分子系统学
分子系统学考试2010

一、1、直源与旁源(orthlogy and parology): 同源的基因是由于共同祖先基因进化而产生的,称为直源;同源的基因是由于基因复制产生的,称为旁源。
2、祖征和衍征(plesimnorphy and apomophy):在同一叉点分出的各种类以及他们共同的祖先都具有的特征称为祖征;来源于同一个祖先但又区别于其他类群的特化的身体结构特征称为衍征。
3、性状逆转(character reversal):4、简约信息位点(parsimony-informative site):通常有些三联体密码子一个碱基的改变不足以引起所编码的氨基酸由一类变成另一类,这些改变一个碱基而对蛋白质没有影响的密码子位点称为简并位点。
5、基因树(gene tree)和物种树(species tree):基于单个同源基因差异构建的系统发生树称为基因树;代表一个物种或群体进化历史的系统发育树称为物种树或种群树。
6、旁(并)系群(paraphyletic group):并系群:不满足单系类群的要求,各成员间又具有共同祖征的分类群组成为并系类群;各成员既不具有共同衍征又不具有共同祖征,只具有同型性状的成为复系类群。
(单系群:来源于最近共同祖先的所有后裔构成的演化线及其内部分支体系;)7、多数一致树(majority-rule consensus tree):是一致树中的一种,它显示在一组树中至少一半的树所支持的节点或分支,实际上也常常显示一致树上支持每个节点的树所占百分率。
(一个能够代表所有树的复合树称为一致树。
)8、遗传距离、枝长(genetic distance,branch length):9、密码子的兼并性(degeneracy of genetic code):同一种氨基酸具有两个或更多个密码子的现象,对应于同一种氨基酸的不同密码子成为同义密码子10、达尔文正选择(Darwin’s positive selection):生物在进化过程中,有力的被选择,不利或致死的被淘汰的现象称为达尔文正选择。
分子进化和分子系统学(转载)

分⼦进化和分⼦系统学(转载)分⼦进化和分⼦系统学12.1 概念 分⼦进化⼀词有两层含义。
从⽣命历史看,在前⽣命的化学进化阶段(细胞⽣命出现之前),进化主要表现在分⼦层次上,即表现在⽣物分⼦的起源和进化上。
换⾔之,从时序上说,分⼦进化是⽣物进化的初始阶段。
但从另⼀⾓度来看,在细胞⽣命出现之后,进化发⽣在⽣物分⼦、细胞、组织、器官、⽣物个体、种群等各个组织层次上,分⼦进化是⽣物分⼦层次上的进化。
换⾔之,从组织层次上说,分⼦进化是⽣物组织的基础层次的进化。
我们通常所说的分⼦进化就是指后者。
前者通常被称为前⽣命的化学(分⼦)进化。
⼀般⽽⾔,对⾃然现象的认识过程是从⼈类感官所及的层次开始,逐步向微观和宏观两个⽅向扩展。
向微观领域的探索往往出于寻找“深层原因”的动机。
对进化原因和进化机制的探索,最终必然深⼊到分⼦层次。
向宏观领域探索则是相反的过程,即⽤已知的低组织层次的知识去认识和解释⾼组织层次现象。
如今,科学家们发现,不同层次的现象遵循不同的规律和不同的法则。
低层次的规律并不完全适⽤于⾼层次,⽤⾼层次的规律解释低层次现象也往往⾏不通。
因此,本章讨论的分⼦进化规律和分⼦进化的理论基本上只适⽤于分⼦进化。
