单筒玉米炮、双筒玉米炮、三筒玉米炮三种。
单筒玉米炮每次发射一根玉米,可以消灭20个僵尸;双筒玉米炮每次发射2根玉米,每根玉米消灭17个僵尸,三筒玉米炮每次发射3根玉米,每根玉米消灭16个僵尸。
玉米炮一共开炮10次发射玉米23根,消灭_____个僵尸。
12.小华需要构造一个3×3的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;现在他已经填入了2,3,6三个数,那当小华的乘积魔方构造完毕后,x等于______。
第届走美杯级初赛试题

第届走美杯级初赛试题 The Standardization Office was revised on the afternoon of December 13, 2020第八届“走进美妙的数学花园"中国青少年数学论坛趣味数学解题技能展示大赛初赛注意事项:1.考生要按要求在密封线内填好考生的有关信息.2.不允许使用计算器.小学五年级试卷一、填空题I(每空8分,共40分)1、.⨯+÷=378201067。
2、某车间男工人数是女工人数的2倍,若调走12名男工,则女工人数是男工人数的2倍。
这个车间原有人。
3、小明要在⨯44的方格表中选择4个方格表图上阴影,使得每行,每列,每条对角线上都恰好有一个格子涂上阴影。
现在,小明已经涂了两格,请你替他把剩下的两格涂上。
4、小华每分钟吹一次肥皂泡泡,每次恰好吹出100个,肥皂泡泡吹出后,经过一分钟就有一半破了,经过两分钟还有二十分之一没有破,经过两分半肥皂泡泡全破了。
在第20次吹出了肥皂泡泡的时候,没有破的肥皂泡泡有个。
5、甲、乙、丙、丁四人中只有1人会开汽车。
甲说:“我会开”。
乙说“我不会开”。
丙说:“甲不会开”。
丁什么也没说。
已知甲、乙、丙三人的话中只有一句是真话。
会开车的是。
二、填空题II(每题10分,共50分)6、定义x y x y1☆12☆23☆310☆10。
++++==+☆37。
()()()()7、有边长分别为10cm,11cm,12cm,13cm,14cm的正方形巧克力各一块,小哈利每天吃吃22cm,他一共可以吃___天。
8、一些不相同的正整数,平均值为100。
其中有一个是108。
如果去掉108,平均数就变为99。
这些数中最大的数是。
9、如图,梯形ABCD中,ABE和ADE的面积分别是cm22,3,CDE的面积是cm2。
cm210、在~120这二十个数中,任取十个数相加的和与其余十个数相加的和相乘,能得到___________个不同的乘积。
走美杯五年级详解

⎝ 7⎠
⎝ b⎠
牌组 {a,a,b,b}称为“王亮牌组”,请再写出一组不同的“王亮牌组”
。
考点:24 点
解析: ⎜⎛ a − a ⎟⎞ × b = ab − a = a(b −1) = 24 ,所以 24 能被 a 整除,
⎝ b⎠
所以 a 的可能取值为 1,2,3,4,6,8,12,24,对应的 b 的取值为 25,13,9,7,5,4,3,2 又因为 a、b 的取值范围为 1 至 13,
24,最先找到算法者获胜。游戏规定 4 张扑克牌都要用到,而且每张牌只能用 1 次,比如 2,3,4,Q 则可
以由算法 (2× Q)× (4 − 3)得到 24。
王亮在一次游戏中抽到了 4,4,7,7,经过思考,他发现, ⎜⎛ 4 − 4 ⎟⎞ × 7 = 24 ,我们将满足 ⎜⎛ a − a ⎟⎞ × b = 24 的
【第 13 题】如果两个自然数的积被 9 除余 1,那么我们称这两个自然数互为“模 9 的倒数”。比如,2 × 5 = 10 ,
被 9 除余 1,则 2 和 5 互为“模 9 的倒数”;1×1 = 1,则 1 的“模 9 的倒数”是它自身。显然,一个自然数
如果存在“模 9 的倒数”,则它的倒数并不是唯一的,比如,10 就是 1 的另一个“模 9 的倒数”。判断 1,2,
数)只有 2 与 3。那么,这个自然数是
。
考点:约数的个数
解析:设这个数为 2a × 3b ( a、b 均为正整数),由题意可知 (a +1)× (b +1) = 10 = 2× 5
所以 a = 1 ,b = 4 或 a = 4 ,b = 1
所以这个自然数是 21 × 34 = 162 或 24 × 31 = 48
