相似矩阵与矩阵对角化
相似矩阵和矩阵对角化的条件

3 0 0 1 ,2 ,3线性无关, 三 个 , A ~ 0 1 0 , 共 0 0 1 0 2 -1 相应的可逆阵 (1,2,3 ) 1 1 0 P 1 0 1
例2
1 1 0 A 4 3 0 是否和对角矩阵相似. 判断矩阵 1 0 2 若相似,求出可逆矩阵 P ,使得 P 1 AP .
三. 矩阵可对角化的条件
条件1(充要条件):A有n个线性无关的特征向量.
证明:必要性
若 A
1 , n
~
2
则存在 阶可逆矩阵 , n P
使得P1AP . 设P (1 , 2 ,, n )
显然, i (i 1, 2,, n) , 且1 ,2 ,,n 线性无关.
设P (1 , 2 ,, n )
由于 1 ,2 ,,n 线性无关,故P可逆.于是,
AP A(1 ,2 ,,n )
( A1 , A2 ,, An ) (11 , 22 ,, n n )
AP (11 , 22 ,, nn )
i
i 是A的特征值,i 是A的属于 i 的特征向量.
又 1 , 2 ,, n 线性无关
A有n个线性无关的特征向量
充分性
设A有n个线性无关的特征向量:1 , 2 ,, n , 它们所对应的特征值依次为: 1 , 2 ,, n , 则有
Ai ii (i 1, 2,, n)
第二节
相似矩阵和矩阵对角化的条件
一.相似的定义 设A、B都是n阶方阵,若存在n阶可 逆矩阵P,使得
P AP B
记作 A B 则称A相似于B.
1
矩阵的相似与对角化

矩阵的相似与对角化矩阵是线性代数中的重要概念之一,而相似性与对角化是矩阵理论中的两个关键概念。
本文将从相似性与对角化的概念入手,探讨它们的定义、性质以及在线性代数中的应用。
1. 相似矩阵的定义与性质相似矩阵是线性代数中一个重要的概念,它描述了两个矩阵具有相同的特征值,但其特征向量的基和矩阵元素可能不同。
具体来说,如果存在一个可逆矩阵P,使得矩阵A和矩阵B满足A = PBP^(-1),则可以称矩阵A和矩阵B是相似的。
相似矩阵的性质包括:1) 相似矩阵具有相同的特征值,即它们的特征多项式相同。
2) 相似矩阵的特征向量对应相同的特征值,但基可能不同。
3) 相似矩阵具有相同的迹、行列式和秩。
4) 相似矩阵具有相同的幂,即A^k与B^k相似。
2. 对角化的定义与性质对角化是线性代数中与相似性概念紧密相关的一个概念。
简而言之,对角化就是将一个矩阵通过相似变换变成对角矩阵的过程。
具体来说,如果一个n阶矩阵A相似于一个对角矩阵D,即存在一个可逆矩阵P,使得A = PDP^(-1),则称矩阵A是可对角化的。
对角化的性质包括:1) 可对角化矩阵与其特征值和特征向量有关,特征向量构成的基是将矩阵对角化的基。
2) 可对角化矩阵具有简洁的形式,对角线上的元素是矩阵的特征值,其他元素都为0。
3) 可对角化矩阵的幂可以通过对特征值的幂进行对角化得到。
3. 相似与对角化的关系和应用相似的关系为矩阵的对角化提供了有力的理论基础。
具体而言,如果一个矩阵是可对角化的,那么它就必然与一个对角矩阵相似。
换句话说,对角化是相似的一种特殊情况。
相似与对角化的关系在线性代数中有广泛的应用,例如:1) 矩阵的相似性可以简化矩阵的计算,例如求解线性方程组、计算矩阵的幂等等。
2) 对角化可以简化矩阵的求幂运算,从而方便计算高阶矩阵的幂。
3) 对角化可以帮助我们理解矩阵的性质,例如特征向量的重要性、矩阵的谱分解等。
总结:本文从相似性与对角化的定义和性质出发,对相似矩阵与对角化的关系与应用进行了讨论。
