【五年级】2017年走美杯试卷

合集下载

【五年级】2017年走美杯试卷

【五年级】2017年走美杯试卷

第十五届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷(B 卷)1.计算:______21212121211=+++++.(写成小数的形式,精确到小数点后三位)2.两个标准骰子一起投掷2次,点数之和第一次为7,第二次为10的可能性(概率)为______(用分数表示).3.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数比如,6的所有因数为1,2,3,6,1+2+3+6=12,6是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,研究完美数可以从计算自然数的所有因数之和开始,321的所有因数之和为______.4.吴宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中个信封只放入一封信.只有一封信装对,其余全部被错装的情形有______种.5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=1,J=11,Q=12K=13)通过加减乘除四则运算得出24,最先找到算法者获胜。

游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q ,则可以由算法(2×Q)×(4-3)得到24.海亮在一次游戏中抽到了2,3,13,13,经过思考,他发现13×3-13-2,我们将满足24--=⨯d c b a 的牌组{}d c b a ,,,称为“海亮牌组”,请再写出5组不同的“海亮牌组” _________________________________________________________________________. 填空题Ⅱ(每题10分,共50分)6.在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、王、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫作“十二地支”,十天干和十二地支进行循环组合:甲子、乙丑、丙寅、…一直到癸亥,共得到60个组合,称为六十甲子,如此周而复始用来纪年的方法,称为甲子纪年法.在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有___________________________________.7.现有5个抽屉,每个抽屉中都放置3个玻璃球(形状大小相同),分别为蓝色、红色与黄色.如果分别从这3个抽屉中各取出一个玻璃球放在一个布袋中,则布袋中的3个玻璃球共有______种不同情况.8.古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:比如,根据图示,三边形数:1,3,6,10,…四边形数:1,4,9,16,…五边形数:1,5,12,22,…六边形数:1,6,15,28,…那么,第6个三边形数,四边形数,五边形数,六边形数分别为_________________. 9.用5个边长为单位长度的小正方形(单位正方形)可以构成如右下图所示的5-联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5-联方,其中,既具有中心对称性质又有轴对称性质的5-联方有______;既没有中心对称锉质又 不具备轴对称性质的5-联方有______.10.如下图所示,21∠=∠,43∠=∠,如果︒=∠68A ,那么︒=∠______E1l.索玛立方体组块是丹麦物理学家皮特•海音( Piet hein)发明的7个小立方体组块(如图所示,注意5号与6号组块,这是两个不同的组块).因为利用这7个组块可以恰好组成一个立方体,所以称为索玛立方体组块一个索玛立方体组块如果能够被某个平面分割成形状完全相同的两部分,则称这个组块是可平面平分的.那么,这些组块中有且只有一种不同平面平分方法的组块为__________,不可平面平分组块为__________(填0表示没有)12.有4个自然数,从其中任意选取3个数求和,可以而且只能得到28,29,30,那么,原来的4个自然数分别是__________.13.如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形称为完美长方形.已知右面的长方形是一个完美长方形,分割方法如右图所示这是一个长为57,宽为55的完美长方形,用小正方形中心的数字代表其边长,已知两个正方形的边长分别为30与27,那么,图中没有标示边长的小正方形的边长按照从小到大的顺序分别为____________________.___________________14.在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为每人每次可以选择某一木格中的任意数目(至少1个)的小球,并将其移动到该木格右边紧邻的那一木格中;当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜面对如图所示的局面(格中的数字代表小球的数目,木格下方的数字表示木格编号),先手有必胜策略,那么,为确保获胜,先手第一步应该移动______号木格中的______个小球.15.任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积、这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理勾股定理有着悠悠4000年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘徽给出了如下左图所示的简洁而美妙的证明方法,如下右图则是以这个方法为基础设计的刘徽模式勾股拼图板:如果上图中两个正方形的边长分别为3与4,那么三角形ACE的面积等于______(用分数表示),三角形BCD的面积等于______(用分数表示).。

五年级上册数学试题-第十一届走美杯初赛试卷C全国通用 PDF版 含答案 (1)

五年级上册数学试题-第十一届走美杯初赛试卷C全国通用 PDF版 含答案 (1)

11届走美小学五年级试卷(C 卷)11届走美小学五年级试卷(C 卷)一、填空题Ⅰ(每题8分,共40分)1.去掉20.13中的小数点,得到的整数比原来的数增加了多少倍.【分析】原数有2位小数,将小数点去掉,变为原数的100倍,即增加了99倍。

2.在面积为210平方厘米的长方形内如图摆放了3个大小一样的小正六边形,每个小正六边形的面积是多少平方厘米.【分析】如下左图,将原图进行分割,变为一些小三角形、大三角形、五边形及六边形。

如下右图,原图中较大的三角形可以分为2个小三角形,六边形可以分为12个小三角形,而显然五边形是六边形的一半,所以可以分为6个小三角形。

于是,原长方形可以被分为21223631260⨯+⨯+⨯+⨯=个小三角形,而每个正六边形由12个小三角形组成,其面积为210601242÷⨯=平方厘米。

3.某城市出租车计费如下:起步里程为3千米,起步费10元,起步里程后每千米收费为2元;超过8千米以上的部分每千米收费为2.40元.某人坐出租车到离城20千米的地方办事,到达时需付车费多少元.【分析】10(83)2(208) 2.448.8+-⨯+-⨯=元。