12.2 ⽣物⼤分⼦进化的特点 在⽣物⼤分⼦的层次上来观察进化改变时,我们看到的是⼀个很不同于表型进化的过程。
根据分⼦进化研究的权威之⼀⽊村(Kimura,1989)的总结,分⼦进化有两个显著特点,即进化速率相对恒定和进化的保守性。
1.⽣物⼤分⼦进化速率相对恒定 如果以核酸和蛋⽩质的⼀级结构的改变,即分⼦序列中的核苷酸或氨基酸的替换数作为进化改变量的测度,进化时间以年为单位,那么⽣物⼤分⼦随时间的改变(即分⼦进化速率)就像“物理学的振荡现象”⼀样,⼏乎是恒定的。
通过⽐较不同物种同类(同源的)⼤分⼦的⼀级结构,可以计算出该类分⼦的进化速率。
对于某类蛋⽩质分⼦或某个基因(或核酸序列)来说,其分⼦进化速率可表⽰为氨基酸或核苷酸的每个位点每年的替换数,即 上式中的K是分⼦进化速率(每个氨基酸位点每年的替换数);d是氨基酸或核苷酸替换数⽬;N是⼤分⼦结构单元(氨基酸或核苷酸)总数; t是所⽐较的⼤分⼦发⽣分异的时间, 2t代表进化时间,进化经历的时间是分异时间的2倍。
第四章、序列的同源比较及分子系统学和分子进化分析1

2019/8/21
11
二、序列相似性比较基础知识
1、字符串的操作
S的子序列与子串 S的子序列:选取s中的某些字符(或删除s中的某些字符) 而形成s的子序列
例如: TTT 是 ATATAT的子序列。
S的子串:是由s中相继的字符所组成。
例如:TAC是AGTACA的子串,
但不是TTGAC的子串(是子序列)。
• 转换-颠换矩阵 核酸的碱基按照环结构分为两类,一类是嘌呤(腺嘌呤A,鸟嘌呤G),它们有两个环; 另一类是嘧啶(胞嘧啶C,胸腺嘧啶T),它们的碱基只有一个环。如果DNA碱基的 变化(碱基替换)保持环数不变,则称为转换(transition),如A→G,C→T;如果 环数发生变化,则称为颠换(transversion),如A→C,A→T 等。在为“-5”。
2019/8/21
14
二、序列相似性比较基础知识
2、编辑距离
字符编辑操作(Edit Operation)
字符编辑操作可将一个序列转化为一个新序列
Match(a,a) — 字符匹配; Delete(a,-) — 从第一条序列删除一个字符,或在第二条序
列相应的位置插入空白字符; Replace(a,b) — 以第二条序列中的字符b 替换第一条序列
2019/8/21
6
一、序列相似性比较简介
5、序列比较可以分为四种基本情况
(1) 假设有两条长度相近的、来自同一个字母表的序列,它们之间非常 相似,仅仅是有一些细微的差别,例如字符的插入、字符的删除和字符替 换,要求找出这两条序列的差别。这种操作实际应用比较多,例如,有两 个实验室同时测定某个基因的DNA序列,其结果可能不一样,需要通过序列 比较来比较实验结果。
(4) 假设有两条序列,要求判断这两条序列中是否有非常相似的子序列。 这种操作可用于分析保守序列。
分子系统发育分析

人类迁ห้องสมุดไป่ตู้的路线
53个人的线粒体基因组(16,587bp)
2. 大分子功能与结构的分析:同一家族的大分子,具有相 似的三级结构及生化功能,通过序列同源性分析,构建系统 发育树,进行相关分析;功能预测
同源性分析->功能相似性
paralogs
orthologs
3. 进化速率分析:例如,HIV的高突变性;哪些位点 易发生突变?