矩阵相似与对角化问题

矩阵相似与对角化问题引言矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。
在研究矩阵的性质和应用时,矩阵相似与对角化问题是常见且重要的问题之一。
本文将对矩阵相似和对角化的概念、性质和关系加以讨论。
矩阵相似定义给定两个 n × n 矩阵 A 和 B,如果存在一个可逆矩阵 P,使得P⁻¹AP = B,则称A 和 B 相似。
记作A ∼ B。
性质矩阵相似具有以下性质:1.若A ∼ B,则B ∼ A。
2.若A ∼ B,B ∼ C,则A ∼ C。
(相似关系是传递的)3.若A ∼ B,那么 A 的特征多项式和 B 的特征多项式相同。
4.若 A 和 B 相似,则 A 和 B 具有相同的特征值和特征向量。
相似对角化对于相似矩阵 A 和 B,我们可以进行相似对角化,即将 A 变换为一个对角矩阵B。
具体步骤如下:1.设 A 是一个 n × n 矩阵,A 有 n 个线性无关的特征向量。
2.将这 n 个特征向量按列组成矩阵 P。
3.计算P⁻¹AP,得到对角矩阵 B。
对角化的好处是简化了矩阵的计算和处理,形式更加规整,便于求解特定的问题。
对角化问题定义给定矩阵 A,如果存在一个可逆矩阵 P,使得P⁻¹AP = D,其中 D 是一个对角矩阵,则称 A 可对角化。
充分条件一个矩阵 A 可对角化的充分条件是存在 n 个线性无关的特征向量。
如果 A 的 n 个特征向量线性无关,则 A 必定可对角化。
对角化步骤求解矩阵对角化的步骤如下:1.解特征方程 |A - λI| = 0,得到矩阵 A 的特征值λ1, λ2, …, λn。
2.对于每个特征值λi,解特征方程 (A - λiI)xi = 0,得到特征向量 xi。
3.如果通过步骤 2 得到的 n 个特征向量线性无关,则 A 可对角化。
将这些特征向量按列组成矩阵 P,并将对应的特征值按对角线排列得到对角矩阵D。
可对角化的性质可对角化的矩阵具有以下性质:1.可对角化的矩阵 A 的迹等于其特征值之和。
矩阵相似和对角化

矩阵相似和对角化矩阵的相似和对角化是线性代数中重要的概念和技术。
它们在矩阵理论、线性变换和特征值理论等领域具有广泛的应用。
下面将对矩阵相似和对角化进行详细介绍和相关参考内容的分享。
1. 矩阵的相似性(Matrix Similarity):矩阵相似性是指两个矩阵具有相同的特征值与特征向量。
具体来说,对于n阶矩阵A和B,如果存在一个可逆矩阵P,使得P^(-1)AP=B,则称矩阵A与B相似。
矩阵相似性的特性包括:(1) 相似矩阵具有相同的特征值,但不一定有相同的特征向量;(2) 相似矩阵具有相同的迹、行列式和秩;(3) 相似矩阵表示相同的线性变换,只是在不同的坐标系下表示。
矩阵的相似性在计算机图形学、信号处理和网络分析等领域有广泛的应用。
下面是几篇相关的参考文献:- "Matrix Similarity and Its Applications"(作者:Yu Zhang)是一篇介绍矩阵相似性及其应用的综述文章。
它详细讨论了相似矩阵的定义、性质和计算方法,并列举了相似矩阵在网络分析和信号处理中的应用案例。
- "On Similarity of Matrices"(作者:Pe tar Rajković et al.)是一篇关于相似矩阵的形式定义和性质研究的论文。
它推导了相似矩阵的充要条件和相似变换的表达式,并给出了相似矩阵的几何解释和应用示例。