4. 从1开始,轮流加4和3,得到下面一列数1,5,8,12,15,19,22……在这列数中与2013最接近的那个数是__________.【分析】可以将这串数列分为两个数列,将其奇数项取出,构成首项为1,公差为7的等差数列;将偶数项取出,构成首项为5,公差为7的等差数列于是,第一个数列的通项可以写为71a +,第二个数列的通项可以写为75b +,而201372874=⨯+,于是,这列数中与2013最接近的数是2014。

11届走美小学五年级试卷(C 卷)5.如图所示,心形由两个半圆,两个扇形和一个正方形拼成,心形面积是多少cm2.(π取3.14)【分析】心形由2个直径为10厘米的半圆、两个半径为10厘米、圆心角为45°的扇形和一个边长为10厘米的正方形组成其面积为2221452 3.1452 3.1410102572360⨯⨯⨯+⨯⨯⨯+=平方厘米。

2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)后附答案解析

2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)后附答案解析

2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(五年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= .2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有人.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有个.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24..5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有个,最多有个.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有个.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出个互不重叠的三角形.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为平方厘米.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是克.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是,M×N的积的不同取值共有种.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= 70 .【分析】在算式中,这些数具有一定的特点:相加的数是1﹣﹣99之间的所有奇数,相减的数是10﹣﹣98之间的所有偶数.在1﹣﹣99之间只有1﹣﹣9这一数段中只有1、3、5、7、9这些奇数,而没有2、4、6、8这些偶数.其余的10﹣﹣19、20﹣﹣29、30﹣﹣39一直到90﹣﹣99这9个数段中都是所有的奇数和偶数.我们还知道相邻的2个自然数之间相差着1.所有把10﹣﹣99之间这些没间断的奇数和偶数运用加法的交换律进行计算,把相邻的2个自然数组成一组.这样每个数段的10个数就组成5组,共5×9=45组.1、3、5、7、9单独组成一个特别的组,再进行计算.【解答】1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98=1+3+5+7+9+11﹣10+13﹣12+…+99﹣98=(1+3+5+7+9)+(11﹣10)+(13﹣12)+…+(99﹣98)=(1+9)+(3+7)+5+1×(5×9)=10+10+5+45=25+45=70【点评】解题的关键是看出这些数的特点,发现其中的规律.特别是怎样分数段,每个数段中有几个组合,它们的差都是1.2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有 5 人.【分析】首先求出明明的数学测试成绩和第二个小组后来的平均分的差是多少;然后用它除以第二小组后来的平均分比原来的平均分多的分数,求出第二小组原有多少人即可.【解答】解:(98﹣88)÷(88﹣86)=10÷2=5(人)答:第二小组原有5人.故答案为:5.【点评】此题主要考查了平均数问题,考查了分析推理能力的应用,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有 4 个.【分析】可以从首位为1开始算起,1+0=1,故有101123,1+1=2,故有112358,2+0=2,故有202246,3+0=3,故有303369,一共有4个.【解答】解:根据分析,从首位为1开始算起,1+0=1,故有101123;1+1=2,故有112358;2+0=2,故有202246;3+0=3,故有303369,这样的六位数分别是:101123、112358、202246、303369,故答案是:4.【点评】本题考查了数字问题,突破点是:从首位1开始算起,利用数字和求得六位数的个数.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24.8÷(3﹣8÷3).【分析】首先分析数字题中的有2个搭档,同时组合过程中不容易找到,那么可以分析除法中的特殊情况.【解答】解:依题意可知;8÷(3﹣8÷3)=8÷(3﹣)=8÷=24满足条件.故答案为:8÷(3﹣8÷3)【点评】本题考查对填符号组算式的理解和运用,关键是找到特殊的除法计算.问题解决.5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是 4 .【分析】根据“具有同一模的两个同余式,两边分别相加减,仍得同一模的另一同余式”;以及“具有同一模的两个同余式,两边分别相乘,仍得同一模的另一同余式”解答即可.【解答】解:(m+n﹣p)(2m﹣n+p)=(3+6﹣11)×(2×3﹣6+11)=﹣22﹣22(mod )=﹣2×13+4(mod13)=4(mod13)所以,(m+n﹣p)(2m﹣n+p)除以13的余数是4.故答案为:4.【点评】本题考查了孙子定理,关键是明确孙子定理的两个性质定理.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为0 .【分析】按照题目所要求的规则依次写出后一层正方形的四个顶点的数字就可以得出结果【解答】解:把四个数字按照顺时针的顺序依次写成(9,9,9,17),外层正方形顶点上的数字依次为:⇒(0,0,8,8)⇒(0,8,0,8),如下图:…再往后推算得到:⇒(8,8,8,8)⇒(0,0,0,0).此时四个数的和最小,为0,故本题答案为:0.【点评】理解清楚题目的处理规则,依据规则进行运算,就不难得出结果.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为27 .【分析】根据题目要求的数字和最小,首先应考虑1和2为对面,然后考虑它们相邻面的第二组对面的数字情况,进而推断第三组对面.【解答】解:要使六个数之和最小,应有1、2,且1、2不能相邻,只能对面,此时2的四个相邻面中的数不能有3,最小为4、5、6、7;若4、5对面,另两个面中不能出现6,最小为7、8,故满足条件的6个数之和最小为(1+2)+(4+5)+(7+8)=27(括号内的两数对面).故答案为:27.【点评】本题的突破口在于步步推进,首先从最小的数对开始,一步步推出三组对面数字.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有8 个,最多有26 个.【分析】从正面看和从侧面(左侧)看都有4列,可以在4×4的方格中进行摆放,分别看最多和最少可摆放多少方块【解答】解:在如下图所示的4×4方格中,进行摆放方块,来使这堆方块从正面、侧面看起来的画面满足要求,摆放方块最少的情况如下图:最少共需要:3+1+2+2=8块,摆放方块最多的情况如下图:最多需要:26块.