数学思想讲座4-数学方法的优美

合集下载

高二数学 数学学习方法讲座

高二数学 数学学习方法讲座

祝愿同学们: 天天进步!
谢谢大家!
第八项:关注新教材更新的数学内容
第九项:用导数作为研究问题的方法上升为重要地位。
第十项:近年来高考命题改革的一个方向是试题切入容 易,深入困难。
第十一项:加强原理复习
第十二项:加强不等式复习
第十三项:高考将仍然“坚持多角度,多层次考查”的 命题思路。要求完全掌握定义法、分析法、反证法、 数学归纳法、构造法。
三、 怎样学习数学
(一)学习知识方面,狠抓联系 形成知识结构,以少胜多,以不 变应万变。 (二)重过程轻结果
(三)探究“字母代式”实质
(四)重视复习时培养规范简洁 的表达,这样既省时间又准确
四、 怎样解题
数学是应用性很强的学科,学习数学 就是学习解题。搞题海战术的方式、方法 固然是不对的,但离开解题来学习数学同 样也是错误的。其中的关键在于对待题目 的态度和处理解题的方式上。
36. 处理直线与圆的位置关系有两种方法: (1)点到直线的距离; (2)直线方程与圆的方程联立,判别式. 一般来说,前者更简捷.
37. 处理圆与圆的位置关系,可用两圆的圆心距与半 径 之间的关系.
38. 在圆中,注意利用半径、半弦长、及弦心距组成 的直角三角形. 39.还记得圆锥曲线的两种定义吗?解有关题是否 会联想到这两个定义?
3.所给图形和式子有什么特点?能否用一个图形(几何 的、函数的、示意的)或数学式子(对文字题)将问题
表示出来?能否在图上加上适当的记号?
别 4.有什么隐含条件?
1.这个题以前见过吗?在哪里见过? 以前做过吗?见过类似的问题吗?当 联 时是怎样想的? 2.题中的一部分(条件,或结论,或 想 式子,或图形)以前见过吗?在什么 问题中见过?
23. 你知道怎样的数列求和时要用“错位相减”法吗? (若 ,其中 是等差数列, 是等比数列,求 的前n 项的和)