- "Graph Similarity and Matching"(作者:Michaël Defferrard et al.)是一本关于图相似性和匹配算法的专著。
它介绍了基于矩阵相似性的图匹配方法,包括谱聚类、图嵌入和子图匹配等技术,对于矩阵相似性的理解和应用具有参考价值。
2. 矩阵的对角化(Matrix Diagonalization):矩阵的对角化是指将一个可对角化矩阵相似转化成对角矩阵的过程。
矩阵的相似与对角化求解

矩阵的相似与对角化求解矩阵是线性代数中重要的概念之一,广泛应用于各个领域。
在研究矩阵的性质时,相似和对角化是两个关键的概念。
本文将为您介绍矩阵的相似性和对角化求解方法,并探讨它们在实际问题中的应用。
一、矩阵的相似性矩阵的相似性是指两个矩阵具有相同的特征值和特征向量。
当两个矩阵相似时,它们的性质也会类似。
在数学中,我们用矩阵P表示可逆矩阵,如果矩阵A和B满足P^-1AP=B,那么我们称A和B是相似矩阵。
矩阵的相似性具有以下三个性质:1. 相似性是一种等价关系。
即对于任意的矩阵A,A与自身相似;若A与B相似,则B与A相似;若A与B相似,B与C相似,则A 与C相似。
2. 相似矩阵具有相同的行列式、迹和秩。
这意味着相似矩阵在行列式、迹和秩等方面具有相似的性质。
3. 相似矩阵具有相似的特征值和特征向量。
这是矩阵相似性的核心概念,相似的矩阵具有相同的特征值和特征向量。
二、矩阵的对角化求解方法对角化是指将一个矩阵通过相似变换,转化为对角矩阵的过程。
对角化的求解可以简化矩阵的运算,方便研究矩阵的性质。
下面介绍一种常用的对角化求解方法——特征值分解。
特征值分解是将一个n阶矩阵A分解为A=PDP^-1的形式,其中D是对角矩阵,P是可逆矩阵,D的主对角线上的元素是A的n个特征值。
特征值分解的步骤如下:1. 求出矩阵A的特征值。
特征值可以通过求解特征方程det(A-λI)=0来获得,其中λ是特征值,I是单位矩阵。
2. 根据特征值求出对应的特征向量。
对于每一个特征值λ,通过求解(A-λI)x=0来获得对应的特征向量x。
3. 构造可逆矩阵P。
将所有的特征向量按列组成矩阵P,即P=[x1,x2,...,xn]。
4. 构造对角矩阵D。
将特征值按照对应的特征向量顺序放在D的主对角线上。
5. 得到对角化的矩阵A。
通过A=PDP^-1可以得到矩阵A的对角化形式。
三、应用示例矩阵的相似性和对角化在实际问题中具有广泛的应用。
以下是一些常见的应用示例:1. 线性系统求解:矩阵的相似性可以将一个复杂的线性方程组转化为一个简单的对角形式,从而求解线性系统变得更加方便。
矩阵的相似性与对角化

矩阵的相似性与对角化矩阵是线性代数中的重要概念之一,广泛应用于各个领域。
在矩阵的研究中,相似矩阵和对角化是两个关键概念。
本文将探讨矩阵的相似性和对角化,并分析它们在实际问题中的应用。
一、相似矩阵相似矩阵是指具有相同特征值的矩阵。
具体而言,设A和B为两个n阶矩阵,若存在一个可逆矩阵P,使得PAP^{-1}=B成立,则称A和B相似,P为相似变换矩阵。
矩阵的相似性可以理解为同一线性变换在不同基下的表示。
相似矩阵保持了线性变换的关键属性,例如特征值和特征向量。
对于相似矩阵,它们之间存在一系列重要性质:1. 相似矩阵具有相同的特征值。
设A和B为相似矩阵,如果λ是A 的特征值,则B的特征值也是λ。
2. 相似矩阵具有相同的行列式、迹和秩。
3. 相似矩阵具有相同的特征多项式和最小多项式。
相似矩阵的概念对于矩阵的性质分析和计算求解具有重要意义。