故答案为:8;26.【点评】本题需要一定的空间想象能力,要求对摆放的方块的正面和侧面视图进行分析.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有 385 个.【分析】首先分析题意,本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.继续推理即可.【解答】解:依题意可知:本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.((10000)2,(1000)2,(100)2,(10)2,12)看13个桃子13=(1101)2.则在第一次和第二次分桃时从树上各摘一个桃子,即(1101)2+(11)2=(10000)2.看本题中设原来有N 个桃子,则(100000000)2<N <(1000000000)2N 为奇数化为二进制数字后应为9位数,且末尾数字是1,首位数字是1,即是十进制中的256,分桃过程中又摘了7个桃子,第一次必摘,即末尾必加1,中间的7位数有6需要加1,即6个0.只有1个1.因为360<N<400,所以N=256+1+128=385.故答案为:385.【点评】本题考查对二进制的理解和运用,关键问题是找到二进制的数字的表示方法,问题解决.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出4036 个互不重叠的三角形.【分析】这个题如果直接考虑这2021个点的话,会无从下手,可以先只考虑长方形的四个点,可以组成2个三角形,再向长方形内部一个一个的添加点.【解答】解:如图,长方形ABCD的四个顶点,连接BD,可以组成两个三角形:△ABD和△BCD,然后向长方形内部添加点E,连接周围顶点后,现在△BCD被分成3个三角形,相当于多出2个三角形,以此类推,…每添加一个点,三角形数量增加2,共添加2017个点,则三角形的数量为:2+2017×2=4036,故本题答案为:4036.【点评】本题重点在于找到逐一向长方形内部添加点这一思路,化繁为简,找到规律.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为432 平方厘米.【分析】根据题意可设长方形的长、宽、高分别为a、b、c(a>b>c),根据题意可列出a、b、c之间的等量关系,由于均为整数,可将等式凑成乘积的形式结合分解质因数进行求解.【解答】解:设长方形的长、宽、高分别为a、b、c(a>b>c),则长方形的三个相邻面的面积由大到小的顺序为ab、ac、bc,则根据题意可得2ac=ab+bc,其中b=8,则ac=4a+4c,凑成乘积的形式可得(a﹣4)×(c﹣4)=16=16×1=8×2,则a﹣4=16或8,c﹣4=1或2,可得a=20,b=8,c=5或a=12,b=8,c=6.则长方体的表面积=2×(ab+ac+bc)=2×(160+100+40)=600平方厘米或2×(96+72+48)=432平方厘米,因此这个长方体的表面积最小为432平方厘米.故答案为:432.【点评】本题的关键在于能想到画成乘积的形式用分解质因数进行求解,稍有难度.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得6分或5 分.【分析】每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,再分类计算求得丁的得分.【解答】解:根据分析,每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,如下图(箭头指向负者,线段表示平局);故丁的得分为6分或5分.(图示只为情形之一)故答案是:6分或5分.【点评】本题考查了逻辑推理,突破点是:根据已知,逻辑推理,分析得出丁的得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是8000 克.【分析】可以先算出抽出的小正方体的个数,共抽出了3×5+4×5+5×5﹣(2+4)﹣(3×3)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,不难求得余下的几何体的质量.【解答】解:根据分析,算出抽出的小正方体的个数,因为抽小正方体的时候上下表面和左右表面以及前后表面共同的小正方体个数有:4+5+6=15个,故共抽出了:3×5+4×5+5×5﹣(4+5+6)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,质量为:80×100=8000g,故答案是:8000.【点评】本题考查剪切和拼接,突破点是:先算抽出的小正方体的个数,再求余下的几何体含有的小正方体的个数.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出 3 个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C【分析】首先计算出1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)能提供的总块数为85,3×3×3的实心正方体需要的积木块数为27,85÷27=3…4,因此首先可以判断至多能拼出3个3×3×3的实心正方体,然后根据奇偶性判断A、B、C各自所用的块数,据此解答.【解答】解:6块、11块、10块A、B、C积木总共能提供的块数是2×6+3×11+4×10=85,一个3×3×3的实心正方体需要的块数为27,因此最多拼成3个,且剩下块数为85﹣27×3=4,可以为2个A积木或1个C积木.27=2A+3B+4C,考虑27为奇数,因此B必须为奇数,因此B只能为1,3,5,7,B的总块数为11,因此3个实心正方体所用B的数目可以为1,5,5或1,3,7.①所用B的数目可以为1,5,5:拼法1:1B拼法2:4A+5B+1C拼法3:2A+5B+2C则拼法1中已经没有积木A可用,不符合题意;①所用B的数目可以为1,3,7:拼法1:2A+1B+5C(或4A+1B+4C)拼法2:1A+3B+4C拼法3:1A+7B+1C两种方法均符合题意.因此这几个正方形的拼法可以是 2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.故答案为:3;2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.【点评】本题考查拼接方法,需要掌握这种题的答题技巧,难度较大.15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是10333或10666 ,M×N的积的不同取值共有64 种.【分析】按题意,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意,数字和为10时,这个五位数为10333或10666,进一步根据数字的组合情况可求得M、N取值的不同情形,进而求解.【解答】解:根据分析,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意.当数字和为10时,这个五位数为10333,两个四位数相加时若个位和为13,则十位数字和为2,只能选2和0,则数字和为3无法选数字,故不符合要求,同理十位和为13也不符合要求,因此只能个位和为3,十位和为3,百位和为13,千位和为9,对应的数字M和N分别有2×2×2×2×=32种情况,M ×N的积有32÷2=16种不同情形;当数字和为19时,这个五位数为10666,此时两个四位数相加时个、十、百位的和都只能是6(0+6,1+5,2+4),千位数相加和为10(3+7),共有6×4×2=48种不同情形,所以M×N的积共有16+48=64种.故答案是:10333或10666,64.【点评】本题考查了数字问题,突破点是:数字进位和数字之和的性质,可以推测出五位数及不同的取值.。