数学思想方法的

数学思想方法的

数学思想方法的
数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。

1.用字母表示数的思想:这是基本的数学思想之
一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。

“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

3.转化思想:在整个初中数学中,转化 (化归)思想一直贯穿其中。

数学学习的思想方法

数学学习的思想方法

数学学习的思想方法摘要:数学思想方法是数学的精髓,只有掌握了数学的思想方法,才算真正掌握了数学。

在教学中渗透和运用这些数学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。

关键词:数学思想方法转化数形结合集合对应归纳数学思想方法是数学的精髓,只有掌握了数学的思想方法,才算真正掌握了数学。

因而,在数学教学中,教师不仅要完成教学任务,更应该注重培养学生的数学思想方法。

在数学教学中,有些数学思想渗透于各类内容,所以称他们为基本思想方法,对这些基本的思想方法,在教学中要注重培养。

一、转化的思想方法数学问题的解决过程往往是一系列转化的过程。

转化是化繁为简、化难为易、化抽象为具体的有效手段,比如四边形的问题多半要转化为三角形问题来解决。

通过作辅助线把四边形分成两个三角形,2×180°=360°,从而求出了四边形的内角和。

二、数形结合的思想方法数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。

“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。

我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

三、集合的思想方法把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。

集合思想作为一种思想,在小学数学中就有所体现。

在小学数学中,集合概念是通过画集合图的办法来渗透的。

如用圆圈图向学生直观的渗透集合概念。

让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。

数学思想方法范文

数学思想方法范文

数学思想方法范文数学是一门基于逻辑推理和证明的学科,其思想方法也是基于这一特点。

数学思想方法涵盖了数学的基本原则、解题思路和证明方法等方面。

下面将对数学思想方法进行详细的探讨。

首先,数学的思想方法是基于严密的逻辑推理的。

数学家们在进行数学研究时,需要遵循一定的逻辑规律和推理步骤。

数学的基本思想是建立在逻辑的基础上的,必须符合严格的逻辑关系。

数学家们通过逐步推理和演绎,将问题分解为一系列较为简单的部分,然后在这些部分上进行逻辑推理,最终得出问题的解答。

其次,数学的思想方法包括问题的抽象和建模。

数学家们在解决实际问题时,会首先将问题抽象成数学问题,然后通过建立适当的数学模型来描述问题的数学特征和关系。

这种思维方法可以将实际问题转化为更易于分析和求解的数学问题,从而更好地理解和解决问题。

另外,数学的思想方法还包括归纳和演绎两种基本推理方法。

归纳是指通过观察和实例的分析,概括出一般规律和定理。

数学家们通过对一系列特殊情况的研究和归纳总结,得出普遍定理的结论。

演绎则是指从已知条件出发,逐步推导出结论的过程。

演绎是数学证明的核心思想方法,它要求逻辑严密,每一步推理都必须有充分的理由和依据。

此外,数学思想方法还强调对数学对象的精确定义和性质的研究。

数学家们在研究一个数学对象时,首先需要对该对象进行准确的定义,并在此基础上研究其性质和特征。

精确定义是数学思想方法的基础,只有将问题和对象清晰地定义出来,才能进行正确的分析和推理。

最后,数学思想方法还强调创造性思维和发散思维。

数学是一门富于创造性的学科,数学家们在解决问题时需要发散思维,不断尝试各种可能的方法和思路。

创造性思维可以帮助数学家们发现隐藏在问题中的规律和特点,从而寻找到更优的解决方法。

总结起来,数学思想方法是一种基于逻辑推理和证明的思维方式。

它包括逻辑严密、问题的抽象与建模、归纳和演绎、精确定义和性质研究,以及创造性思维和发散思维等方面。

这些思想方法是数学家们研究和探索数学世界的重要工具,也是培养学生数学思维能力的基本途径。

数学思想方法的教学(精选5篇)

数学思想方法的教学(精选5篇)

数学思想方法的教学(精选5篇)数学思想方法的教学范文第1篇1.懂得小学数学思想方法就能更好地理解和把握数学内容。

心理学认为:“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的学问,因而新学问与旧学问所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。

”“下位学习所学的学问具有充足的稳定性,有利于坚固地固定新学问。

”当同学学习了一些小学数学思想方法后,再去学习相关的学问,就属于下位学习。

因此,同学学习小学数学思想方法就能更好地理解和把握数学内容。

2.懂得小学数学思想方法有利于记忆。

“高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。

”数学思想方法作为数学学科的“一般原理”,在数学学习中是至关紧要的,同学懂得小学数学思想方法后,对于小学数学学问的理解性记忆是特别有益的。

3.懂得小学数学思想方法有利于数学本领的提高。

同学的数学本领重要是在学习和把握数学概念的过程中形成和进展起来的,同时也是在把握和运用数学学问的过程中表现出来的。

在小学数学教学中,培育同学的本领始终是教学目标中的一个紧要方面。

严密的思维,快捷的思考,擅长抓事物的重要冲突,能辩证地全面地考虑问题以及分析综合、归纳类比、抽象概括本领,都是小学数学教学应当着力培育的。

假如小学数学老师在教学中重视小学数学思想方法的教学,那么,就能使同学学会正确思维的方法,从而促进同学数学本领的提高。

二、加强数学思想方法教学的举措数学思想方法在小学数学教学中的渗透,往往要经过一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中老师要依据实在情况,运用多种手段,加强数学思想方法的教学。

