排列组合应用教学设计教案

合集下载

排列与组合教学设计精选4篇

排列与组合教学设计精选4篇

排列与组合教学设计精选4篇排列与组合教学设计篇一教学内容:人教版义务教育课程标准实验教科书小学数学二年级上册第八单元的排列与组合。

教学目标:1.使学生通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

2.让学生经历探索简单事物排列与组合规律的过程。

3.培养学生有顺序地全面地思考问题的意识。

4.让学生体验数学与生活的紧密联系,激发学生学好数学的信心。

5.让学生初步感悟简单的排列、组合的数学思想方法。

教学重点:经历探索简单事物排列与组合规律的过程。

教学难点:让学生初步感悟简单的排列、组合的数学思想方法。

教具准备:CAI课件,彩纸剪好的衣裤若干。

学具准备:每生1-6数字卡片各一张、5角钱。

教学过程:一、创设情景、实践导入师:同学们,你们喜欢打乒乓球吗?今天老师要带你们去看一场乒乓球赛,同时老师还想和同学们一起研究乒乓球比赛活动中有关的几个数学问题。

请大家准备好5角钱,准备买票入场。

(学生操作──在桌上摆5角钱。

)师:谁能告诉大家,你拿的是几张几角的?(学生回答各种拿法。

)师:噢,你们想到的5角钱的拿法可真多,真是棒极了!那我们就一起买票进场吧。

二、动手操作、体验新知出示课件:(乒乓球赛场)1.感知排列。

师:比赛前,运动员想请你们为他们编号,愿意吗?要求:①请从1、2、3三张数字卡片中每次选两张组成一个两位数的号码,不许重复;②三人一组,一个人当记录员,其余两人摆数字卡片,看哪组编的号码最多。

(小组合作完成,然后回答所编的号码。

)2.讨论排列方法。

师:怎么有的组编的号码多,而有的组却编的少呢?有什么好办法能保证既不漏数、也不重复呢?(学生自主探索后教师指名汇报。

)小结:方法①:先摆3个数,再把它们换位,一共有6种方法。

方法②:先把1摆在十位,再把2和3分别摆在个位,即摆成12.13;再把2摆在十位,把1和3分别摆在个位,可摆成21、23;最后把3摆在十位,把1和2分别摆在个位,可摆成31和32,一共也有6种方法。

《排列与组合》教学设计优秀9篇

《排列与组合》教学设计优秀9篇

《排列与组合》教学设计优秀9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《排列与组合》教学设计优秀9篇作为一位杰出的老师,常常需要准备教案,教案有助于顺利而有效地开展教学活动。

《8.2.3 排列组合的应用》学历案-中职数学高教版21拓展模块一上册

《8.2.3 排列组合的应用》学历案-中职数学高教版21拓展模块一上册

《排列组合的应用》学历案(第一课时)一、学习主题本课学习主题为“排列组合的应用”。

排列与组合是数学中的基础概念,广泛应用于日常生活和各类实际问题中。

本课将通过具体实例,让学生掌握排列与组合的基本原理,并学会在现实生活中运用这些原理解决问题。

二、学习目标1. 理解排列与组合的基本概念,掌握其计算方法。

2. 学会分析实际问题中的排列与组合问题,并能够运用所学知识进行解决。

3. 培养学生的逻辑思维能力和数学应用能力。

4. 增强学生对于数学学习的兴趣和信心。

三、评价任务1. 通过课堂小测验,评价学生对排列与组合基本概念的理解及计算能力。

2. 通过小组合作完成实际问题案例分析,评价学生运用所学知识解决问题的能力及合作能力。

3. 通过课后作业,评价学生对本课知识的掌握程度及数学应用能力的提升情况。

四、学习过程1. 导入新课通过生活中的实例(如安排日程、购物组合等)引入排列与组合的概念,激发学生的学习兴趣。

2. 概念讲解讲解排列与组合的定义、计算方法及基本原理,强调其在实际生活中的应用。

3. 实例分析通过具体问题,引导学生分析问题中的排列与组合情况,并运用所学知识进行解决。

4. 课堂互动鼓励学生提问,对学生的学习疑问进行解答,加深学生对知识的理解。

5. 课堂小测验进行课堂小测验,检验学生对排列与组合基本概念及计算方法的掌握情况。

6. 总结反馈根据小测验结果,对学生的学习情况进行总结,并给予针对性的反馈和建议。

五、检测与作业1. 完成课本上的相关练习题,巩固所学知识。

2. 小组合作,完成一个实际问题案例分析,运用所学知识解决问题。

3. 撰写学习心得,反思本课学习过程及收获,提出自己的疑问和建议。

六、学后反思1. 学生应反思自己在课堂上的学习情况,包括对知识的理解、对问题的分析能力以及与同学的互动情况等。

2. 学生应思考如何在日常生活中运用所学知识,解决实际问题。

3. 学生可就本课学习过程中遇到的疑问或困难进行思考,寻求解决方法或向老师请教。

排列组合的经典教案

排列组合的经典教案

排列组合的经典教案排列组合的经典教案作为一位杰出的教职工,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。