2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(三年级)后附答案解析

2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(三年级)后附答案解析

2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(三年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)17×19﹣1001÷77= .2.(8分)根据下面数列的规律填空2,4,8,16,32,,128,…2,4,6,8,10,,14,…3.(8分)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了个苹果.4.(8分)24点游戏:用适当的运算符号(包括括号)把3,4,8,9这四个数组成一个算式,使结果等于24..5.(8分)从 1,3,5,7,9,11,13,15,17这九个数中,任取3个不同的数(不分先后)组成一组,使该组的平均数为9,共有种取法.二、填空题(共5小题,每小题10分,满分50分)6.(10分)每个月的周一、周二、周三、周四、周五、周六、周日都有4天或5天.某个月,周六、周日恰好有5天,而每个工作日都是4天,这个月1日是星期.7.(10分)从1,2,3,4,5,6,7,8,9,10中选出6个不同的数,填入如图的员圆圈中,满足下面的数是上面用线连接的两数之和,最下面的圆圈内的数最大时有种不同填法.(对称的填法看做同一种,比如1+3=4和3+1=4卡安卓相同的一种填法)8.(10分)甲、乙两人相距3020米,同时出发相向而行,甲每分钟行50米,乙每分钟行60米,甲出发后不久因故耽误了10分钟,然后继续向前行进,与乙相遇时,乙共行进了米.9.(10分)将一个正方形纸片沿虚线向上对折,再向右对折后得到一个正方形,然后剪下一个角(如图),将这个纸片展开后的形状应该是.10.(10分)2017除以9余1,2017年的每一天都可以用一个八位数表示.比如2017年1月8日可以表示为20170108,这个数除以9余1.2017年全年都用八位数表示,其中除以9余1的共有天.三、填空题(共5小题,每小题12分,满分60分)11.(12分)如图正方形与阴影长方形的边分别平行,正方形边长为8,图中四边形ABCD的面积为36,阴影长方形的面积是.12.(12分)A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中的涂法较多,有种不同的涂法.13.(12分)一个宝库有9个藏宝室,成九宫格状排列,但只有一个进口和一个出口分别开在如图所示的藏宝室,每个藏宝室至多只能进去一次,相邻的藏宝室之间都有门相通,每个藏宝室中的宝贝价值已标在图中,大盗买通守护,夜间进入宝库,他能带走的宝物价值最多是.14.(12分)一个圆圈上排列着8个黑球,10个白球(如图),将任意两个球交换位置称为一次变换,至少经过次变换,可以使任意两个黑球不再相邻.15.(12分)现有1×1×2的积木3块,1×1×3的积木3块,1×2×2的积木5块(如图),从这些积木中选出若干个,拼出一个3×3×3的实心正方体,1×1×2的积木最少需要块,在你的拼法中还需要1×1×3的积木块,1×2×2的积木块.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(三年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)17×19﹣1001÷77= 310 .【分析】可以将1001分解质因数,再运算,最后得出原式的结果.【解答】解:根据分析,原式=17×19﹣1001÷77=17×(20﹣1)﹣7×11×13÷77=17×20﹣17﹣77×13÷77=340﹣17﹣13=340﹣(17+13)=340﹣30=310.故答案是:310.【点评】本题考查了四则运算的巧算,突破点是:分解质因数,四则运算巧算,最后求得结果.2.(8分)根据下面数列的规律填空2,4,8,16,32,64 ,128,…2,4,6,8,10,12 ,14,…【分析】(1)4÷2=2,8÷4=2,16÷8=2,32÷16=2,后一个数是前一个数的2倍,由此求解.(2)4﹣2=2,6﹣4=2,8﹣6=2,后一个数比前一个数大2,由此求解.【解答】解:(1)32×2=64;(2)10+2=12;故答案为:64;12.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.3.(8分)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了18 个苹果.【分析】可以先用总数减去大家吃的苹果数和剩下的苹果数,再除以我每天吃的苹果数和小张偷的苹果数之和,就能求得天数,就能知道小张偷了几天,不难求得小张偷拿了多少苹果.【解答】解:根据分析,先求得小张偷拿苹果的天数,故有:(60﹣17﹣16)÷(2+1)=9(天),小张共偷了:9×2=18个.故答案是:18.【点评】本题考查等差数列,突破点是:先求得小张偷苹果的天数,再求苹果数.4.(8分)24点游戏:用适当的运算符号(包括括号)把3,4,8,9这四个数组成一个算式,使结果等于24.(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24 .【分析】首先分析数字和为正好为24.【解答】解:依题意可知:(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24.故答案为:(3+9)÷4×8=24或者(3×4﹣9)×8=24或者3+4+8+9=24.【点评】本题考查填符号组算式的理解和运用,关键从数字和开始分析,问题解决.5.(8分)从 1,3,5,7,9,11,13,15,17这九个数中,任取3个不同的数(不分先后)组成一组,使该组的平均数为9,共有8 种取法.【分析】首先分析数字和的平均数是9,那么可以理解为数字和为27,考虑幻和为27的幻方填写规律即可.【解答】解:依题意可知:满足幻和为9×3=27即可.中间数的3倍就是幻和,那么中间数字就是9.因为数字是等差数列可根据1﹣9的填写规律填写即可.共三行三列再加上两条对角线共8种.故答案为:8【点评】本题考查对幻方的理解和运用,关键问题是找到幻和,根据数字规律填写即可.问题解决.二、填空题(共5小题,每小题10分,满分50分)6.(10分)每个月的周一、周二、周三、周四、周五、周六、周日都有4天或5天.某个月,周六、周日恰好有5天,而每个工作日都是4天,这个月1日是星期六.【分析】分析天数可知共30天.继续分析即可求解.【解答】解:依题意可知:该月周一至周五都是4天,周六周日是5天,这个月共有30天.说明开始的第一天是周六,最后一天是周日.故答案为:六【点评】本题考查对周期问题的理解和运用,关键问题是找到天数和开始时间,问题解决.7.(10分)从1,2,3,4,5,6,7,8,9,10中选出6个不同的数,填入如图的员圆圈中,满足下面的数是上面用线连接的两数之和,最下面的圆圈内的数最大时有 3 种不同填法.