1.在运用生活实例中领悟数学思想方法教学时应当利用同学的已有学问和阅历,并引导同学将这些体验“数学化”。

平常老师要讨论小同学生活的背景和学问阅历,从生活中找寻实例,同学就不会觉得数学抽象和枯燥,而发觉数学就在身边,于是对学习更感爱好。

浅论初中数学课堂中如何体现数学美的思想

浅论初中数学课堂中如何体现数学美的思想

浅论初中数学课堂中如何体现数学美的思想初中数学课堂是培养学生数学思维和兴趣的重要环节,也是让学生感受到数学美的场所。

数学美指的是数学的优雅、简洁、深邃等方面,它是一种抽象思维的艺术。

本文将从数学课堂内容、教学方法和学生参与等方面,探讨如何体现数学美的思想。

一、数学课堂内容的体现1.整体性思维。

数学是一个系统的学科,数学课堂应该展示出数学的整体性。

教师可以通过引导学生解决复杂问题、进行整体思考,让学生从整个数学体系中感受到数学的完整性和美感。

2.抽象思维。

数学课堂强调培养学生的抽象思维能力,教师可以通过举一反三的例子,引导学生从具体的问题中发现普遍规律,从而提高学生的抽象思维水平。

例如,在讲解数列时,教师可以通过一个具体的数列例子,引导学生找到通项公式,并使用通项公式计算其他项。

3.空间思维。

数学课堂也应该体现空间思维,培养学生的几何直觉和想象力。

例如,在讲解三角形的面积时,教师可以引导学生通过剪纸、折纸等活动,感受到几何形状的美感和规律。

4.逻辑思维。

数学是一门基于逻辑的学科,数学课堂的内容应该注重培养学生的逻辑思维能力。

教师可以通过解决数学问题的过程,引导学生形成清晰的逻辑链条,培养学生的逻辑推理和分析能力。

二、数学教学方法的体现1.激发兴趣。

数学美的体现需要学生对数学产生兴趣。

教师可以运用启发性问题、趣味游戏等方式,激发学生的学习兴趣,让他们主动参与到数学活动中。

2.开放性问题。

数学课堂应该注重引导学生进行探究学习,而不是简单地灌输知识。

教师可以提出开放性问题,让学生自由思考,寻找多种解决路径和方法,从而培养学生的创新意识和解决问题的能力。

3.学以致用。

数学是一门应用广泛的学科,数学课堂应该将知识与实际生活相结合。

教师可以通过实际问题的引入,让学生明确数学知识与日常生活和实际问题的联系,培养学生将抽象概念应用于实际的能力。

三、学生参与的体现1.合作学习。

数学课堂可以采用小组合作学习的方式,让学生相互合作、交流,共同解决问题。

浅谈数学思想和数学方法

浅谈数学思想和数学方法

浅谈数学思想和数学方法
数学思想和数学方法是一个表达有力的句子,是指用数学思想和方法来思考和解决问题。

自古以来,人们以不同的方式对未知问题进行了解释,而数学思想和数学方法则被认为是解决这些未知问题最有效的方法。

首先,数学思想是一种独特而深刻的思维,它具有良好的数学模型、严谨的推理能力和明确的运算规律。

通俗来说,它是一种能够抽象概括事物形态和规律,能够综合整理知识来对客观事物进行分析和推断的思维方式。

其次,数学方法是一项解决问题的有效工具,它着重考虑问题的客观事实,它具有严格的步骤化求解、详细的步骤推导和有效的总结与检测,可以帮助我们在宏观上更加清晰地看待和分析问题,从而更加准确地求出问题的答案。

总的来说,数学思维和数学方法是一种能够有效地帮助我们解决问题的有效工具,它涉及到我们思考问题的方式,也涉及到我们用什么方法来解决问题。

只有通过理解把握数学思想和方法,才能为我们解决实际问题提供有效的支持。

数学思想方法

数学思想方法

数学思想方法所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,是分析处理和解决数学问题的根本方法,也是对数学规律的理性认识。

下面是店铺帮大家整理的数学思想方法推荐,希望大家喜欢。

一、数形结合的思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。

另一方面复杂的形体可以用简单的数量关系表示。

在解应用题中常常借助线段图的直观帮助分析数量关系。

在小学一年级刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。

例如学习“6的认识”时,先出示主题图,问学生图中有些什么?学生从中数出6朵小花,6只小鸟,6个气球。

从而感知5的某些具体意义。

再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由6根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解6的实际意义;第三层次是利用黑板进行画6个圆,6个正方形,6个三角形等特定图形来代表6,从而慢慢抽象至数字6。

这样从实物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透。

二、对应思想方法利用数量间的对应关系来思考数学问题,就是对应思想。

寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。

在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。

例如:水果店上午卖出苹果6筐,下午又卖出同样的苹果8筐,比上午多卖100元,每筐苹果多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元对应的筐数是(8-6)筐,此题就迎刃而解了,即100÷(8-6)=50(元)。