系统发育树
一种表现形式,是对一组实际对象(如基因, 物种等)的世系关系的描述
末端分支 末端 物种 顶端 叶子 中间节点 中间枝条 节点 根
系统发生树的性质:
(1)如果是一棵有根树,则树根代表在进化历 史上是最早的、并且与其它所有分类单元都有 联系的分类单元; (2)如果找不到可以作为树根的单元,则系统 发生树是无根树; (3)从根节点出发到任何一个节点的路径指明 进化时间或者进化距离。
Linus Pauling
1954年诺贝尔化学奖得主Linus Pauling在1960年代初开创性地展开的基 于直系同源蛋白序列比对的分子进化与分子钟研究。通过直系同源蛋白质 之间比较来确定物种之间的亲缘关系。
分子进化的模式
1. DNA突变的模式:替代,插入,缺失,倒位 2. 核苷酸替代:转换 (Transition) & 颠换 (Transversion) 3. 基因复制:多基因家族的产生以及伪基因的产 生
à A. 单个基因复制 – 重组或者逆转录 à B. 染色体片断复制 à C. 基因组复制
在分子水平上,进化是一种伴随着突变的自然选择过程。分子进化理论 着重于研究不同系统发育树分子上基因和蛋白质的变化方式。
DNA突变的模式
替代 插入
分子系统发育分析的生物信息学方法

分子系统发育分析的生物信息学方法一、概述分子系统发育分析的生物信息学方法,是生物信息学领域中的重要研究手段,其核心在于利用分子层面的数据揭示生物体之间的进化关系。
该方法主要通过对DNA或蛋白质的分子序列信息进行分析,计算序列间的相似性,从而估计基因分子进化的速率、基因间序列的分歧时间以及物种或基因在系统发育中的位置。
在分子系统发育分析中,生物信息学方法的应用不仅限于单条生物序列的进化信息提取,还涉及到多条生物序列之间的比对与关联分析。
通过比较不同物种间的基因序列,可以揭示它们之间的进化关系和亲缘关系。
生物信息学方法还可以利用数学模型和计算机程序,构建系统发育树,直观地展示物种之间的进化历程。
随着生物信息学技术的不断发展,分子系统发育分析的生物信息学方法也在不断更新和完善。
新的算法和工具不断涌现,使得我们能够更准确地分析生物序列数据,揭示生物进化的奥秘。
分子系统发育分析的生物信息学方法在生物学研究中具有广泛的应用前景和重要的实践价值。
本文将详细介绍分子系统发育分析的生物信息学方法,包括单条生物序列的进化信息提取、多条生物序列的比对与关联分析、系统发育树的构建等方面,并探讨这些方法在生物学研究中的应用和未来发展。
1. 分子系统发育学概述分子系统发育学,作为系统发育系统学的一个重要分支,致力于通过深入剖析生物大分子(如蛋白质、核酸等)的结构与功能,揭示生物各类群之间的谱系发生关系。
这一学科不仅涵盖了生物进化历程的宏观视角,更通过分子生物学技术和计算机技术的结合,深入到微观层面,从而为我们提供了生物演化的全新理解。
在分子系统发育学的研究中,基因或生物体的系统发育关系常常通过构建有根或无根的树状结构来展示。
这种树状结构不仅揭示了物种之间的亲缘关系,还为我们理解物种的进化历程和演化模式提供了关键线索。
通过多重序列比对,研究者可以分析一组相关基因或蛋白质,进而推断和评估不同基因间的进化关系,这包括分子进化(基因树)和物种进化(物种树)的研究。
厦门大学进化生物学第10章分子进化和分子系统学演示教学

1)蛋白水平上进化速率不均衡性 (保守性)的体现
不同蛋白一般进化速率不等
按系统来说,一般认为参与免疫反应及 受精过程的蛋白进化速率较快,而参与胚胎 发育的转录因子则进化速率较慢。如脊椎动 物的gamma-interferon蛋白和海胆的精子顶体 蛋白Bindin都是目前发现的进化速率最快的 蛋白成员。
1.中性突变理论的提出
◌ 1968年,日本遗传学家木村资生(Motoo Kimura)
在《Nature》杂志发表了“论分子水平上的进化 速率”的评述,根据不少核苷酸和氨基酸的置换 并不影响生物大分子的生物学功能的事实,提出 了生物进化在分子水平上的“中性理论”;
◌ 次年,美国学者金和朱克斯(J.K.King & T.H.
