2016第十四届走美五年级试题
第十四届走美杯决赛解析三年级

C 1cm D
解析: 图形剪拼 ——————————————————————————————————————————————— 解: 2 如图,原正方形的边长为 BD ,变换后 BD BC CD ,新正方形的边长为 AC , AC AB BC ,其中 AB CD 1cm 。所以,新正方形的面积与原正方形相等。图中阴影部分两个小三角形面积也相等,所 以中间空白处形成的正方形的对角线长为 1 1 2cm 。 ——————————————————————————————————————————————— 难度系数:☆☆☆ ———————————————————————————————————————————————
8. 一个立方体骰子 的每个面上标记着从 1 到 6 中的一个数字,下面是它的两幅表面展开图,根据( 1 ) 提供的信息,填出在( 2 )中剩下的 4 个数字。
(1 ) 解析: 几何
(2)
——————————————————————————————————————————————— 解: 由第一个图可得, 2 对面是 4 , 1 的对面是 5 , 3 的对面是 6 。由此可得:
二、 填空题Ⅱ(每题 10 分,共 50 分) 6. 用 2 颗红色的珠子, 2 颗蓝色, 2 颗紫色的珠子串成如下图所示的手链,可以串成 ___________种不同的手 链。
解析:分类枚举 ——————————————————————————————————————————————— 解:假设三种颜色的珠子分别记为 A , B , C , 那么,将珠子的排列方法分成 4 类 ① 没有同色珠子相连的情况: ABCACB, ABCABC, ABCBAC, ABACBC ② 只有一对同色珠子相连的情况: AABCBC, BBACAC, CCABAB ③ 只有两对同色珠子相连的情况: AACBBC, AABCCB, BBACCA ④ 三对同色珠子相连的情况: AABBCC 共有 11 种不同的手链。 ——————————————————————————————————————————————— 难度系数:☆☆☆ ———————————————————————————————————————————————
走美杯2008-2015年试题及答案

15. 同学们,你玩过“扫雷”的游戏吗?在 64 个方格内一共有 10 个地雷,每格中至多有一 个,对于填有数字的方格,其格内无地雷且与其相邻的所有方格中地雷的个数与该数字 相等。你认为图中所标的数字_________是有雷的;
3.三个正方形如图放置,中心都重合,它们的边长一次是1厘米、3厘米、5厘米,图中阴影部分的面积是 ________平方厘米.
4.有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成9段.第一根剪成的每段比第二根剪成的每 段长10米.原来的每根绳子长________米.
5.观察一组式 32 + 42 = 52 ,52 + 122 = 132 , 72 + 242 = 252 ,92 + 402 = 412 , ……根据以上规律,请你写出第7组的 式子:__________________.
13.某校五年级二班共有35个同学,学号依次是1到35.一天他们去春游,除了班长之外,其他34个同学分 成5组,结果发现每个小组的同学学号之和都相等;后来这34个同学又重新分成8组,结果发现每个小 组的同学学号之和还是相等.班长的学号是_________.
14.9个小等边三角形拼成了如图的大等边三角形.每个小等边三角形中都填写了一个六位数,且有公共边 的两个小等边三角形所填写的六位数恰好有一位不同.现已有小等边三角形填好数.另外6个小三角形, 共有________种填法.
方法一:已给出第4组,再写出第7组,可以依次写出来:第5组:112 + 402 = 412 , 第6组:132 + 722 = 732 ,第7组:152 + 1122 = 1132 方法二:找出式子的规律,根据规律写出相应的式子,本题规律是 (2n + 1)2 + [2n(n + 1)=]2 [2n(n + 1) + 1]2 ,则第7个式:即 n = 7 时式子为:152 + 1122 = 1132 , 原式 =2002 ÷ 0.7 ÷1.1 =2 ×1001 ÷ 0.7 ÷1.1 =2 × 7 ×11×13 ÷ 0.7 ÷1.1 =2 ×13×100 =2600 .