如何把教案做到重点突出呢?下面是店铺收集整理的排列组合的经典教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

排列组合的经典教案篇1一、课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。

二、命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。

三、要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数(2)排列数公式:系= =n·(n-1)…(n-m+1);(3)全排列列: =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4.组合(1)组合的定义,排列与组合的区别;(2)组合数公式:Cnm= = ;(3)组合数的性质①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;6.二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。

排列组合问题教案

排列组合问题教案

排列组合问题教案一、教学目标1. 让学生理解排列组合的概念和意义。

2. 培养学生运用排列组合知识解决实际问题的能力。

3. 引导学生掌握排列组合的计算方法和技巧。

二、教学内容1. 排列的概念和计算方法2. 组合的概念和计算方法3. 排列组合的综合应用三、教学重点与难点1. 教学重点:排列组合的计算方法和技巧。

2. 教学难点:排列组合在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究排列组合的计算方法。

2. 运用案例分析法,让学生通过解决实际问题,巩固排列组合知识。

3. 采用小组合作学习法,培养学生的团队协作能力和交流表达能力。

五、教学准备1. 教学课件:排列组合的概念、计算方法和应用案例。

2. 练习题:涵盖排列和组合的各种类型,用于巩固知识点。

教案一、导入(5分钟)1. 教师通过引入“猜拳游戏”的问题,引导学生思考排列组合的概念。

2. 学生分享对排列组合的理解,教师总结并板书。

二、排列的概念和计算方法(10分钟)1. 教师讲解排列的定义和计算方法,示例演示。

2. 学生跟随教师一起完成典型案例的排列计算。

3. 学生自主练习排列计算,教师巡回指导。

三、组合的概念和计算方法(10分钟)1. 教师讲解组合的定义和计算方法,示例演示。

2. 学生跟随教师一起完成典型案例的组合计算。

3. 学生自主练习组合计算,教师巡回指导。

四、排列组合的综合应用(15分钟)1. 教师提出一个实际问题,引导学生运用排列组合知识解决。

2. 学生分组讨论,提出解决方案,并进行展示。

3. 教师点评并总结,强调排列组合在实际问题中的应用。

五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结排列组合的计算方法和应用。

2. 学生分享学习收获,教师给予鼓励和评价。

六、课后作业(课后自主完成)1. 完成练习题,巩固排列组合的知识点。

教学反思:本节课通过问题驱动、案例分析和小组合作学习等方法,引导学生掌握了排列组合的计算方法和实际应用。

简单的排列教案7篇

简单的排列教案7篇

简单的排列教案7篇简单的排列教案篇1【背景】在日常生活中,有很多需要用排列组合解决的知识。

如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。

在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。

这节课安排生动有趣额活动,让学生通过这些活动进行学习。

例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的`体会:怎样摆才能保证不重复、不遗漏。

【教材分析】“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。

排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。

【教学目标】1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

【教学重点】经历探索简单事物排列与组合规律的过程【教学难点】初步理解简单事物排列与组合的不同【教学准备】多媒体、数字卡片。

【教学方法】观察法、动手操作法、合作探究法等。

【课前预习】预习数学书99页,思考以下问题:1、用1、2两个数字能摆出哪些两位数?2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。

3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。

【教学准备】ppt【教学过程】……一、以游戏形式引入新课师:同学们,今天老师带大家去数学广角做游戏。

在门口设置了,上有密码。

小学二年级数学教案 排列组合9篇

小学二年级数学教案 排列组合9篇

小学二年级数学教案排列组合9篇排列组合 1教学目标1、使学生通过观察、猜测、实验等活动,找出最简单的事物排列数和组合数。

2、培养学生初步的观察、分析及推理能力。

3、初步培养学生有顺序地、全面地思考问题的意识。

教学重点:经历探索简单事物排列与组合规律的过程。

教学难点:引导学生发现和应用规律,做到不重复也不遗漏地找出事物的排列数和组合数。

教具准备:多媒体课件、数字卡片、练习纸。

教学过程:一、创设情境,引出课题师:同学们,今天老师带大家继续在数学王国里遨游,今天我们要去一个新的地方数学城堡,想去吗?生:想。

师:那我们就一起出发吧!老师相信,凭借你们的智慧,今天一定会玩儿的很开心的!二、趣味活动,探索新知(一)破译密码——体会排列1、破译密码——体会排列(出示城堡大门的大锁头)师:真不巧,今天城堡的管理员不在,大门紧锁,不过别着急,这里既然是数学城堡,那么用我们的数学头脑一定能解决问题。