2012年第十届走美杯初赛小学五年级(含解析)

第十届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷一、填空题Ⅰ(每题8分,共40分)1.一段路,第一天休了全长的12,第二天修了剩下的12,第三天又修了剩下的12,还剩下全长的_________.2.一块玉米地的形状如图(单位:米).它的面积是_________平方米.3.7A 是最简分数且7A >710,A 最小是_________.4.学校参加体操表演的学生人数在60~100之间,把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完.参加这次表演的同学至少有_________人.5.右图的量杯可以盛6杯水或4碗水,现将1杯水和2碗水倒入量杯,这时水面应到刻度_________.二、填空题Ⅱ(每题10分,共50分)6.2012×20122012-2011×20122013=_________.7.有一张残缺的发票如右图,那么单价是_________.8.200到220之间有唯一的质数,它是_________.9.右图共能数出_________个三角形来.10.平时轮船从A 地顺流而下到B 地要行20小时,从B 地逆流而上到A 地要行28小时.现正值雨季,水流速度为平时的2倍,那么,从A 到B 再回到A 共需_________小时.三、填空题Ⅲ(每题12分,共60分)11.玉米炮有单筒玉米炮、双筒玉米炮、三筒玉米炮三种,单筒玉米炮每次发射1根玉米,可以消灭20个僵尸;双筒玉米炮每次发射2根玉米,每根玉米消灭17个僵尸,三筒玉米每次发射3根玉米,每根玉 消灭16个僵尸,玉米炮一共开炮10次,发射玉米23根,消灭_________个僵尸.12.小华需要构造一个33 的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;如图,现在他已经填入了2,3,6三个数,那当小华的乘积魔方构造完毕后,x 等于______.13.有五个互不相等的非零自然数.如果其中一个减少45,另外四个数都变成原先的2倍,那么得到的仍然是这五个数.这五个数的总和是______.14.如图,直角三角形ABC 两直角边的长为3、4,M 为斜边中点,以两直角边向外作两个正方形.那么三角形MEF 的面积是_________.15.甲以每分钟60米的速度从A 地出发去B 地;甲出发5分钟后,乙每分钟80米的速度从B 地出发去A 地;结果他们在距两地中点100米的某处相遇.A 、B 两地相距_________米.第十届“走进美妙的数学花园”青少年展示交流活动图3趣味数学解题技能展示大赛初赛 小学五年级试卷参考答案1 2 3 4 5 6 7 8 18 85 5 72 4 20120001 1.36 2119 10 11 12 13 14 153252.5382369312.251000或3800参考解析一、填空题Ⅰ(每题8分,共40分)1.一段路,第一天休了全长的12,第二天修了剩下的12,第三天又修了剩下的12,还剩下全长的________.【考点】分数应用题 【难度】☆ 【答案】18【解析】相当于每天将剩余的减少到12,共减少了3次,共减少到11112228⨯⨯=.2.一块玉米地的形状如图(单位:米).它的面积是_________平方米.【考点】几何 【难度】☆【答案】87【解析】分成一个三角形和一个平行四边形,其面积为6827987⨯÷+⨯=.3.7A 是最简分数且7A >710,A 最小是_________.【考点】最值问题 【难度】☆☆ 【答案】5【解析】两边乘以7得到494.910A >=,所以所求的最小值为5.4.学校参加体操表演的学生人数在60~100之间,把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完.参加这次表演的同学至少有_________人. 【考点】数论整除 【难度】☆☆【答案】72【解析】8和12的最小公倍数为24,其倍数依次为:48、72、108、……所以为72.5.右图的量杯可以盛6杯水或4碗水,现将1杯水和2碗水倒入量杯,这时水面应到刻度_________.