【六年级】2016年走美杯试卷

第十四届“走美杯”小学六年级(B )卷一、填空题Ⅰ1. 计算:______62569613=+++.(用小数表达,精确到千分位)2. 某种商品以6折(标价的60%)降价出售,仍相对于进货价获利10%,那么该商品标价应该为进货价的______倍.3. 有一种骰子是非标准的,其上的点数分别为2,3,3,5,5,6,用这样的两个骰子一起投掷依次,点数之和恰好等于8的概率为______(用最简分数表示)4. 甲乙丙三种书,甲每本5元,乙每本3元,丙1元3本,现要买三种书共100本(三种书都要有),总价恰好为100元,写出所有可能的购书方案(甲书的本数,乙书的本数,丙书的本数)______________________________. 5. 大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数,比如,6的所有因数为1,2,3,6,126321=+++,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,2016的所有因数之和为______.二、填空题Ⅱ6. 如图所示的图案由半圆组成,已知最大的圆的半径3=R ,则阴影部分图形的周长为________,面积为________(圆周率用π表示)7. 埃及人擅长数学,他们很早之前就发明了一个计算圆的面积的公式:298⎪⎭⎫ ⎝⎛=d S 其中,d 表示圆的直径.在这个公式中,相当于将圆周率π取值为________(保留两位小数).8.如图,将长方形纸片ABCD的两边AD与BC对折,得到折痕EF,再将点B折到EF 上,得到折痕AM与点N.如果3AM,那么,______=MN.=三、填空题Ⅲ9.如图下图所示,从一个正三角形开始以下操作:第一步:将三个边分别三等分,在每一条边的中间三分之一处,向外做边长等于原来边长三分之一的小正三角形,并删除底边,得到一个六角星;第二步:对六角星的每一条边继续第一步的操作,得到一个更为复杂的六角星;……这样一直做下去,就会得到一个类似雪花的美丽图形,这个图形是瑞典数学家柯赫于1904年首先构造出来的,被称为“柯赫曲线”.设原三角形的面积为1,那么,第3步后,所得到图形的面积为______.9.阿凯,宝夯刚刚和崔蕊成为朋友,他们想知道崔蕊的生日日期.崔蕊最终给他们十个可能日期:5月15日、5月16日、5月19日、6月17日、6月18日、7月14日、7月16日、7月17日、8月14日、8月15日,崔蕊只告诉了阿凯她生日的月份,告诉了宝夯她生日的日子,但阿凯和宝夯进行了下面一段奇怪的对话,就都知道崔蕊的生日了.宝夯:我不知道崔蕊的生日.阿凯:你说话之前我不知道崔蕊的生日,现在我知道了宝夯:那我也知道崔蕊的生日了.__________.那请问崔蕊的生日在哪一天?你的答案是:___11.古罗马的凯撒大帝发明了世界上最早的数学加密方法,我们现在介绍一种“等差数列加密法";以单词为单位,需要加密的单词的第一个字母对应到它后面的第一个字母(在字母表中的顺序,后同),第二个字母对应到它在字母表后面的第二个字母,第三个字母对应到它后面的第三个,…,比如,需要加密 HELLO,H→1E→G,L→0,L→P,O→T,加密后的密文为 IGOPT.按照这种加密方法,小明收到了一个加密后的信息“ JNIZJEVO",那么,这个信息的原文是___________.12.只能被1与其自身整除的大于1的自然数称为素数或质数,比如2,3,5,7,11,13等大于1的自然数如果不是素数,则称为合数,古希腊时代的人们已经知,道,素数有无穷多个,其证明思路蕴含在以下问题中:前两个素数组成的算式7132=+⨯;同样,前三个素数的算式311532=+⨯⨯,也是素数:前4个素数的算式2×3x5x7+1=2121117532=+⨯⨯⨯,前5个素数的算式23111117532=+⨯⨯⨯⨯,可以验证也是素数;但前6个素数的算式30031113117532=+⨯⨯⨯⨯⨯不是素数,显然2,3,5,7,11,13都不能整除这个数,所以,一定有比前6个素数大的素数整除30031,,请写出满足条件的素数中的最大者:__________.13. 将从1开始到100的连续的自然数相乘,得到100321⨯⋅⋅⋅⨯⨯⨯.记为100!(读作100的阶乘)用3除100!,显然,100!被3整除,得到一个商:再用3除这个商,这样一直用3除下去,直到所得的商不能被3整除为止,那么,在这个过程中用3整除了______次.阿14. 在如图所示的圆圈中填入从1到16的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的幻和那么,8阶幻星图的幻和为______,并继续完成以下8阶幻星图:15.任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理,勾股定理有着悠悠4000年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘徽给出了如下左图所示的简洁而美妙的证明方法,如下右图则是以这个方法为基础设计的刘徽模式勾股拼图板:刘徽模式勾股拼图板的5个组块,还可以拼成个如右图所示的梯形,如果其中的直角三角形直角边分别为3厘米与4厘米,那么,这个梯形的上下底的长分别为______厘米与______厘米.。
2022-2023学年小学五年级奥数(全国通用)测评卷03《平均数问题》(解析版)