我们可以通过相似矩阵的性质来简化矩阵的计算和求解过程。
二、对角化对角化是将一个矩阵变换为对角矩阵的过程。
一个可对角化的矩阵可以表示为D=P^{-1}AP,其中D为对角矩阵,P为相似变换矩阵。
要判断一个矩阵是否可对角化,需要满足两个条件:1. 矩阵A必须有n个线性无关的特征向量,其中n为矩阵的阶数。
换句话说,A的特征向量必须能够张成整个n维空间。
2. 矩阵A的每一个特征向量都对应一个不同的特征值。
符合上述条件的矩阵A称为可对角化矩阵,对角化的好处在于简化矩阵的计算。
对角矩阵具有简单的形式,只有对角线上有非零元素,其余元素都为零。
对角矩阵的求幂、求逆和乘法等运算都非常容易,因此对角化可以极大地简化矩阵的计算过程。
三、相似矩阵和对角化的应用相似矩阵和对角化在数学和工程中有广泛的应用,下面重点介绍其中几个典型的应用领域:1. 工程中的状态空间表示:在控制系统的分析和设计中,矩阵的相似性和对角化被广泛运用。
通过相似变换将系统的状态空间表示转化为对角形式,可以方便地进行系统的特征分析和控制器设计。
矩阵的相似与对角化

矩阵的相似与对角化矩阵是线性代数中的重要概念,它在各个领域都有广泛的应用。
对于一个给定的矩阵,我们可以通过相似变换来得到一种新的矩阵,其具有相似的特性。
相似变换可以理解为在某种意义上对矩阵进行了重新标定、旋转或扩张。
而对角化是一种特殊的相似变换,能够将一个矩阵变为对角矩阵,使得矩阵的运算更加简便。
首先,让我们来了解一下相似变换的概念。
对于两个矩阵A和B,如果存在一个可逆矩阵P,使得B = P^(-1) * A * P,那么我们称A和B是相似的,P为相似变换矩阵。
相似矩阵具有许多相似的性质,包括特征值和特征向量等。
具体来说,如果v是矩阵A的特征向量,那么Pv就是矩阵B的特征向量,特征值也有相应的关系。
这种相似变换在许多问题中都发挥着重要作用,例如线性变换和空间旋转等。
接下来,我们来介绍一下对角化的概念。
对角化是一种特殊的相似变换,将一个n阶矩阵A变为对角矩阵D。
换句话说,D是一个n阶对角矩阵,且存在一个可逆矩阵P,使得D = P^(-1) * A * P。
对角化的好处在于对角矩阵的运算更加简单。
由于对角矩阵只有对角线上有非零元素,其他位置都是零,所以矩阵乘法和求幂等运算都可以简化为对角元素的运算。
这种简化过程对于一些数值计算问题非常有用,例如求矩阵的幂和指数函数等。
那么对角化的条件是什么呢?首先,一个矩阵A能够被对角化,必须要有n个线性无关的特征向量。
这意味着A的特征向量都是不同的,并且它们可以组成一个完整的基。
其次,对应于不同特征值的特征向量也应该是线性无关的。
当满足了这些条件后,我们就可以通过特征向量构建一个可逆矩阵P,从而对矩阵A进行对角化。
在实际操作中,对角化的步骤如下。
首先,我们需要求出矩阵A的特征值和特征向量。
特征值可以通过解矩阵特征方程来得到,而特征向量则可以通过将特征值带入到(A - λI)x = 0中求解。
接下来,将求得的特征向量组成一个矩阵P,然后计算出其逆矩阵P^(-1)。
最后,我们可以得到对角矩阵D = P^(-1) * A * P。
4-2相似矩阵与矩阵的对角化

5
1 1
x1 x2
0 0
即 5 x1 x2 0
解之得, X 1,5T
当 2 2 时,对应的特征向量 X 满足:
1
5
1 5
x1 x2
0 0
即 x1 x2 0
解之得,X 1,1T
取P =
1 5
1 1
P
1
=
1 4
5
4
1
4