【考点】几何【难度】☆☆☆【答案】4【解析】每杯水相当于661÷=个刻度,每碗水相当于64 1.5÷=个刻度,所以1杯水和2碗水相当于12 1.54+⨯=个刻度.二、填空题Ⅱ(每题10分,共50分)6.2012×20122012-2011×20122013=_________. 【考点】速算巧算 【难度】☆☆☆【答案】20120001【解析】原式201220120000201220122011201200002011201320120001=⨯+⨯-⨯-⨯=.7.有一张残缺的发票如右图,那么单价是_________.【考点】数论弃九法 【难度】☆☆☆【答案】1.36【解析】可观察到个位数字为7,由于72是9的倍数,可得其数字和为9的倍数,百分位为2.经检验,符合题意:97.9272 1.36÷=.8.200到220之间有唯一的质数,它是_________. 【考点】质数合数 【难度】☆☆☆【答案】211【解析】依次划去所有2、3、5、7、11的倍数可得其为211.9.右图共能数出_________个三角形来.【考点】几何计数 【难度】☆☆☆【答案】32【解析】小正三角形有6个,大正三角形有2个,以大正六边形的边为底的等腰三角形有6个,以大正六边形的两条相邻的边为腰的等腰三角形有6个,直角三角形有12个,共32个.10.平时轮船从A地顺流而下到B地要行20小时,从B地逆流而上到A地要行28小时.现正值雨季,水流速度为平时的2倍,那么,从A到B再回到A共需_________小时.【考点】行程问题【难度】☆☆☆【答案】52.5【解析】设全程为1,每小时顺水行驶的距离为1720140=,逆水行驶的距离为1528140=,则观察到水速增加后,每小时顺水行驶的距离和逆水行驶的距离分别为8140和4140,所求的时间为140140+=52.584小时.三、填空题Ⅲ(每题12分,共60分)11.玉米炮有单筒玉米炮、双筒玉米炮、三筒玉米炮三种,单筒玉米炮每次发射1根玉米,可以消灭20个僵尸;双筒玉米炮每次发射2根玉米,每根玉米消灭17个僵尸,三筒玉米每次发射3根玉米,每根玉米消灭16个僵尸,玉米炮一共开炮10次,发射玉米23根,消灭_________个僵尸.【考点】鸡兔同笼【难度】☆☆☆【答案】382【解析】三种玉米炮每发射一次分别消灭20个,34个,48个僵尸,成等差数列.也就是说,无论哪种玉米炮,发射一次,消灭的僵尸数等于玉米数146⨯+.多次发射后,消灭的僵尸数应该等于总玉米数14⨯+发射次数6⨯.那么,总共发射了10次,所以消灭的僵尸数等于2314106382⨯+⨯=.12.小华需要构造一个33⨯的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;如图,现在他已经填入了2,3,6三个数,那当小华的乘积魔方构造完毕后,x等于______.【考点】幻方【难度】☆☆【答案】36【解析】幻积等于中间数6的立方,所以362336x=÷÷=.13.有五个互不相等的非零自然数.如果其中一个减少45,另外四个数都变成原先的2倍,那么得到的仍然是这五个数.这五个数的总和是______.【考点】数论倍数约数【难度】☆☆☆【答案】93【解析】如果一开始的五个数分别是1、2、4、8、16,则将16减少15后,将其他四个数都乘以2,可以仍然得到这5个数.而45153÷=,所以原来的五个数是1、2、4、8、16的3倍,总和为313=93⨯.14.如图,直角三角形ABC两直角边的长为3、4,M为斜边中点,以两直角边向外作两个正方形.那么三角形MEF的面积是_________.【考点】几何【难度】☆☆☆【答案】12.25【解析】1(43)4142BEFS=⨯+⨯=△,1(43)310.52CBFS=⨯+⨯=△,以EF为底,则MEF△的高是BEF△和CEF△的高的平均值,所以面积也是它们的平均值,等于12.25.15.甲以每分钟60米的速度从A地出发去B地;甲出发5分钟后,乙每分钟80米的速度从B地出发去A地;结果他们在距两地中点100米的某处相遇.A、B两地相距_________米.【考点】行程问题【难度】☆☆☆【答案】1000或3800【解析】设两地相距2x米,则有10010056080x x+-=+或10010056080x x-+=+,得到500x=或1900x=,则答案为1000或3800.。
第十四届走美杯五年级模拟题3含详解

3.