【五年级奥数举一反三—全国通用】测评卷03《平均数问题》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共8小题,满分16分,每小题2分)1.(2分)(2016•华罗庚金杯)库里是美国NBA勇士队当家球星,在过去的10场比赛中已经得了333分的高分.他在第11场得()分就能使前11场的平均分达到34分.A.35 B.40 C.41 D.47【分析】用前11场的平均分34乘11求出总得分,然后再减去过去的10场比赛中已经得的333分就是第11场的得分.【解答】解:34×11﹣333=374﹣333=41(分)答:他在第11场得41分就能使前11场的平均分达到34分.故选:C.2.(2分)(2013•华罗庚金杯)三个自然数A、B、C之和是111,已知A、B的平均数是31,A、C的平均数是37.那么B、C的平均数()A.34 B.37 C.43 D.68【分析】因为三个自然数A、B、C之和是111,已知A、B的平均数是31,所有A、B的和是31×2=62,那么C=111﹣62=49,又因为A、C的平均数是37,所以B=111﹣37×2=37,进而根据求平均数的方法求出B、C的平均数.【解答】解:C=111﹣31×2=49,B=111﹣37×2=37,(49+37)÷2,=86÷2,=43,答:B、C的平均数是43.故选:C.3.(2分)(2012•创新杯)两位篮球运动员的体重分别为75千克和87.5千克,第3位运动员的体重介于这两者之间,下列哪一个不可能是这3位运动员的平均体重?()A.80.4 B.81.5 C.82.5 D.83.5【分析】求出3位运动员的平均体重介于79.1与83.3这两者之间,即可得出结论.【解答】解:由题意,(75×2+87.5)÷3≈79.1,(75+87.5×2)÷3≈83.3,∴3位运动员的平均体重介于79.1与83.3这两者之间,故选:D.4.(2分)(2018•其他杯赛)有7个数,它们的平均数是18.去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20.去掉的两个数的乘积是()A.12 B.14 C.26 D.168【分析】先求出7个数的和,以及去掉一个数后,剩下6个数的和,相减即可得到去掉的一个数;再求出再去掉一个数后,剩下的5个数的和,用去掉一个数后,剩下6个数的和相减求得后面去掉的一个数,再进一步求积即可.【解答】解:7×18﹣6×19=126﹣114=126×19﹣5×20=114﹣100=1412×14=168故选:D.5.(2分)(2017•奥林匹克)一辆汽车以每小时60千米的速度从甲地开往乙地,到达乙地后立即以每小时80千米的速度返回甲地。
2016年第十四届”走美杯“小学数学竞赛杭州赛区试卷(五年级初赛答案及解析)

2016年第十四届”走美杯“小学数学竞赛杭州赛区试卷(五年级初赛)-学生用卷一、填空题共5题,共40 分1、计算:(写成小数的形式,精确到小数点后两位)2、角硬币的正面与反面如图所示,拿三个角硬币一起投掷一次,得到两个正面一个反面的概率为。
3、大于的自然数,如果满足所有因数之和等于它自身的倍,则这样的数称为完美数或完全数。
比如,的所有因数为,,,,,就是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,研究完美数可以从计算自然数的所有因数之和开始。
那么的所有因数之和为。
4、某大型会议上,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有种。
5、将从开始到的连续的自然数相乘,得到,记为(读作的阶乘)用除显然,被整除,得到一个商,再用除这个商,,这样一直用除下去,直到所得的商不能被整除为止。
那么,在这个过程中用整除了次。
二、填空题共5题,共50 分6、如图,已知正方形中,是边的中点,,是与的交点,四边形的面积与正方形的面积的比是。
7、如图所示,将一张纸沿着长边的个中点对折,得到个小长方形,小长方形的长与宽之比与纸相同。
如果设纸的长为厘米,那么,以纸的宽为边长的正方形面积为平方厘米(精确到小数点后一位)。
8、由一些顶点和边构成的图形称为一个图,对一个图用不同颜色给顶点染色,要求具有相同边的两个顶点染不同的颜色。
称为图的点染色,图的点染色通常要研究的问题是完成染色所需要的最少的颜色数,这个数称为图的色数。
如图的图称为彼特森图,彼特森图的色数为。
9、在平面上,用边长为的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形。
最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的本原格点三角形,每一个格点多边形都能够很容易地划分为若干个本原格点三角形。
【五年级】2016年走美杯试卷

第十四届“走美杯”小学五年级(B )卷一、填空题Ⅰ1. 计算:______78765654343212=⨯⨯⨯⨯⨯⨯.(写成小数形式,精确到小数点后两位) 2. 1角硬币的正面与反面如图所示,拿三个1角硬币一起投掷一次,得到两个正面一个反面的概率为______.3. 大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数,比如,6的所有因数为1,2,3,6,126321=+++,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,8128的所有因数之和为______.4. 某大型会议上,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有______种.5. 将从1开始到25的连续的自然数相乘,得到25321⨯⋅⋅⋅⨯⨯⨯.记为25!(读作25的阶乘)用3除25!,显然,25!被3整除,得到一个商:再用3除这个商,这样一直用3除下去,直到所得的商不能被3整除为止,那么,在这个过程中用3整除了______次.二、填空题Ⅱ6.如图,已知正方形ABCD 中,F 是BC 边的中点,GC=2DG,E 是DF 与BG 的交点.四边形ABED 的面积与正方形ABCD 的比是______.7.如下图所示,将一张A4纸沿着长边的2个中点对折,将得到2个小长方形,小长方形的长与宽之比与A4纸相同.如果设A4纸的长为29.7厘米,那么,以A4纸的宽为边长的正方形面积为______平方厘米.(精确到小数点后一位)8.由一些顶点和边构成的图形称为一个图,对一个图用不同颜色给顶点染色,要求具有相同边的两个顶点染不同的颜色,称为图的点染色,图的点染色通常要研究的问题是完成染色所需要的最少的颜色数,这个数称为图的色数,下面的图称为皮特森图,皮特森图的色数为______.9.在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如右图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形,那么,右图中的格点四边形EBGF可以划分为______个本原格点三角形.10.