令X PY
1 4
dx1 dt
3 x1
x2
例4
求解线性微分方程组
dx2
dt
5 x1
3x2
解 可以记写成X 如 下xx矩12 阵,A形式:53dX31
,则方程组①
AX
dt
3 I A =
1 = 2 2 =0
5 3
故 A 的特征值为,1 2,2 2
当1 2 时,对应的特征向量 X 满足:
5
存在 n 阶可逆阵 P ,使
1
P
1
AP
2
O
1
,
AP
P
n
2
O
n
把P
于是有
按列分块为P X1, X2,L
, Xn ,
A X1, X2,L , Xn 1X1,2 X2,L ,n Xn
即 AXi i Xi i 1, 2,L , n
由于 P 是可逆阵,Xi 0i 1, 2,L , n
dX AX dt
其中
A
a11 M
O
aM1n ,
X
xM1
an1 ann
xn
作线性变换 X PY 则方程组变为
dY P1 APY BY dt
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此结论利用数学归纳法可以证明
若设 A~B, 且φ(A)=a0+a1A +a2A2+…+ anAn , 则 φ(B)=P-1φ(A)P
2009.7.22
4-1-4
相似矩阵与矩阵对角化
特别是,当A为对角矩阵时,
a1 0 0
a
m
1
0
0
0 0
a2
0
0 an
m
2009.7.22
4-1-8
相似矩阵与矩阵对角化
二、利用相似变换将方阵对角化
定对理于2n阶n阶矩矩阵阵A,若A与存对在角可阵逆相矩似阵的P,充使分P-必1A要P=条Λ 件是 为是对矩角阵阵A有,则n个称线将性方无阵关A对的角特化征.向量.
证明 必要性
假设A~ Λ,则存在可逆矩阵P,使P-1AP=Λ
0 0
am 2
0
0
a
m
n
a1
0 0
0
a2
0
0 0
an
2009.7.22
4-1-5
相似矩阵与矩阵对角化
定理1 若n阶矩阵A~B,则A与B有相同的多项式, 特征多项式,特征值,秩,且可逆性相同. 证明 若A~B, 则存在可逆矩阵P,使得B=P-1AP
(1) |B|=|P-1AP|=|A|
则有
2009.7.22
4-1-19
相似矩阵与矩阵对角化
注意
即矩阵P的列向量与对角阵中特征值的位置 要相对应.
2009.7.22
4-1-20
相似矩阵与矩阵对角化
定理3 n阶方阵A与对角矩阵相似的充分必要条件 是对于每一个ni重特征根λi ,矩阵λi E-A的秩为 n-ni. 说明 例2中的方阵A可对角化的理论依据.
1
推论
若n阶方阵A与对角阵
2
n
相似,则λ1,λ2, …,λn为A的n个特征值.
若存在可逆矩阵P,使P-1AP=Λ为对角矩阵,
则有Ak=PΛ kP-1 , φ(A)=Pφ(Λ)P-1
2009.7.22
4-1-7
相似矩阵与矩阵对角化
其 中,
k 1
k
k 2
,
k n
(1)
(
)
(1)
,
(1)
第二节 相似矩阵与矩阵对角化
相似矩阵与相似变换的性质 利用相似变换将方阵对角化 约当矩阵的概念
2009.7.22
4-1-1
相似矩阵与矩阵对角化
一、相似矩阵与相似变换的性质
定义 设A,B为n阶矩阵,若存在可逆矩阵P,使 P-1AP=B (2.1)
则称B为A的相似矩阵,或称矩阵A与B相似. 记为 A~B.
11 , 22 , , nn
Ai ii i 1,2, , n. 矩阵相等
因P可逆,故|P|≠0,于是αj(j=1,2, …,n)均为非零
向量,且α1,α 2,…,α n线性无关.