此外,在教学归一问题、相遇问题时,都要让学生找到题中数量之间的对应关系。

解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10本书,共3类(抽屉),文学类 (x)、史学类(y)和数学类(z), 证明x,y,z至少有一个大于或等于4。 抽象为一个纯数学问题:
假设 x , y , z是非负整数,且 x + y + z = 10, 则或 x ≥ 4, 或 y ≥ 4, 或 z ≥ 4.此即为不定方 程的非负解的下界估计问题.
? ?
经过一次?
D A B C
A
B
C
D3 A 3 C 3
B 5
1 4 2 2
3
3
1
点线图——拓扑学topology: 不注重数量关系和形状特征,而注重 点与点的连接方式! 如:建立校园网络系统。从网络中心 到各办公楼、教学楼、学生宿舍楼, 到各办公室、教室和寝室。你任何设 计呢?你需要建立一个网络的拓扑图 即可。实际上如果两个图的点与连接 方式一致,它们实际上就是拓扑意义 下的一张图。
x
数学上互逆的运算很多:如0的作 用是+项与-项;1的作用是乘项与 除项.
抽象=枯燥乏味? 语言学抽象吗? 美、神、好 文学抽象吗?诗歌 艺术抽象吗?绘画、舞蹈 音乐抽象吗?高山流水、悲 欢离和
数学的抽象美的表现形式不同,它给 人带来的是简洁、明快和高效的美
例1(七桥问题)如图,能否从 某个桥出发,走过所有的桥, D 但每座桥只
拓扑学的产生与发展进一步表现了数 学的抽象程度,起抽象的美与实际是 如此的协调,展示了数学的优美! 拓扑学的产生极大冲击了直观性 原则! 1 人的认知能力(直观,抽象飞跃) 2 直观与抽象在认识上的统一受年 龄和知识的接受方式的限制. 3 直观可能造成错觉.
思辩的作用越来越大.直观具有较大 的局限性. 物理学、化学、生物学等学 科中许多重大发现和突破是有想象力 开导的。 善于抽象不仅只限于数学,人文科 学、社会科学,更越来越抽象,只不 过给人的感觉不象数学强烈而已。
设q = 2m, 则p = 2m , 于是p也为偶数.矛盾.
2 2
1 是有理数至多7步 7 就可以找到规律.
例2(抽屉原理)
3个苹果放进2个抽屉中,至少有1个 抽屉中有两个苹果。 (反证法易得) 10本书,共3类(抽屉),文学类 (A)、史学类(B)和数学类 (C),证明至少有一类有4本或4 本以上。
从反对数表得到 : 11 2 ≈ 1.065.
运算
x → lg x → 1 0
lg x→x Nhomakorabea数值
曲折:化难为易 曲折:创造、发明 曲折:实现的根据是对数 Galileo:给我空间、时间和对数, 我即可创造一个宇宙。 RMI的体现:R:2 I:10
lgx 1/11
,M:lgx ,
例3: 求和
y =1− 1 1 1 1 + − + L + ( − 1) n +L 3 5 7 2n + 1
R
x3 x5 x7 x 2 n +1 y(x) = x − + − + L + ( − 1) n +L 3 5 7 2n + 1
M,逐项微分
y '( x ) = 1 − x 2 + x 4 − x 6 + L + ( − 1) n x 2 n + L = 1 1+ x2
I,积分
y ( x) = ∫ 1 π dx = arctan x, y = y (1) = . 1 + x2 4 0
例1
211 = 2 × 210 = 2 × 1024 = 2048 211 = 23 × 24 × 24 = 8 × 16 × 16 = 8 × 256 = 2048
显得容易。
例2 2 等于多少 ?
1 0.3010 很难, 但是 lg 2 = lg 2 ≈ ≈ 0.0273 11 11
1 11
1 11
假设人类的头发最多为200万根,那 么长春市至少有2人的头发根数一样 多。(长春市人口超过200万) 作业:在任意6人中,一定可以找到 3个相互认识,或3个相互不认识的 人。
RMI:R-relation, M-mapping, I-inversion. 即关系、映射和取逆。它 属于形式逻辑范畴。如“三段式”给 人以逻辑美。RMI方法体现了辨证思 想的方法。
观点和方法是数学的两个方 面:既紧密联系,又有所区别。 但方法影响观点。 我们来看看数学方法的美。
“不能不” 法
反证
通常的证明方法: “对”
矛盾
“不对”
例1
2是无理数.
反证法:假设 2是有理数, 那么存在不可约
的正整数p, q, 使得
q 2 = ⇒ 2 p 2 = q 2 ⇒ q为 偶 数 . p
相关文档
最新文档