在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为:每人每次可以选择某一木格中的任意数目的小球,并将其移动到该木格右边紧邻的那一木格中:当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜面对如图所示的局面(每个木格中的数字代表小球的数目,木格下方的数字表示木格编号),先手有必胜策略,那么,为确保获胜,先手第一步应该移动______号木格中的______个小球.三、填空题Ⅲ11.n m 、是两个自然数,满足11864926019=-n m ,那么,____________________. 12.以下由1,2构成的无穷数列有一个有趣的特征:从第一项开始,把数字相同的项合成一个组,再按照顺序将每组的项数写下来,则这些数构成的无穷数列恰好是它自身,这个数列被称为库拉库斯基数列,按照这个特征,继续写出这个数列后8项为__________________________________(从第14项到第21项).如果已知这个数列的前50项的和为75,第50项为2,则可以知道第73项,第74项,第75项,第76项分别为_____________.13.不全为零的两个自然数的公因数中的最大者,称作这两个数的最大公因数如果不全为2个自然数的最大公因数为1,则这两个数称为互素的或互质的,比如,2与3互素,3与8互素:12与15不是互素的,因为它们的最大公因数是3.不超过81的自然数中,有_______个数与81互素.14.任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理,勾股定理有着悠悠4000年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘徽给出了如下左图所示的简洁而美妙的证明方法,如下右图则是以这个方法为基础设计的刘徽模式勾股拼图板:刘徽模式勾股拼图板的5个组块,还可以拼成个如右图所示的平行四边形,如果其中的直角三角形直角边分别为3厘米与4厘米,那么,这个平行四边形的周长为______厘米.15.在如图所示的圆圈中填入从1到16的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的幻和那么,8阶幻星图的幻和为______,并继续完成以下8阶幻星图:。
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、填空题(共20小题,每小题3分,满分60分)1.(3分)20.16×32+2.016×680=.2.(3分)小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.3.(3分)某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明聪镜中看到电子表显示的时间如图所示,则此时的实际时间是.4.(3分)如果自然数a、b、c、d除以6都余4,则a+b+c+d除以3,所得的余数是.5.(3分)三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.6.(3分)将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)7.(3分)如图,若每个小正方形的边长是2,则图中阴影部分的面积是.8.(3分)某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.9.(3分)如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.10.(3分)两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.11.(3分)14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,已知每袋糖果的重量都是整数,则这14袋糖果的总重量是.12.(3分)从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是.13.(3分)某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.14.(3分)如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边形EFGH=平方米.15.(3分)有一个三位数A,在它的某位数字的前面添上小数点后得数B,若A ﹣B=478.8,则A=.16.(3分)商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍.如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26.则商店里原有个柚子.17.(3分)已知a、b、c是3个彼此不同的质数,若a+b×c=37,则a+b﹣c最大是.18.(3分)李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.19.(3分)如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D 重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.20.(3分)解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、填空题(共20小题,每小题3分,满分60分)1.(3分)20.16×32+2.016×680=2016.【分析】把2.016×680变形为20.16×68,然后根据乘法的分配律简算即可.【解答】解:20.16×32+2.016×680=20.16×32+20.16×68=20.16×(32+68)=20.16×100=2016故答案为:2016.【点评】本题利用具体的算式考查了学生对于乘法分配律的理解.2.(3分)小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是B.