3.中性突变理论的主要论据
1)分子层次上的大多数变异是选择中性的; 2)蛋白质与核酸分子的进化速率高而且相对
恒定; 3)突变压在分子进化中的作用在最近的研究
中得到越来越多的证实; 4)按群体遗传学的数学模式计算出来的自然
选择代价过高,不符合实际情况。
跳页
a. 哑突变占优势; b. 在生物基因组中,非编码的DNA占绝大部
此外,还有研究暗示脑部特异表达的基 因在人的这一支中进化速率较快。
同一蛋白不同区域进化速度不等
2)核酸水平上进化速率不均衡性(保守 性)的体现
• DNA密码子中的同义替换比变义替换发生
的频率高;
• 内含子内的碱基替换速率明显高于外显子,
一般大致等同于或高于同义替换;
• 外显子内部一般编码区的进化速度快于非
序列计算的,往往比实际的小。
• 校正方法:氨基酸和核酸的校正方法存在
一定差异,且根据不同基因的蛋白序列 (或核酸序列)校正方法也不尽相同。
生物信息学第六章分子系统发育分析 ppt课件

姊妹群是单系类群的一种常见类 型。
• 图4-1示出树6个分类群(A-F)进 行不同划分所产生的单系、并系 和复系类群的例子。图4-1(a)中 单系类群为:{A,B},{E,D, F}、{C,D,E,F}、 {A,B,C,D,E,F}
• 图4-1 (b)中并系类群为:{C, D,E}、 {B,C,D, E, F}等
第四章 分子系统发育分析
§4.1分子进化的基本概念
• 系统发生学是进化生物学的一个重要研究领域,系统发生分 析早在达尔文时代就已经开始。从那时起,科学家们就开始 寻找物种的源头,分析物种之间的进化关系,给各个物种分 门别类。
• 经典系统发生学研究所涉及的特征主要是生物表型 (phenotype)特征,所谓的表型特征主要指形态学的(结构的) 特征,如生物体的大小、颜色、触角个数,也包括某些生理 的、生化的以及行为习性的特征。通过表型比较来推断生物 体的基因型(genotype),研究物种之间的进化关系。但是, 利用表型特征是有局限性的。有时候关系很远的物种也能进 化出相似的表型,这是由称为趋同进化的过程造成的。
4.1.1同源性与同源性状
• 同源性(homology)是比较生物学中的一个中心概念。第3章 和第4章中已涉及序列同源性检索方面的内容。这里,将进 一步讨论有关序列同源性分析的基本概念。同源,最基本的 意义就是具有共同祖先。一般来说,如果两个物种中有两个 性状(状态)满足以下两个条件中的任意一个,就可以称这两 个性状为一对同源性状(homologous character):
• 用表型来判定进化关系的另一个问题是,对于许多生物体很难检 测到可用来进行比较的表型特征。例如,即使用显微镜检查,也 难以发现细菌的明显特性。
• 当我们试图比较关系较远的生物体的时候,第三个问题又出现了, 即什么样的表型特征能用来比较呢?例如,分析细菌、蠕虫和哺 乳动物,它们之间的共同特征实在是少之又少。
分子系统学

分子系统学分子系统学是指通过对生物大分子(蛋白质、核酸等)的结构、功能等的进化研究,来阐明生物各类群(包括已绝灭的生物类群)间的谱系发生关系.相对于经典的形态系统分类研究,由于生物大分子本身就是遗传信息的载体,含有庞大的信息量,且趋同效应弱,因而其结论更具可比性和客观性.尤为重要的是,一些缺乏形态性状的生物类群(如微生物和某些低等动、植物)中,它几乎成为探讨其系统演化关系的唯一手段.由于分子系统学的上述特点,自其诞生之日起,就逐渐在各种生物类群的系统发生研究中得到了广泛的应用.总的说来,迄今分子系统学的研究所获得的生物类群间亲缘关系的结果,大多都和经典的形态系统树相吻合.但是,在一些生物进化谱系不明或模糊关键环节上,它得出的结果却往往和形态系统学的推测大相径庭.1研究步骤分子系统学研究的主要方法是根据分子生物学数据构建生物类群的谱系发生树.它一般包括以下程序:1.首先确定所要分析的生物类群,选择该类群中相关亚类群的一些代表种类;确定所要分析的目的生物大分子(包括DNA序列、蛋白质序列等)或它们的组合;2.