我知道,这把锁是密码锁。

咱们只要破译了密码就可以顺利进入了。

师:快看,这把锁头上有提示,它的密码是由1和2组成的两位数,猜猜看会是几?生:12、21.师:有的说是12、有的说是21.还有别的可能吗?生:没有了。

师:为什么呢?生:因为由1和2组成的两位数不是12就是21。

不能组成其它数了。

师:好,那到底哪一个是密码呢?我们来试一试。

先来试一试12(错误)。

那肯定是?生:21.师:好,恭喜大家顺利进入数学城堡。

数学城堡为我们设置了几道关卡,想考验考验大家,你们有信心闯关吗?生:有!(二)排一排——应用排列师:那好,那我们就来看看第一关。

1、2、3能组成几个不同的两位数?括号里写的什么啊?生:请有序的思考。

师:咱们看谁能做到有序的思考(神秘些)。

当然,在数学城堡里闯关还要遵守闯关规则,那就是不重复、不遗漏。

下面请大家拿起手中的数字卡片试着排一排,然后把你摆出的两位数记录在练习纸上。

开始行动吧!(设计意图:通过解决闯关题,使学生自身产生对知识的迫切需要,使学生在充满兴趣的情感中不知不觉地进入了摆数活动,让学生在体验中感受,在活动操作中成功,在交流中找到方法,在学习中应用。