【分析】共有6只小猫咪,278÷6=46…2,容易得出答案.【解答】解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.故答案为:B.【点评】关键是找出周期,本题周期=6.3.(3分)某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明聪镜中看到电子表显示的时间如图所示,则此时的实际时间是02:55.【分析】根据镜面对称的性质求解,在平面镜中的像与实际的实物,恰好左右或上下颠倒,关于镜面对称;据此解答即可.【解答】解:画图如下:所以,此时的实际时间是02:55.故答案为:02:55.【点评】本题考查了镜面对称知识,得到相应的对称轴是解答本题的关键,难点是作出相应的对称图形;注意2、5的关于竖直的一条直线的轴对称图形是5、2.4.(3分)如果自然数a、b、c、d除以6都余4,则a+b+c+d除以3,所得的余数是1.【分析】自然数a、b、c、d除以6都余4,则a、b、c、d都可以表示为6×整数+4,后面分析就简单了.【解答】解:因为自然数a、b、c、d除以6都余4,所以a、b、c、d都可以表示为:6×整数+4,四个这样的数的和是:6×整数+16,除以3余1,所得的余数是1.答案是1.【点评】能被6整除,一定能被3整除,只需要把四个余数加起来,看除以3余几,就是答案.5.(3分)三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小326.【分析】最大的三位偶数是998,要使A最小,则要让其他的4个数(B、C、D、E)尽量最大,由于三位偶数A、B、C、D、E满足A<B<C<D<E,所以E 最大是998,D最大是996,C最大是994,B最大是992,用5个数的和4306减去B、C、D、E这4个数的和就是A的值;据此解答.【解答】解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.【点评】解答此题关键是明确最大的三位偶数是998,要使A最小,则要让其他的4个数(B、C、D、E)尽量最大.6.(3分)将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是151.(1步指每“加”或“减”一个数)【分析】加15,减12,加3,…,就相当于每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,即运算26步经过了8的计算周期,再加15,减12各一次,然后用100加上6×8,再加上15,再减去12即可.【解答】解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是151.故答案为:151.【点评】这一类问题一般要利用余数的知识来解答.这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果.7.(3分)如图,若每个小正方形的边长是2,则图中阴影部分的面积是72.【分析】可以将图中阴影部分的三角形进行剪切和拼接,变成都是小正方形组成的图形,最后再数出正方形的个数,即可求得阴影部分的面积.【解答】解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.【点评】本题考查了剪切和拼接,突破点是:将阴影部分进行剪切和拼接,数出小正方形的个数,从而求得阴影部分的面积.8.(3分)某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心237块.【分析】设大合x 盒,小盒y 盒,依题意有方程:85.6x +46.8(9﹣x )=654解方程可知大小各多少盒,进而可求出块数.【解答】设大合x 盒,小盒y 盒,依题意有方程:85.6x +46.8(9﹣x )=654解方程得x=6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.【点评】本题如果用算术法求解,要用假设法.可先假设9盒全是15块一盒的,应花钱46.8×9=437.4元,比实际少232.8元,这是把其中的大合看成了小盒, 1大合看成了1小盒少算85.6﹣46.8=38.8元,大合有232.8÷38.8=6盒,小盒9﹣6=3盒.9.(3分)如图,在梯形ABCD 中,若AB=8,DC=10,S △AMD =10,S △BCM =15,则梯形ABCD 的面积是 45 .【分析】△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,即可求出S △ABM 的面积,进而求出梯形ABCD 的面积.【解答】解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.【点评】本题关键是明确等高的三角形,面积比等于对应底的比.突破口是得到S△ABM:(S△ADM+S△BCM)=8:10.10.(3分)两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是12.【分析】首先要知道最大公约数和最小公倍数是如何求得的,最大公约数是两个数的公有质因数的积,最小公倍数是两个数的公有质因数和独有因数的积,所以用最小公倍数除以最大公约数就得到了两个数的独有因数的积,并且两个数的独有因数应该是互质的,然后根据质因数求出差最小的两个数即可.【解答】解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.【点评】本题考查了最大公因数和最小公倍数,解题关键是:最小公倍数除以最大公因数就得到了两个数的独有因数的积,并且两个数的独有因数应该是互质的.11.(3分)14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,已知每袋糖果的重量都是整数,则这14袋糖果的总重量是1263克.【分析】首先判断出这14袋糖果每袋的平均重量大于等于90.15和小于90.25之间,这14袋糖果的总重量大于或等于90.15×14=1262.1克和小于90.25×14=1263.5之间,然后求出这14袋糖果的总重量即可.