设法获得它们的序列数据或其它相关数据(如限制性内切酶(I LP)、随机扩增多态DNA( )、DNA序列等),DNA序列的数据可以通过GenBank获得,也可以通过实验室的研究(设计特异引物进行PCR扩增和序列测定)而获得;3.对获得的相关数据进行比对(pairwisealignment)或其它的数学处理,如转变成遗传距离数据矩阵;通过一些遗传分析软件(常用的计算机软件如:PHYLIP J、PAI J、MEGA[J 等)对这些处理后的数据,并基于一定的反映DNA序列进化规律的数学模型构建分子系统树;4对构建的系统树做相应的数学统计分析以检验系统树的可靠性等.值得注意的是,在分析具体的研究对象时,上述各个环节是紧密联系的一个整体,要获得一个正确的结论,必须综合考虑每一环节之间的内在联系.比如目的基因的选择、数据处理和分析的分类群之间、构树方法和分析软件的选择之间都有密切的联系.2涉及议题基因树和物种树分子系统学的目的就是通过基因树来推测物种树.基因树是根据生物大分子的序列数据(主要为DNA序列数据)构建的谱系树,物种树则是反映物种实际种系发生的谱系树.人们期待着得到的基因树和物种树相一致,然而实际情况往往并非如此.Nei(1987)描绘了二种谱系树之间所有可能的关系,认为二种谱系树之间至少存在二个方面的差异:一是基因树的分化时间早于物种树,二是基因树的拓扑结构可能与物种树不一致(二个或多个基因树之间存在着差异)如何将由多个基因或基因组建立的基因树综合成一个物种树,是分子系统学面临的一个主要难题.Maddison(1997)认为:基因重复所导致的并源而非直源关系的产生,不同生物类群问基因的水平转移,系统演化分歧事件发生后产生的分子性状的多型性引起的谱系选择等生物学因素是造成二者不一致的主要原因.相应地,分子系统学研究中一定要选择直源基因而非并源基因,选择水平转移事件较少的树,采用基于大量独立进化的基因位点进行分析等等,都不失为一种行之有效的方法,更有利于获得一个可靠的树.分类群的选择分子系统学研究中如何选择所研究的对象——内类群的选择是一个非常值得注意的问题.内类群选择(内类群的数目及选择依据等)的科学性与否直接影响到所得结论的可靠性.关于内类群的数目,目前大多数分子系统学家认为,当所分析的序列长度一定时,尽量选择较多的分类群有助于获得更准确的结论,而内类群选择的依据主要体现在:(1)结合古生物学,形态学等各方面证据,尽量保证所选择的分类群确为一个单系发生的类群;(2)分类群的选择并非是随机的,尽量使其在所研究的生物类群中具有代表性;(3)在某些因具有明显长枝效应(或短枝效应)而导致的系统关系不确定的分支间增加分类群有助于减弱或消除这种效应.另外,在构建分子系统树中,同样需要选择外类群以确定系统发生树的基部位置,从而确定进化的方向.外类群的选择可以是单个(单一外类群),也可以是多个(复合外类群).在所研究的内类群数目不多且二者之间的极性关系十分确定的情况下,单个外类群足以说明问题.而在较为复杂的分析中,通常选择复合外类群以保证所得结论的可靠性[11].随机选择的外类群,极有可能因为亲缘关系较远,导致所得结果的不确定性增大.因此,在选择外类群时,必须结合其它分类学上的证据,或者在做详细的系统发育研究之前,首先对所研究的内、外群的关系进行初步探讨,以便于选择较为理想的外类群.最理想的外类群应该是该内群的姐妹群,因为二者间拥有较多的共近裔性状.目的基因的选择分子系统学研究中目的基因的选择也是一个至关重要的问题.一般来说,要根据所研究的具体分类群选择适宜的基因:在高级分类阶元(科级以上)间的系统发生分析中,选择一些在进化中较为保守的基因或基因片段(如核编码的蛋白质(酶)基因、核糖体基因(18S rRNA基因、28S rRNA基因)等);在较低级的分类阶元间,可以选择进化速率较快的基因或基因片断(如某些核编码基因的内含子或转录间隔区(ITS)以及一些细胞器基因(线粒体基因和叶绿体基因)等).当然,每一个具体的研究对象,可以选择的基因数目可以是多个的,至于哪些是最有效的,这通常要依据具体情况做比较分析后才能得出结论.条件允许的话,可以作多基因或多基因组合分析后寻求一致树来加以解决.