2009.7.22
4-1-10
2009.7.22
4-1-11
2009.7.22
4-1-12
2009.7.22
(2) 由于|B|=|A|,同时为0或不为0,故A与B同时 可逆或不可逆.
(3) 由于B=P-1AP,则A与B相同的秩. (4) 由于|B-λE|=|P-1AP- P-1(λE)P|
=|P-1(A-λE)P| =|A-λE| 所以A与B有相同的特征多项式与特征值.
2009.7.22
4-1-6
相似矩阵与矩阵对角化
1 1 0 0 0
0 1 1 0 0
0
0
4-1-22
相似矩阵与矩阵对角化
若一个准对角矩阵的主对角线上的各子块均为
约当块,即
称此矩阵为约当矩阵,或称为约当标准型. 说明 对角矩阵可看成约当矩阵,每一个约当块
是一阶矩阵.
2009.7.22
4-1-23
相似矩阵与矩阵对角化
定理4 任一个n阶矩阵A,都存在可逆矩阵T,使
即 任一个n阶矩阵A,都与n阶约当矩阵J相似.
说明 A相似于B,也称矩阵A经过相似变换化为B, 而可逆矩阵P称为将A变为B的相似变换矩阵.
2009.7.22
4-1-2
相似矩阵与矩阵对角化
相似矩阵与相似变换的性质 1. 等价关系 (1) 反身性 A与A本身相似 (2) 对称性 若A与B相似,则B与A相似. (3) 传递性 若A与B相似, B与C相似,则A
与C相似.
2. P 1A1 A2 P P 1 A1P P 1 A2 P .
3. 若A与B相似, 则Am与Bm相似.(m为正整数).
2009.7.22
4-1-3
相似矩阵与矩阵对角化
事实上,因A~B, 则存在可逆矩阵P,使 B=P-1AP
于是 B2=(P-1AP)(P-1AP) =P-1A2P
相似矩阵与矩阵对角化
(2) 求矩阵A的特征值与特征向量
A的特征值 λ1=λ2=λ3=-1 当λ1=λ2=λ3=-1时,有(A+E)x=0 解之得基础解系
故A不能化为对角矩阵.
2009.7.22
4-1-16
相似矩阵与矩阵对角化
例2
A能否对角化?若能
对角化,则求出可逆矩阵P,使P-1AP为对角阵.
解
于是有 AP=PΛ
记 P=(α1,α 2,…,α n)
其中 αj (1,2, … ,n)是矩阵P第j列构成的列向量.
2009.7.22
4-1-9
相似矩阵与矩阵对角化
1
于是有 A1,2, ,n 1,2, ,n
2
n
11, 22 , , nn .
A1,2 , ,n A1, A2 , , An
4-1-13
相似矩阵与矩阵对角化
当λ1=λ2= 2时,有(A-2E)x=0
解之得基础解系
当λ3=-7时,有(A+7E)x=0 得基础解系
2009.7.22
4-1-14
相似矩阵与矩阵对角化
因
所以α1, α2, α3线性无关. 故A有3个线性无关的特征向量,因而A可以 对角化.
2009.7.22
4-1-15
若求A50,只需利用A50=P-1Λ50P即可.
2009.7.22
4-1-21Βιβλιοθήκη 相似矩阵与矩阵对角化三、约当矩阵的概念
定义 在n阶矩阵A=(aij)中,如果aii=λ(i=1,2, …,n), aii+1=1 (i=1,2, …,n-1), aij=λ (i≠j, j≠i+1)
称此矩阵为约当块.
2009.7.22
A的特征值 λ1=λ2= 1,λ3=-2
2009.7.22
4-1-17
相似矩阵与矩阵对角化
当λ1=λ2= 1时,有(A-E)x=0
解之得基础解系
当λ3=-2时,有(A-2E)x=0 得基础解系
2009.7.22
4-1-18
相似矩阵与矩阵对角化
因
所以α1, α2, α3线性无关. 故A有3个线性无关的特征向量,因而A可以 对角化. 令