【解答】解:用四舍五入取近似值的方法精确到一位小数能得到90.2的数值范围是:(大于等于90.15和小于90.25之间)所以这14袋糖果的总重量大于或等于90.15×14=1262.1克和小于90.25×14=1263.5之间,因为每袋糖果的重量都是整数,所以糖果的总重量也是整数,在1262.1和1263.5之间只有1263是整数,所以这14袋糖果的总重量是1263克.答:这14袋糖果的总重量是1263克.故答案为:1263克.【点评】解答此题的关键是判断出这14袋糖果每袋的平均重量大于等于90.15和小于90.25之间.12.(3分)从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是3333.【分析】千位上从5个数字有选择一个,就有5种选择的方法,百位上从剩下的4个数字中选择一个有4种不同的选择方法,十位上从剩下的3个数字中选择一个有3种选法,个位上从剩下的2个数字中选择一个有2种选法,它们的积就是全部的选择方法;5×4×3×2=120(种);组成的四位数中,千位上是1的有24个数字,同理百位上是2,3,4,5的各有24个数字,十、个位上是1,2,3,4,5的也各有24个数字,即1,2,3,4,5在每个数位上各出现的24次,出现的次数相同,所以所有四位数的平均数的个位、十位、百位、千位都是1,2,3,4,5这5个数字的平均数.【解答】解:5×4×3×2=120(个),1×4×3×2=24(个),即1,2,3,4,5在每个数位上各出现的24次,可以组成120个不同的四位数;(1+2+3+4+5)÷5=3;那么平均数的各个位上的数字都是3,这个平均数就是3333.答:这些四位数的平均数是3333.故答案为:3333.【点评】根据乘法原理求出可以组成四位数的个数,再根据这些四位数的特点,找出它们的平均数.13.(3分)某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B两人各自答题,得分之和是58分,A比B多得14分,则A答对8道题.【分析】因为得分之和是58分,A比B多得14分,根据和差公式可得A得了(58+14)÷2=36分,假设全部答对,则应得分为10×5=50分,则共相差50﹣36=14分,因为答错一道或不答和答对一道相差2+5=7分,所以答错14÷7=2道题.【解答】解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.【点评】本题考查了和差问题与鸡兔同笼问题的综合应用,解答此类题的关键是用假设法,也可以用方程进行解答.14.(3分)如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边形EFGH=32平方米.减去S 【分析】将图中面积相等的图形标出来,即等积变形,即长方形S长方形ABCD四边形后剩的八个三角形的面积可分成两半,一半再四边形EFGH中,长方形XYZR从而由此可以求得S.四边形EFGH【解答】解:根据分析,如下图所示:长方形S=S长方形XYZR+△AEF+△EFR+△FBG+△FGX+△HCG+△HGY+△DHE+△长方形ABCDHEZ=S长方形XYZR+2×(a+b+c+d)⇒60=4+2×(a+b+c+d)⇒a+b+c+d=28=△EFR+△FGX+△HGY+△HEZ+S长方形XYZR四边形S四边形EFGH=a+b+c+d+S长方形XYZR=28+4=32(平方米).故答案是:32.【点评】本题考查了等积变形,本题突破点是:利用等积变形,将四边形的面积分割成四个三角和一个长方形,最后求和.15.(3分)有一个三位数A,在它的某位数字的前面添上小数点后得数B,若A ﹣B=478.8,则A=532.【分析】A﹣B=478.8,差是一位小数,说明B也是一位小数,原来的三位数A 变成一位小数就缩小了10倍,也就是A﹣B的差是B的9倍,用478.8除以9即可求出B,再把B的小数点向右移动一位就是A.【解答】解:A﹣B=478.8,则:B是A缩小10倍得到的478.8÷(10﹣1)=478.8÷9=53.2那么A=53.2×10=532.故答案为:532.【点评】此题应认真分析,通过观察数字得出:小数点,必在十位和个位之间,再根据差倍公式求解即可.16.(3分)商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍.如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26.则商店里原有176个柚子.【分析】首先找到题中的等量关系,表示出所有的数量列方程即可.【解答】解:依题意可知:3天后卖出90个西瓜和60个柚子.数量差为30个.设后来柚子是x个,西瓜是4x﹣26个.那么原来柚子是x+60个,原来西瓜是4x ﹣26+90;4x+90﹣26=3(x+60),x=116.故答案为:176【点评】本题的考查差倍问题的理解和运用,方程比较简单容易理解,问题解决.17.(3分)已知a、b、c是3个彼此不同的质数,若a+b×c=37,则a+b﹣c最大是32.【分析】要使a+b﹣c的值最大,就要使c的值最小,最小的质数是2,所以c=2;则可得:a=37﹣b×c=37﹣2b,然后再使b最小即可.当b=3时,a+3×2=37,a=31正好a、b、c都是质数将其分别代入a+b﹣c,得32【解答】解:要使a+b﹣c的值最大,就要使c的值最小,最小的质数是2,所以c=2;则可得:a=37﹣b×c=37﹣2b,要使a最大,则使b最小,b最小是3,所以,a最大是:a=37﹣2×3=31,所以,a+b﹣c最大是:a+b﹣c=31+3﹣2=32;答:a+b﹣c最大是32.故答案为:32.【点评】本题解答的突破口是先确定减数c=2,然后根据:因为b在与c的乘积中,所以只有使b尽量的小,才能保证a尽量的大解答即可.18.(3分)李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是72米/分钟.