(对称的填法看做同一种,比如1+3=4和3+1=4卡安卓相同的一种填法)【分析】首先根据题目推知最下面的圆圈最大时为10,然后根据上面圆圈的特点列出等量关系,讨论即可.【解答】解:最下面的数最大为10,第一行的三个数若依次为a、b、c,则10=a+2b+c.b=1时,a+c=8=2+6=3+5;b=2时,a+c=6=1+5;b≥3时,a+c≤4不成立.因此有3种不同填法.故答案为:3.【点评】本题的突破口是能根据第一行和第二行的圆圈关系列出等量关系,进而分类讨论.8.(10分)甲、乙两人相距3020米,同时出发相向而行,甲每分钟行50米,乙每分钟行60米,甲出发后不久因故耽误了10分钟,然后继续向前行进,与乙相遇时,乙共行进了1920 米.【分析】根据题意,我们知道“甲出发后不久因故耽误了10分钟”,实际上就相当于甲在他们相遇的路程中少走了10分钟的路程.也就是说甲再加上10分钟的路程,才是他们同时出发没有意外情况下的总路程3020+50×10=3520米.用总路程÷他们的速度和=他们相遇用时(实际上是相遇时乙行程所用时间).有了时间就可求乙的行程了.注:题中所带的解法,与以上分析思路一样,只是把甲和乙调换了一下.【解答】解:(3020+50×10)÷(60+50)=32(分钟)32×60=1920(米)答:乙共行进了1920米.【点评】此题中只要搞明白:甲在他们相遇时所走总路程中,少走了10×50=500米或者是乙多走了10×60=600米.注意你清楚:你求的是谁行程的用时才行.9.(10分)将一个正方形纸片沿虚线向上对折,再向右对折后得到一个正方形,然后剪下一个角(如图),将这个纸片展开后的形状应该是 D .【分析】首先分析剪去的地方是边缘还是中间,不难发现是中间的部分,继续观察即可.【解答】解:依题意可知:按照折图顺序,可知剪去的是中间的部分.这是个对称问题,依对折顺序恢复即可得到图中的D图.故选:D【点评】本题考查对三视图的理解和运用,关键问题是找到剪去的位置,问题解决.10.(10分)2017除以9余1,2017年的每一天都可以用一个八位数表示.比如2017年1月8日可以表示为20170108,这个数除以9余1.2017年全年都用八位数表示,其中除以9余1的共有40 天.【分析】首先分析2017除以9余数为1,那么后面的4个数字和就是9的倍数即可,枚举法简单易懂.【解答】解:依题意可知:2017除以9余数为1,那么后面的4个数字和就是9的倍数.按照月份枚举即可:0108,0117,0126;0207,0216,0225;0306,0315,0324;0405,0414,0423;0504,0513,0522,0531;0603,0612,0621,0630;0702,0711,0720,0729;0801,0810,0819,0828;0909,0918,0927;1008,1017,1026;1107,1116,1125;1206,1215,1224;共40个.故答案为:40【点评】本题考查对数的整除特性的理解和运用,关键问题是找到数字和是9的倍数同时不能大于12月.问题解决.三、填空题(共5小题,每小题12分,满分60分)11.(12分)如图正方形与阴影长方形的边分别平行,正方形边长为8,图中四边形ABCD的面积为36,阴影长方形的面积是8 .【分析】根据题意可知四边形ABCD的周围四个直角三角形的面积的和为8×8﹣36=28,因此四边形ABCD内的四个空白直角三角形的面积和也是28,因此阴影长方形的面积是36﹣28=8.据此解答.【解答】解:四边形ABCD的周围四个直角三角形的面积的和8×8﹣36=64﹣28=28阴影长方形的面积36﹣28=8答:阴影长方形的面积是8.故答案为:8.【点评】本题也可用四边形ABCD的面积的2倍减去正方形的面积来求.12.(12分)A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中 B 的涂法较多,有12 种不同的涂法.【分析】A的涂色区域只能是最上方区域和左下方区域图同色,其排列数为;图B的涂色区域中涂同色的区域有2类,一是最上方区域和左下方区域;二是最上方区域和右下角区域,涂色种类数为+.【解答】解:图A的涂色方法有=3×2×1=6(种)图B的涂色方法有+=6+6=12(种)故:B的涂法多,有12种不同涂法.【点评】此题的解题关键是能否想到合并能涂同色的区域,而且要把这种情况找全.13.(12分)一个宝库有9个藏宝室,成九宫格状排列,但只有一个进口和一个出口分别开在如图所示的藏宝室,每个藏宝室至多只能进去一次,相邻的藏宝室之间都有门相通,每个藏宝室中的宝贝价值已标在图中,大盗买通守护,夜间进入宝库,他能带走的宝物价值最多是39 .【分析】本题首先能想到根据染色问题进行分析,可将房间黑白相间染色,根据进口和出口所染颜色不同可知大盗应该经过了偶数个房间,因此最多经过8个房间,据此解答.【解答】解:借助染色解题,给3×3的方格黑白相同染色(如图),进口为黑格,若全部走完9个方格,出口应为黑格,而图中出口为白格,故至少有一个黑格不能走到,标数最小的(进口除外)应为6,即标6的房间无法进入,所以大盗能带走的宝物最多是45﹣6=39.故答案为:39.【点评】本题的突破口在于能用染色的方法进行解题,难度较大.14.(12分)一个圆圈上排列着8个黑球,10个白球(如图),将任意两个球交换位置称为一次变换,至少经过 3 次变换,可以使任意两个黑球不再相邻.【分析】首先给19个球进行编号,其中5个连续的黑球至少选2个和白球互换,2个连续的黑球可选一个和白球互换,据此解答.【解答】解:首先给18个球进行编号,由于是最少的变换次数,则1﹣5中最少需要变换2号和4号,可将2号和14互换,4号和12号互换,8号和7号互换,因此最少经过3次变换,可以使任意两个黑球不再相邻.故答案为:3.【点评】本题白球的数目比黑球多,互换难度较小,属于较简单试题.15.(12分)现有1×1×2的积木3块,1×1×3的积木3块,1×2×2的积木5块(如图),从这些积木中选出若干个,拼出一个3×3×3的实心正方体,1×1×2的积木最少需要 1 块,在你的拼法中还需要1×1×3的积木 3 块,1×2×2的积木 4 块.【分析】题目考查最少需要的块数,首先可以考虑1×1×2的积木块数为0,3×3×3的实心正方体需要块数27,1×1×3的积木3块可以提供的块数分别是3、6、9,1×2×2的积木5块可以提供的块数分别是4、8、12、16、20,若只用1×1×2和1×1×3的积木,则无法凑成27块,因此接着考虑1×1×2的积木块数为1的情况,27=1×2+3×3+4×4,即1×1×2的积木为1块时可以拼出3×3×3的正方体,据此可解.【解答】解:如图:其中红色部分为1×1×2的积木,有1块;蓝色部分为1×2×2的积木,在红色部分的后面还有一块,有4块;白色部分为1×1×3的积木,共3块.答:1×1×2的积木最少需要1块,在你的拼法中还需要1×1×3的积木3块,1×2×2的积木4块.故答案为:1,3,4.【点评】本题主要考查了学生的空间想象能力,在拼时的方法可能不同,但有的块数是一定的.。