排列与组合教学设计5篇

排列与组合教学设计5篇

排列与组合教学设计5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、心得体会、演讲致辞、合同协议、读后感、观后感、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, work plans, experiences, speeches, contract agreements, reading feedback, observation feedback, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!排列与组合教学设计5篇排列与组合教学设计篇1排列组合教学设计实验学校崔海涛教学内容义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时教学目标:知识目标:使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)这11个点构成几个三角形?
分析:若平面上11点中任意两点有一条不同直线,则共有C = =55条.故直线总条数减少了55-48=7条.而每增加一组3点共线直线总条数减少C -1=2条,每增加一组4点共线,直线总条数减少C -1=5条……,故此题第(1)问是考虑7被2与5分解的不同方式,第(2)问则可以采用分类的思想求解.
●教具准备
投影片.
第一张:排列数、组合数公式(记作10.3.4 A)
第二张:本节例题(记作10.3.4B)
第三张:补充练习题(记作10.3.4C)
●教学过程
Ⅰ.复习回顾
[师]上一节我们一起研究学习了排列组合的实际应用题,逐步熟悉了排列数与组合数公式,并总结了相邻问题与不相邻问题的常用方法.下面,我们作一简要回顾.
分析:此题可以从m个点共线而减少
的直线和三角形入手,采用间接求法.
解:若无任何三点共线,n个点可以连成直线C 条;
而m点共线则减少C -1条直线,
所以n个点可连成C -(C -1)= - +1条直线.
若无任何三点共线,n个点可以连成三角形C 个,而m点共线,三角形个数减少C 个,故这n个点可以连成三角形C -C (个).
●课题
排列组合应用(二)
●教学目标
(一)教学知识点
排列、组合、排列数、组合数、捆绑法、插空法.
(二)能力训练要求
1.能够判断所研究问题是否是排列或组合问题.
2.进一步熟悉排列数、组合数公式的计算技能.
3.熟练应用排列组合问题常见的解题方法.
4.进一步增强分析、解决排列、组合应用题的能力.
(三)德育渗透目标
故所求最多交点个数为60个.
评述:此题关键是将求交点个数问题转化为四边形对角线交点问题,使解题思路豁然开朗,要求学生加以体会.
[师]下面我们再做一道相关性练习.
已知空间有8个点,其中任意三点不共线,任意四点不共面,若两条异面直线称为“一对”异面直线,问共有多少对不同的异面直线?
[师]此题可考虑构造含有异面直线的几何体,联系例2的解法求解.
再由分类计数原理,共有A +4×4×A =252(种).
Ⅳ.课时小结
[师]通过本节学习,要求大家进一步熟悉排列组合在实际中的应用,掌握常见的分析、解决问题的方法,并体会基本原理及转化思想在解题中的应用,逐步增强分析问题、解决问题的能力.
Ⅴ.课后作业
(一)课本P100习题10.3 11、12、13.
(二)1.预习课本P104~P106.
2.预习提纲
(1)二项式定理的内容.
(2)二项式有哪些相关概念?
(3)二项式系数与系数有何区别?
●板书设计
10.3.4排列组合应用(二)
Ⅰ.方法归纳例1学生练习
1.相邻问题例2
捆绑法解答过程
2.不相邻问题评述要点
插空法
3.转化思想的应用
若在A1,A2,A3,A4这四点中任取一点与B1,B2,B3,B4,B5这五点中各取一点连成一条直线,问交点的个数最多有几个?
[师]大家在审读题目内容后可以畅谈自己的看法.
[生甲]连结A1B2,则A2B1,A3B1,A4B1分别与A1B2各有一交点,共有3个交点,再考虑各点与B2连结后交点的增加情况……
[生甲]排列数公式:
A = .
组合数公式:
C = .
[生乙]相邻问题常用捆绑法;不相邻问题常用插空法.
[师]这一节,我们通过例题进一步研究排列组合知识在实际中的应用,并关注转化思想在解题中的应用.
Ⅱ.讲授新课
[例1]平面上有11个相异的点,过其中任意两点相异的直线有48条.
(1)这11个点中,含3个或3个以上的点的直线有几条?
[生丁]因为在立体几何学习中,我们知道,在三棱锥中有三对异面直线,故可以考虑构成不同三棱锥的个数,而空间8个点中任取4个不共面,可构成一个三棱锥,共可构成不同三棱锥C 个,所以共有不同的异面直线3×C =210(对.4C)
1.平面内有n个点,如果有m个点共线,其余各点没任何三点共线,这n个点可连成多少条直线?连成多少个三角形?
[师]接下来,我们根据丙同学的思路共同写出解答过程.
解:若各点连线交点不重合,则交点最多.共分两步:
第一步:从l1上A1~A4四点中取两点,有C 种不同取法;
第二步:从l2上B1~B5五点中任取两点,有C 种不同取法.
根据分步计数原理共有C ·C =60(种)不同取法.
而每种取法对应不同的四边形,四边形对角线有唯一交点,
解:(1)若任三点不共线,则所有直线的总条数为C = =55条;
每增加一组三点共线,连成直线就将减少C =2条;
每增加一组四点共线,连成直线就将减少C -1=5条;
每增加一组五点共线,连成直线就将减少C -1=9条.
∴55-48=7=2+5.
故含有3个点、4个点的直线各1条.
(2)若任意三点不共线,则11个点可构成三角形个数为C = =165(个).
每增加一组三点共线三角形个数减少1个,
每增加一组四点共线三角形个数减少C 个,
故所求不同三角形个数为C -(1+C )=160个.
评述:第(2)问采用逆向思考方法,即考虑总体除去减少的三角形,思路清晰,若直接求解,则情形较多,要求学生注意“正难则反”的解题思想应用.
[例2]如图,直线l1与l2相交于点P,除点P外,在直线l1上还有A1,A2,A3,A4四点,在直线l2上还有B1,B2,B3,B4,B5五点.
1.用联系的观点看问题.
2.认识事物在一定条件下的相互转化.
3.解决问题能抓住问题的本质.
●教学重点
排列数、组合数公式的应用.
●教学难点
解题思路的分析.
●教学方法
启发式、引导式
启发学生认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,引导学生注重不同题目之间解题方法的联系,化解矛盾,并要求学生注重解题方法的归纳与总结,真正提高分析、解决问题的能力.
2.由6名运动员中选4人参加400米混合泳接力,其中甲不游仰泳,乙不游蝶泳,共有多少种选派方法?
分析:从仰泳与蝶泳两种方式中选取一种作为分类的出发点,然后分步进行.
(1)蝶泳选派甲时,其余3人任意排列,有A 种不同选法;
(2)蝶泳选派甲、乙以外的4人有4种选法,接着定仰泳有4种方法,再定另外2名有A 种方法,由分步计数原理有4×4×A 种方法.
[生乙]我也按照甲同学的思路考虑,但情形较为复杂,不易确定所求.
[生丙]为了避免遗漏和重复,根据四边形对角形交点唯一,可以考虑构成不同四边形个数的多少.可分两步完成:第一步,从l1上A1~A4四点中任取两点,有C 种不同取法;第二步:从l2上B1~B5五点中任取两点,共有C 种不同取法.
根据分步计数原理共有C ·C 种不同取法,而每种取法对应不同的四边形,四边形的对角线有唯一交点,故所求最多交点个数为C ·C 个.
相关文档
最新文档