有时针对某些涉及到多种层次分类阶元的复杂分类群时,还可以采取组合分析的方法:即推断位于系统树基部的深层次的谱系发生时,运用较保守的基因作为目的基因;推断位于系统树中段的谱系发生时,采用进化速率较为适中的基因;在系统树顶端的终端分类单元时,采用进化速率较快的基因.这样可以在不同阶层的演化关系中都获得可信的结果.基因序列数据的比对选择了适宜的目的基因并通过基因的扩增(PCR技术)和序列测定后,就获得了各个目标生物类群的DNA序列数据,对所获得的同源DNA序列进行比对是分析中的关键环节.所谓比对是指通过插入间隔(gaps)的方法,使不同长度的序列对齐达到长度一致,并确保序列中的同源位点都排列在同一位置.其中间隔的处理对后续的系统学分析有明显的影响.序列比对目前通常基于以下二种原理:点标(dot plot)法和记分距阵(scoring ma仃ix)法.基因树的构建方法目前,构建基因树的方法很多,常用的主要有二大类:距离法(distancemethod):是将序列数据转变成数据(遗传距离)矩阵,然后通过此数据矩阵构建系统树、具体性状法(dis—cretecharacter method):直接分析序列上每个核苷酸位点所提供的信息构建系统树,它又包括最大简约法(MP)和最大似然法以及由ML法延伸的贝叶斯法(Bayesianmetl-,od).距离法该方法基于这样一种假设,即只要获得一组同源序列间的进化距离(遗传距离),那么就可以重建这些序列的进化历史.距离法中以邻接法(NJ)最为常用.邻接法是由Saitou和Nei(1987)提出,其原理是逐步寻找新的近邻种类(序列),使最终生成的分子树的遗传距离总长度为最小.该法虽并不检验所有可能的拓扑结构,但在每阶段诸物种(序列)聚合时都要应用最小进化原理,故而被认为是ME的一种简化方法.最大简约法该方法源于形态学的分支系统学研究,而最早被Fitch(1971)用于核苷酸数据研究.它是一种最优化标准,遵循“奥卡姆剃刀(Ockharn’S razor)原理,即假设由一祖先位点替换为另一位点时,发生的替换数目最少的事件为最可能发生的事件.在实际应用中,由于MP法只考虑所谓的“信息位点”,所得的进化树是最短的、也是变化最少的进化树.因而,简约法的“最小核苷酸替换数目”原则也意味着“异源同型事件(homoplastic event)(即平行替换、趋同替换、同时替换和回复突变等)最少.最大似然法该法最早由Felsenstein(1981)提出,其原理是以一个特定的替代模型分析一组既定的序列数据,使获得的每一个拓扑结构的似然率均为最大,再挑出似然率值最大的拓扑结构作为最终树这里所分析的参数是每个拓扑结构的枝长,并对似然率的最大值来估算枝长.迄今的研究表明,在分类群数目较大、序列长度较长的复杂分析中,ML法的分析结果优于其它任何方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子系统学
Molecular Systematics
课程代码:901060105
学时数:36 学分数:2
执笔人:刘彦群讨论参加人:秦利,石生林,夏润玺等
审核人:杨瑞生
一、教学目的
分子系统学是近40年发展起来的应用生物化学及分子生物学技术解决进化生物学问题的一门综合性很强的交叉学科,是检测、描述并解释生物在分子水平的多样性及其演化规律的学科,在生命科学研究领域具有重要作用。
通过本课程的学习,掌握分子系统学的原理和方法,基本掌握如何利用分子系统学方法解决种群结构、分类学、系统发育和分子进化的问题,为生物科学研究奠定科学的研究方法。
本课程是蚕学专业选修课和公共选修课。
二、教学内容、教学目标及学时分配
第一章概论(3学时)
本章介绍分子系统学的概念、发展状况、基本原理、研究方法、研究内容、分子系统学的优缺点、动物主要类群的分子系统学研究概况、分子系统学研究中存在的主要问题和展望。
第二章分子系统学基础(6学时)
本章主要介绍分子系统学的遗传和进化基础,重点掌握生物的分子组成、起源和系统学价值。
1. DNA及其基因组的组成、结构和进化
2. RNA的组成、结构和进化