2016
+2 5 201620162016 +3 除以 25 的余数为
。
4.
如图, ABC 中,BD 是 ABC 的角平分线。 A 60 , AB 12 , AD 3 , CD 6 ,则
ABC
5.
在某次宴会中,每位出席参加的男士都与 3 位女士握手,而每位女士则都与 4 位男士握手。已知 此次宴会的总参加人数超过 45 人但不足 55 人,请问:此次宴会总共有 位男士参加。
3、 【解析】设 5 20162016
2016
=5k ,则
5 20162016
2016
+2 5 20162016 2016 +3 5k +2 5k +3 25k 2 25k 6
2016
所以 5 20162016
+2 5 201620162016 +3 6 mod 25
(王洪福老师
‐2‐
供题)
王洪福老师 数学 第十四届“走进美妙的数学花园”青少年展示交流活动 趣味数学解题技能展示大赛初赛 五年级模拟卷(三) 1、 【解析】原式=0.1×(1×99+2×98+3×97+4×96+......+10×90) =0.1×[1×(100-1)+2×(100-2)+3×(100-3)+......+10×(100-10)] 2 2+ 2 2 =0.1×[(1+2+3+……+10)×100—(1 +2 3 +......+10 )] =0.1×(5500—10×11×21÷6) =0.1×(5500—385) =511.5 2、 【解析】每人发的苹果数量相同,所以人数与苹果数应为 72 的因数,通过枚举可得 72=1×72=2× 36=3×24=4×18=6×12=8×9,经观察发现因数对(4,18)与(3,24)符合条件,则原有学生 72÷ 4=18(人) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三届“走进美妙的数学花园”上海决赛小学五年级----王洪福老师
第十三届“走进美妙的数学花园”青少年展示交流活动 趣味数学解题技能展示大赛初赛(上海决赛) 小学五年级试卷(B 卷)
2015 年 3 月 8 日 满分 150 分 上午 10:45——12:15
一、填空题(每小题 8 分,共 40 分) 【第 1 题】计算: 20150308 = 101× (100000 + 24877 ×
)
【第 2 题】将
2 5 15 10 , , , 按照从小到大顺序排列 3 8 23 17。
【第 3 题】 像 2,3,5,7 这样只能被 1 和自身整除的大于 1 的自然数叫做质数或素数。
将 2015 分拆成 100 个质数之和,要求其中最大的质数尽可能小,那么这个最大质数是 。
【第 4 题】 质数就好像自然数的“建筑基石”,每一个自然数都能写成若干个质数(可以有相同的)的乘积, 比如 4 = 2 × 2 , 6 = 2 × 3 , 8 = 2 × 2 × 2 , 9 = 3 × 3 , 10 = 2 × 5 等,那么, 5 × 13 × 31 − 2 写成这种形式为
【第 5 题】“24 点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从 52 张扑克牌(不包括大小王) 中抽取 4 张,用这 4 张扑克牌上的数字( A = 1 , J = 11 , Q = 12 , K = 13 )通过加减乘除四则运算得出 24,最先找到算法者获胜。
游戏规定 4 张扑克牌都要用到,而且每张牌只能用 1 次,比如 2,3,4,Q 则可 以由算法 (2 × Q ) × (4 − 3) 得到 24。
王亮在一次游戏中抽到了 4,4,7,7,经过思考,他发现, ⎜ 4 −
⎛ ⎝
4⎞ a⎞ ⎛ ⎟ × 7 = 24 ,我们将满足 ⎜ a − ⎟ × b = 24 的 7⎠ b⎠ ⎝。