第届走美杯级初赛试题

第届走美杯级初赛试题

第届走美杯级初赛试题 The Standardization Office was revised on the afternoon of December 13, 2020第八届“走进美妙的数学花园"中国青少年数学论坛趣味数学解题技能展示大赛初赛注意事项:1.考生要按要求在密封线内填好考生的有关信息.2.不允许使用计算器.小学五年级试卷一、填空题I(每空8分,共40分)1、.⨯+÷=378201067。

2、某车间男工人数是女工人数的2倍,若调走12名男工,则女工人数是男工人数的2倍。

这个车间原有人。

3、小明要在⨯44的方格表中选择4个方格表图上阴影,使得每行,每列,每条对角线上都恰好有一个格子涂上阴影。

现在,小明已经涂了两格,请你替他把剩下的两格涂上。

4、小华每分钟吹一次肥皂泡泡,每次恰好吹出100个,肥皂泡泡吹出后,经过一分钟就有一半破了,经过两分钟还有二十分之一没有破,经过两分半肥皂泡泡全破了。

在第20次吹出了肥皂泡泡的时候,没有破的肥皂泡泡有个。

5、甲、乙、丙、丁四人中只有1人会开汽车。

甲说:“我会开”。

乙说“我不会开”。

丙说:“甲不会开”。

丁什么也没说。

已知甲、乙、丙三人的话中只有一句是真话。

会开车的是。

二、填空题II(每题10分,共50分)6、定义x y x y1☆12☆23☆310☆10。

++++==+☆37。

()()()()7、有边长分别为10cm,11cm,12cm,13cm,14cm的正方形巧克力各一块,小哈利每天吃吃22cm,他一共可以吃___天。

8、一些不相同的正整数,平均值为100。

其中有一个是108。

如果去掉108,平均数就变为99。

这些数中最大的数是。

9、如图,梯形ABCD中,ABE和ADE的面积分别是cm22,3,CDE的面积是cm2。

cm210、在~120这二十个数中,任取十个数相加的和与其余十个数相加的和相乘,能得到___________个不同的乘积。

走美杯五年级详解

走美杯五年级详解

⎝ 7⎠
⎝ b⎠
牌组 {a,a,b,b}称为“王亮牌组”,请再写出一组不同的“王亮牌组”