【分析】首先把李双原来骑车的速度看作单位“1”,用李双原来骑车的速度乘1.5,求出修完车后李双骑车的速度是多少;然后根据路程÷速度=时间,分别用1800除以修车前后李双骑车的速度,求出修车前后李双骑1800米用的时间各是多少,再用修车前李双骑1800米用的时间减去修车后李双骑1800米用的时间,求出修车后李双骑1800米少用多少分钟;最后用李双到达B地比预计多用的时间减去15,再加上修车后李双骑1800米少用的时间,求出李双步行5分钟的路程比同样的路程骑车用的时间多几分钟,再用李双骑车的速度乘李双步行5分钟的路程,骑车需要的时间,求出李双步行的路程是多少,再用它除以5,求出李双推车步行的速度是多少即可.【解答】解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出李双步行5分钟的路程比同样的路程骑车用的时间多几分钟.19.(3分)如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D 重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=2厘米.【分析】△ABC 的周长是16 厘米,因为△ABC 是等腰三角形,且顶点A与底边的中点D重合,所以△AEF 的周长等于△ABC 的周长的一半;可得△AEF 的周长为16÷2=8 (厘米),△AEF 和四边形BCEF周长和为8+10=18(厘米),18厘米正好比△ABC的周长是16厘米多了两条EF的长度,所以EF=(18﹣16)÷2=1 (厘米),又因为EF是中位线;则BC=2 EF=2(厘米).【解答】解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF 和四边形BCEF周长和为:8+10=18(厘米),所以BC=18﹣16=2(厘米),答:BC=2厘米.故答案为:2.【点评】本题关键是根据和差公式以及中位线的性质求出EF的长度,再进一步求出BC的长度.20.(3分)解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需30分钟.【分析】假设每人每分钟修大坝1份,先求出洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=2(份);然后求出大坝原有的份数45×10﹣2×45=360(份);再让14人中的2人修冲毁大坝的份数,剩下的14﹣2=12人修原有的360份,可求出需要的时间,据此解答.【解答】解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.【点评】牛吃草的问题关键的是求出青草的生长速度和草地原有的草的份数.。
走美五年级讲义 15 圆与扇形

15 圆与扇形1.(1)已知一个扇形的半径为2厘米,弧长为3.14,这个扇形的面积是多少?(2)已知一个半圆形的面积是56.52平方厘米,求这个半圆形的周长.(л取3.14)2.如图15-10,求各图中阴影部分的面积.(图中长度单位为厘米,л取3.14)3.如图15-11,直角三角形ABC的面积是45,分别以曰、C为圆心,3为半径画圆.已知图中阴影部分的面积是35.58.请问:角A是多少度?(л取3.14)4.图15-12是一个直径是3厘米的半圆,AB是直径.如图15-13所示,让A点不动,把整个半圆逆时针转60。
,此时B点移动到C点.请问:图中阴影部分的面积是多少平方厘米?(л取3.14)5.图15-14中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?6.图15-15中有一个等腰直角三角形ABC,一个以AB为直径的半圆,和一个以BC为半径的扇形.已知AB =BC=10厘米,那么图中阴影部分的面积为多少平方厘米?(л取3.14)7.图15-16是由一个圆与一个直角扇形重叠组成的,其中圆的直径与扇形的半径都是4.图中阴影部分的面积是多少?(л取3.14)8.(1)如图15-17,已知外面大圆的半径是4,求正方形以及里面小圆的面积.(答案用л表示)(2)已知图t5-18中正方形的边长为2,分别以其四个顶点为圆心的直角扇形恰好交于正方形中心,求图中阴影部分的面积.(答案用л表示)9.图15-19中有一个矩形和两个半径分别为5和2的直角扇形.请问:两个阴影部分的面积之差是多少?(л取3.14)10.(1)根据图15-20中给出的数值,求这个图形的外周长和面积.(л取3.14)(2)如图15-21,有七根直径为5厘米的塑料管,用一根橡皮筋把它们扎成一捆,此时橡皮筋的长度是多少厘米?(л取3.14)11.如图15 -22,一只小狗被拴在一个边长为4米的正五边形的建筑物的一个顶点处,四周都是空地.绳长刚好够小狗走到建筑物外墙边的任一位置.小狗的活动范围是多少平方米?(建筑外墙不可逾越,小狗身长忽略不计,л取3.14)12.(1)图15-23中正方形的边长是4厘米,圆形的半径是1厘米.当圆形绕正方形滚动一周又回到原来位置时,扫过的面积有多大?(л取3.14)(2)图15-24中等边三角形的边长是3厘米,圆形的半径是1厘米.当圆形绕等边三角形滚动一周又回到原来位置时,扫过的面积有多大?(л取3.14)巩固练习1.已知一个扇形的圆心角为120°,半径为2,这个扇形的面积和周长各是多少?(л取3.14)2.已知一个扇形的面积为18.84平方厘米,圆心角为60°,这个扇形的半径和周长各是多少?(л取3.14)3.(1)根据图15-1所给的数值,求这个图形的外周长和面积.(л取3.14)(2)如图15.2,有8个半径为1厘米的小圆,用它们圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10、在放置有若干个小球的一排木格中,甲乙两人轮流移动小球,移动的规则为每人每次可 以选择某一木格中的任意数目的小球,并将其移动到该木格右边紧邻的那一木格中,当所有 小球全部移动到最右端的木格中时,游戏结束,移动最后的一个小球的一方获胜。 面对如图所示的局面(每个木格中的数字代表小球的数目,木格下方的数字表示木格的编号), 先手有必胜策略,那么为确保获胜,先手第一步应该移动几号木格中的__________个小球? 56 7 32 10
8 有一些顶点和边构成的图形称为一个图,对一个图用不同的颜色给顶点染色,要求具有相 同边的两个顶点然不同的颜色,称为图的点染色,图的点染色通常要研究的问题是完成染色 所需要的最少颜色数,这个数称为图的色数,下面的图称为皮特森图。皮特森图的色数为 __________?