3.蛋白质的组成、结构和进化
4.小分子化合物及其生化进化
5.分子进化
6.表型进化的分子基础
第三章分子系统学的研究程序(5学时)
通过本章学习,掌握分子系统学研究的一般程序和方法,重点掌握分子系统学研究的原则。
1.确定研究类群和目标
2.预试
3.取样策略
4.样品的收集、处理和保存
5.结果记录、数据分析
6.系统学解释
第四章核酸的分子系统学方法(8学时)
本章主要介绍核酸分子系统学方法与应用范围,包括DNA—DNA杂交法、RAPD、AFLP、RFLP、SSR、核酸序列分析方法,重点掌握各种方法的优缺点和适合范围。
1. RAPD标记技术的原理与应用
2. AFLP标记技术的原理与应用
3. SSR标记的原理与应用
4.序列分析方法与应用:核基因、线粒体基因、叶绿体基因;功能基因、基因间隔区。
第五章蛋白质的分子系统学方法(4学时)
本章主要介绍蛋白质分子系统学方法与应用范围,包括血清学方法、电泳方法、蛋白质序列分析、蛋白质立体结构分析。
1.血清学方法
2.电泳方法:等位酶、血液蛋白。
3.蛋白质序列分析
4.蛋白质立体结构分析
第六章小分子系统学方法(2学时)
本章主要介绍小分子系统学方法,包括化学指纹法、氨基酸分析、碳氢化合物分析、信号化合物分析,重点掌握小分子系统学的优缺点。
1.化学指纹法
2.氨基酸分析
3.碳氢化合物分析
4.信号化合物分析
第七章分子系统学数据的分析方法(4学时)
本章介绍分子数据的系统发育分析方法,包括距离矩阵方法、性状数据分析方法、最优树的选择、系统发育分析的可靠性、数据集之间的联合与分离,掌握目前常用的几种数据分析方法的优缺点。
1. 距离矩阵方法
2.性状数据分析方法
3.最优树的选择
4.系统发育分析的可靠性:Bootstrap分析。
5. 数据集之间的联合与分离:基因树、物种树。
第八章常用系统学分析软件简介(4学时)
本章介绍几种系统学分析常用的软件,包括CLUSTALX、NTSYS-pc、MEGA、PopGen32、AMOV A、TREECONW。
三、课程教学的基本要求
本课程的教学环节包括:课堂讲授、经典论文阅读、软件演示,数据模拟分析。
通过本课程各教学环节的教学,重点增长学生的知识面,开阔视野,掌握分子系统学的原理和方法,基本掌握如何利用分子系统学方法解决种群结构、分类学、系统发育和分子进化的问题,为生物科学研究奠定科学的研究方法。
(一)课堂讲授
主要教学方法:
以“少而精”为原则精选教学内容,以多媒体教学技术为主,结合论文点评,将科学性、新颖性和趣味性融为一体,激发学生在课堂上的兴趣,调动学生学习的主观能动性。
(二)课程论文
课程论文是本课程的重要教学环节,在基本知识学习的基础上,通过学生纂写课程论文培养学生查阅文献资料的能力和分析问题解决问题的能力,考察学生对本课程的学习情况。
(三)考试环节
学生成绩评定:平时成绩50%+课程论文50%。
其中平时成绩包括上课次数、学习态度;期末成绩为课程论文成绩。
四、参考教材
[1] 《分子系统学——原理、方法及应用》,黄原著,中国农业出版社,1998
[2] Data Analysis in Molecular Biology and Evolution. Xuhua Xia. Kluwer Academic Publishers,2000
[3] Molecular Biology and Evolution,期刊.
[4] Molecular Phylogentics Evolution,期刊.
[5] 《生物多样性》(Biodiversity and Conservation),期刊
五、本课程的先修课程
本课程的理论基础来源于系统学、分类学、遗传学、比较生物化学、分子生物学和进化论,所以,要求先修的课程包括遗传学、分类学、生物化学、分子生物学。
六、教学大纲修订说明
本课程为新增课程,目的的让学生了解这门生命科学领域中新兴的交叉学科,掌握分子系统学的原理和方法,基本掌握如何利用分子系统学方法解决种群结构、分类学、系统发育和分子进化的问题,为生物科学研究奠定科学的研究方法。