考点:24 点
解析: ⎜⎛ a − a ⎟⎞ × b = ab − a = a(b −1) = 24 ,所以 24 能被 a 整除,
⎝ b⎠
所以 a 的可能取值为 1,2,3,4,6,8,12,24,对应的 b 的取值为 25,13,9,7,5,4,3,2 又因为 a、b 的取值范围为 1 至 13,
24,最先找到算法者获胜。游戏规定 4 张扑克牌都要用到,而且每张牌只能用 1 次,比如 2,3,4,Q 则可
以由算法 (2× Q)× (4 − 3)得到 24。
王亮在一次游戏中抽到了 4,4,7,7,经过思考,他发现, ⎜⎛ 4 − 4 ⎟⎞ × 7 = 24 ,我们将满足 ⎜⎛ a − a ⎟⎞ × b = 24 的
【第 13 题】如果两个自然数的积被 9 除余 1,那么我们称这两个自然数互为“模 9 的倒数”。比如,2 × 5 = 10 ,
被 9 除余 1,则 2 和 5 互为“模 9 的倒数”;1×1 = 1,则 1 的“模 9 的倒数”是它自身。显然,一个自然数
如果存在“模 9 的倒数”,则它的倒数并不是唯一的,比如,10 就是 1 的另一个“模 9 的倒数”。判断 1,2,
数)只有 2 与 3。那么,这个自然数是

考点:约数的个数
解析:设这个数为 2a × 3b ( a、b 均为正整数),由题意可知 (a +1)× (b +1) = 10 = 2× 5
所以 a = 1 ,b = 4 或 a = 4 ,b = 1
所以这个自然数是 21 × 34 = 162 或 24 × 31 = 48

【五年级】2016年走美杯试卷

【五年级】2016年走美杯试卷

第十四届“走美杯”小学五年级(B )卷一、填空题Ⅰ1. 计算:______78765654343212=⨯⨯⨯⨯⨯⨯.(写成小数形式,精确到小数点后两位) 2. 1角硬币的正面与反面如图所示,拿三个1角硬币一起投掷一次,得到两个正面一个反面的概率为______.3. 大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数,比如,6的所有因数为1,2,3,6,126321=+++,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,8128的所有因数之和为______.4. 某大型会议上,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有______种.5. 将从1开始到25的连续的自然数相乘,得到25321⨯⋅⋅⋅⨯⨯⨯.记为25!(读作25的阶乘)用3除25!,显然,25!被3整除,得到一个商:再用3除这个商,这样一直用3除下去,直到所得的商不能被3整除为止,那么,在这个过程中用3整除了______次.二、填空题Ⅱ6.如图,已知正方形ABCD 中,F 是BC 边的中点,GC=2DG,E 是DF 与BG 的交点.四边形ABED 的面积与正方形ABCD 的比是______.7.如下图所示,将一张A4纸沿着长边的2个中点对折,将得到2个小长方形,小长方形的长与宽之比与A4纸相同.如果设A4纸的长为29.7厘米,那么,以A4纸的宽为边长的正方形面积为______平方厘米.(精确到小数点后一位)8.由一些顶点和边构成的图形称为一个图,对一个图用不同颜色给顶点染色,要求具有相同边的两个顶点染不同的颜色,称为图的点染色,图的点染色通常要研究的问题是完成染色所需要的最少的颜色数,这个数称为图的色数,下面的图称为皮特森图,皮特森图的色数为______.9.在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如右图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形,那么,右图中的格点四边形EBGF可以划分为______个本原格点三角形.10.在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为:每人每次可以选择某一木格中的任意数目的小球,并将其移动到该木格右边紧邻的那一木格中:当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜面对如图所示的局面(每个木格中的数字代表小球的数目,木格下方的数字表示木格编号),先手有必胜策略,那么,为确保获胜,先手第一步应该移动______号木格中的______个小球.三、填空题Ⅲ11.n m 、是两个自然数,满足11864926019=-n m ,那么,____________________. 12.以下由1,2构成的无穷数列有一个有趣的特征:从第一项开始,把数字相同的项合成一个组,再按照顺序将每组的项数写下来,则这些数构成的无穷数列恰好是它自身,这个数列被称为库拉库斯基数列,按照这个特征,继续写出这个数列后8项为__________________________________(从第14项到第21项).如果已知这个数列的前50项的和为75,第50项为2,则可以知道第73项,第74项,第75项,第76项分别为_____________.13.不全为零的两个自然数的公因数中的最大者,称作这两个数的最大公因数如果不全为2个自然数的最大公因数为1,则这两个数称为互素的或互质的,比如,2与3互素,3与8互素:12与15不是互素的,因为它们的最大公因数是3.不超过81的自然数中,有_______个数与81互素.14.任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理,勾股定理有着悠悠4000年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘徽给出了如下左图所示的简洁而美妙的证明方法,如下右图则是以这个方法为基础设计的刘徽模式勾股拼图板:刘徽模式勾股拼图板的5个组块,还可以拼成个如右图所示的平行四边形,如果其中的直角三角形直角边分别为3厘米与4厘米,那么,这个平行四边形的周长为______厘米.15.在如图所示的圆圈中填入从1到16的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的幻和那么,8阶幻星图的幻和为______,并继续完成以下8阶幻星图:。

第十四届走美杯五年级模拟题3含详解

第十四届走美杯五年级模拟题3含详解

3.