9、在平面上,用边长为 1 的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又 称为格点),上的简单多边形叫做格点多边形。最简单的格点多边形是格点三角形,而除去 三个顶点之外,内部或边上不含格点的格点三角形为本原格点三角形。如右图所示的格点三 角形 MBN,每一个格点多边形都能够很容易地划分为若干个本原格点三角形,那么右图中 的格点四边形 EFGHKB 可以划分为__________个本原格点三角形。
3、大于 0 的自然数,如果满足所有因数之和等于它自身的 2 倍,则这样的数称为完美数或 完全数,6 的所有因数为 1、2、3、6。1+2+3+6=12,6 是最小的完美数。是否有无限多个完 美数的问题至今仍然困抗人类的难题之一,研究完美数可以从计算自然数的所有因数和开始。 8128 的所有因数之和为__________
图1
图2
图3
刘徽模式勾股拼图板的 5 个组块,还可以拼成一个如图 3 的平行四边形,如果其中的直角三 角形直角边分别为 3 厘米,4 厘米,那么这个平行四边形的周长为_____________厘米.
15、在
的圆圈中填入 1 到 16 的自然数,(每一个只能用一次),连接在同一直线上
的 4 个圆圈中的数字之和都相等,这称为一个 8 阶幻星图,这个相等的数称为 8 阶幻星图的
和。那么 8 阶幻形图的幻和为___________,并继续完成以下 8 阶幻星图
图原题
填空题 II 每题 10 分,共 50 分
6、如图:已知正方形 ABCD 中,F 是 BC 的中点,GC=2DG,E 是 DF 与 BG 的交点,四边形
ABED 的面积与正方形 ABCD 的比是__________
A
B
F E
D
G
C
7 如图所示,将一张 A4 纸沿着长边的 2 个中点对折,将得到 2 个小长方形,小长方形的长 与宽裕 A4 纸相同,如果设 A4 纸的长为 29.7 厘米,那么以 A4 纸的宽为边长的正方形面积为 __________平方厘米?(精确到小数点后 1 位)
填空 III 每题 12 分,共 60 分
11、m,n 是两个自然数,满足 26019×m-649×n=118,那么 m 和 n 可以分别取__________?
12、以下由 1、2 构成的无穷数列有一个有趣的特征,从第一项开始,把数字相同的项合成 一个组,再按照顺序将每组的项数写下来,则这些数构成的无穷数列恰好是它本身,这个数 列被称为库拉库斯基数列,按照这个特诊,继续写出这个数列后 8 项_________________, (从第 14 项到第 21 项),如果已知这个数列的前 50 项的和为 75,第 50 项为 2,则可以知 道第 73 项,第 74 项,第 75 项,第 76 项分别为_________________
第十四届走美杯五年级 B 卷南京
2016 年 3 月 13 日上午
填空题 I(每题 8 分共 40 分) 1、计算2 × 2 × 4 × 4 × 6 × 6 × 8=__________
1335577
写成小数,精确到小数点后两位
2、1 角硬币的正面与反面如图所示,拿三个 1 角的硬币一起投掷一次,得到两个正面一个 方面的概率为__________
4、某大型会议上,要从小张,小赵,小李,小罗,小王五名志愿者中选派四人分别从事翻 译,导游,礼仪,司机四项不同工作,若其中小张和小赵只能从事前两项共工作,其余三人 均能从事这四项工作,则不同的选派方案有__________种?
5、将从 1 开始到 25 的连续自然数相乘,得到 1×2×3×…×25 记 25!(读 25 的阶乘)。用 3 除 25!显然 25!能被 3 整除,得到一个商;再用这个商除 3,一直用 3 除下去,直到所 得的商不能被 3 整除为止,那么,在这个过程中用 3 整除了__________次?
13、不全为零的两个自然数的公因数中的最大者,称作这两个数的最大公因数。如果不全为 2 个自然数的最大公因数为 1,则这两个数称为互质或互素的。比如 2 与 3 互素,3 与 8 互 素,12 与 15 不是互素。因为它们的最大公因数是 3。不超过 81 的自然数中,有的性质,以两个直角边为边长的正方形的面积之和等于以 斜边为边长的正方形的面积。这就是著名的勾股定理。在西方又被称为毕达哥拉斯定理。勾 股定理有着悠悠 4000 年的历史,出现了数百个不同的证明,魏晋时期的中国古代数学家刘 徽恰出了如下图 1 所示的简洁而美妙的证明方法,如下图 2 则是以这个方法为基础设计的刘 徽模式勾股拼图版。