牌组 {a,a,b,b}称为“王亮牌组”,请再写出一组不同的“王亮牌组”
第 1 页 共 4 页
第十三届“走进美妙的数学花园”上海决赛小学五年级----王洪福老师 二、填空题(每小题 10 分,共 50 分) 【第 6 题】用 2 个边长为单位长度的小正方形(单位正方形)可以构成 2—联方,这就是常说的多米诺,显 然,经过平移、旋转、对称变换,能够重合的多米诺应该看成是同一个,因此,多米诺只有一个。
同理,用 3 个单位正方形构成的不同的 3—联方只有 2 个。
用 4 个单位正方形构成的不同的 4—联方有 5 个。
那么,用 5 个单位正方形构成的不同的 5—联方有 个。
2—联方
3—联方
【第 7 题】如图所示,在边长为 15 厘米的正方形纸片从各顶点起 4 厘米处,沿着 45°角下剪,中间形成一 个小正方形。
这个小正方形的面积为 (平方厘米)。
8. 【第 8 题】如图所示,已知大圆的半径为 2,则阴影部分的面积为
(圆周率用 π 表示)。
【第 9 题】如图所示,已知长方形 ABCD 中,ΔFDC 的面积为 4,ΔFDE 的面积为 2,则阴影四边形 AEFB 的面积 。
第 2 页 共 4 页
第十三届“走进美妙的数学花园”上海决赛小学五年级----王洪福老师 【第 10 题】索玛立方体是丹麦物理学家皮特‧海音(Piet Hein)发明的 7 个小立方体组块(如图所示),如 果假设这些小立方体的边长为 1,则利用这 7 个组块不仅可以组成一个 3 × 3 的立方体,还可以组成很多美妙 。
的几何体。
那么,要组成下面的几何体,需要用到的 3 个索玛立方体的编号是
三、填空题(每小题 12 分,共 60 分) 【第 11 题】一个自然数有 10 个不同的因数(即约数,指能够整除它的自然数),但质因数(即为质数的因 数)只有 2 与 3。
那么,这个自然数是 。
【第 12 题】有 5 个自然数(允许有相等的),从其中任意选取 4 个数求和,可以而且只能得到 44,45,46, 。
47,那么,原来的 5 个自然数分别是
【第 13 题】 如果两个自然数的积被 9 除余 1, 那么我们称这两个自然数互为 “模 9 的倒数” 。
比如,2 × 5 = 10 , 被 9 除余 1,则 2 和 5 互为“模 9 的倒数”;1× 1 = 1 ,则 1 的“模 9 的倒数”是它自身。
显然,一个自然数 如果存在“模 9 的倒数”,则它的倒数并不是唯一的,比如,10 就是 1 的另一个“模 9 的倒数”。
判断 1,2, 3,4,5,6,7,8 是否有“模 9 的倒数”,并将存在“模 9 的倒数”的数,以及它们相对应的最小的“模 9 的倒数”分别写出来 。
【第 14 题】我国南宋数学家杨辉在其《续古摘奇算法》上记载了这样一个问题:“二数余一,五数余二,七 数余三,九数余四,问本数。
” 用现代语言表述就是:“有一个数用 2 除余 1,用 5 除余 2,用 7 除余 3,用 9 除余 4,问这个数是多少?” 请将满足条件的最小的自然数写在这里 。
第 3 页 共 4 页
第十三届“走进美妙的数学花园”上海决赛小学五年级----王洪福老师 【第 15 题】如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形成为完美长方形。
已知 下面的长方形是一个完美长方形,分割方法如图所示,其中小正方形中心的数字代表其边长,则图中没有标 示边长的小正方形的边长按照从小到大的顺序分别为 。
(原题图中没有标注字母)
第十三届“走进美妙的数学花园”青少年展示交流活动 趣味数学解题技能展示大赛上海决赛 小学五年级(B 卷)
第 4 页 共 4 页
。