2016
+2 5 201620162016 +3 除以 25 的余数为

4.
如图, ABC 中,BD 是 ABC 的角平分线。 A 60 , AB 12 , AD 3 , CD 6 ,则
ABC

5.
在某次宴会中,每位出席参加的男士都与 3 位女士握手,而每位女士则都与 4 位男士握手。已知 此次宴会的总参加人数超过 45 人但不足 55 人,请问:此次宴会总共有 位男士参加。
3、 【解析】设 5 20162016
2016
=5k ,则
5 20162016
2016
+2 5 20162016 2016 +3 5k +2 5k +3 25k 2 25k 6
2016
所以 5 20162016
+2 5 201620162016 +3 6 mod 25
(王洪福老师
‐2‐
供题)
王洪福老师 数学 第十四届“走进美妙的数学花园”青少年展示交流活动 趣味数学解题技能展示大赛初赛 五年级模拟卷(三) 1、 【解析】原式=0.1×(1×99+2×98+3×97+4×96+......+10×90) =0.1×[1×(100-1)+2×(100-2)+3×(100-3)+......+10×(100-10)] 2 2+ 2 2 =0.1×[(1+2+3+……+10)×100—(1 +2 3 +......+10 )] =0.1×(5500—10×11×21÷6) =0.1×(5500—385) =511.5 2、 【解析】每人发的苹果数量相同,所以人数与苹果数应为 72 的因数,通过枚举可得 72=1×72=2× 36=3×24=4×18=6×12=8×9,经观察发现因数对(4,18)与(3,24)符合条件,则原有学生 72÷ 4=18(人) 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五届“走进美妙的数学花园”青少年展示交流活动
趣味数学解题技能展示大赛初赛
小学五年级试卷(B 卷)
1.计算:______21
21
2121211=+++
+
+
.(写成小数的形式,精确到小数点后三位)
2.两个标准骰子一起投掷2次,点数之和第一次为7,第二次为10的可能性(概率)为______(用分数表示).
3.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数比如,6的所有因数为1,2,3,6,1+2+3+6=12,6是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,研究完美数可以从计算自然数的所有因数之和开始,321的所有因数之和为______.
4.吴宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中个信封只放入一封信.只有一封信装对,其余全部被错装的情形有______种.
5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=1,J=11,Q=12K=13)通过加减乘除四则运算得出24,最先找到算法者获胜。

游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q ,则可以由算法(2×Q)×(4-3)得到24.
海亮在一次游戏中抽到了2,3,13,13,经过思考,他发现13×3-13-2,我们将满足24--=⨯d c b a 的牌组{}d c b a ,,,称为“海亮牌组”,请再写出5组不同的“海亮牌组” _________________________________________________________________________. 填空题Ⅱ(每题10分,共50分)
6.在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、王、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫作“十二地支”,十天干和十二地支进行循环组合:甲子、乙丑、丙寅、…一直到癸亥,共得到60
个组合,称为六十甲子,
如此周而复始用来纪年的方法,称为甲子纪年法.在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有___________________________________.
7.现有5个抽屉,每个抽屉中都放置3个玻璃球(形状大小相同),分别为蓝色、红色与黄色.如果分别从这3个抽屉中各取出一个玻璃球放在一个布袋中,则布袋中的3个玻璃球共有______种不同情况.
8.古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:
比如,根据图示,
三边形数:1,3,6,10,…
四边形数:1,4,9,16,…
五边形数:1,5,12,22,…
六边形数:1,6,15,28,…
那么,第6个三边形数,四边形数,五边形数,六边形数分别为_______
__________. 9.用5个边长为单位长度的小正方形(单位正方形)可以构成如右下图所示的5-联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5-联方,其中,既具有中心对称性质又有轴对称性质的5-联方有______;既没有中心对称锉质又 不具备轴对称性质的5-联方有______.
10.如下图所示,21∠=∠,43∠=∠,如果︒=∠68A ,那么︒=∠______E
1l.索玛立方体组块是丹麦物理学家皮特•海音( Piet hein)发明的7个小立方体组块(如图所示,注意5号与6号组块,这是两个不同的组块).因为利用这7个组块可以恰好组成一个立方体,所以称为索玛立方体组块一个索玛立方体组块如果能够被某个平面分割成形状完全相同的两部分,则称这个组块是可平面平分的.那么,这些组块中有且只有一种
不同平面平分方法的组块为__________,不可平面平分组块为__________(填0表示没有)
12.有4个自然数,从其中任意选取3个数求和,可以而且只能得到28,29,30,那么,原来的4个自然数分别是__________.
13.如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形称为完美长方形.已知右面的长方形是一个完美长方形,分割方法如右图所示这是一个长为57,宽为55的完美长方形,用小正方形中心的数字代表其边长,已知两个正方形的边长分别为30与27,那么,图中没有标示边长的小正方形的边长按照从小到大的顺序分别为__________
__________.
__________
_________
14.在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为每人每次可以选择某一木格中的任意数目(至少1个)的小球,并将其移动到该木格右边紧邻的那一木格中;当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜面对如图所示的局面(格中的数字代表小球的数目,木格下方的数字表示木格编号),先手有必胜策略,那么,为确保获胜,先手第一步应该移动______号木格中的______个小球.
15.任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积、这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理勾股定理有着悠悠4000年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘徽给出了如下左图所示的简洁而美妙的证明方法,如下右图则是以这个方法为基础设计的刘徽模式勾股拼图板:
如果上图中两个正方形的边长分别为3与4,那么三角形ACE的面积等于______(用分数表示),三角形BCD的面积等于______(用分数表示).。

相关文档
最新文档